Fix all warnings.

This commit is contained in:
Joshua Yanovski 2020-01-20 17:16:41 +01:00
parent ccd85e8907
commit 1d6d0ea03d
11 changed files with 226 additions and 821 deletions

586
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -38,7 +38,8 @@ opt-level = 2
opt-level = 2 opt-level = 2
[profile.dev.package."veloren-world"] [profile.dev.package."veloren-world"]
opt-level = 2 opt-level = 2
[profile.no_overflow.overrides."veloren-world"]
[profile.no_overflow.package."veloren-world"]
opt-level = 3 opt-level = 3
# this profile is used by developers if dev doesn't has enough debug information, the name must != debug, as debug is used by dev because.... # this profile is used by developers if dev doesn't has enough debug information, the name must != debug, as debug is used by dev because....

View File

@ -19,8 +19,8 @@ use crate::{
use client::Client; use client::Client;
use common::{ use common::{
comp, comp,
terrain::{BlockKind, TerrainChunk, TerrainChunkSize}, terrain::{BlockKind, TerrainChunk},
vol::{ReadVol, RectVolSize}, vol::ReadVol,
}; };
use specs::{Join, WorldExt}; use specs::{Join, WorldExt};
use vek::*; use vek::*;

View File

@ -3,13 +3,11 @@ mod natural;
use crate::{ use crate::{
column::{ColumnGen, ColumnSample}, column::{ColumnGen, ColumnSample},
generator::{Generator, TownGen}, generator::{Generator, TownGen},
sim::WorldSim,
util::{RandomField, Sampler, SmallCache}, util::{RandomField, Sampler, SmallCache},
CONFIG, CONFIG,
}; };
use common::{ use common::{
terrain::{structure::StructureBlock, Block, BlockKind, Structure}, terrain::{structure::StructureBlock, Block, BlockKind, Structure},
util::saturate_srgb,
vol::{ReadVol, Vox}, vol::{ReadVol, Vox},
}; };
use std::ops::{Add, Div, Mul, Neg}; use std::ops::{Add, Div, Mul, Neg};

View File

@ -4,7 +4,7 @@ mod vol;
use super::{Generator, SpawnRules}; use super::{Generator, SpawnRules};
use crate::{ use crate::{
block::{block_from_structure, BlockGen}, block::{block_from_structure, BlockGen},
column::{ColumnGen, ColumnSample}, column::ColumnSample,
util::Sampler, util::Sampler,
CONFIG, CONFIG,
}; };

View File

@ -63,15 +63,13 @@ pub fn diffusion(
let mut zint: Vec<f64>; let mut zint: Vec<f64>;
let mut kdint: Vec<f64>; let mut kdint: Vec<f64>;
let mut zintp: Vec<f64>; let mut zintp: Vec<f64>;
let mut i: usize;
let mut j: usize;
let mut ij: usize; let mut ij: usize;
let mut factxp: f64; let mut factxp: f64;
let mut factxm: f64; let mut factxm: f64;
let mut factyp: f64; let mut factyp: f64;
let mut factym: f64; let mut factym: f64;
let mut dx: f64; let dx: f64;
let mut dy: f64; let dy: f64;
/* /*
character cbc*4 character cbc*4
@ -93,7 +91,7 @@ pub fn diffusion(
*/ */
zint = vec![Default::default(); nx * ny]; zint = vec![Default::default(); nx * ny];
kdint = vec![Default::default(); nx * ny]; kdint = vec![Default::default(); nx * ny];
zintp = vec![Default::default(); nx * ny]; // zintp = vec![Default::default(); nx * ny];
/* /*
do j=1,ny do j=1,ny
do i=1,nx do i=1,nx
@ -381,7 +379,7 @@ pub fn diffusion(
} }
} }
b.par_iter_mut().zip(h).for_each(|(mut b, h)| { b.par_iter_mut().zip(h).for_each(|(b, h)| {
*b = h.min(*b); *b = h.min(*b);
}); });
/* /*
@ -415,9 +413,7 @@ pub fn tridag(a: &[f64], b: &[f64], c: &[f64], r: &[f64], u: &mut [f64], n: usiz
if(b(1).eq.0.d0) stop 'in tridag' if(b(1).eq.0.d0) stop 'in tridag'
*/ */
let mut j: usize;
let mut bet: f64; let mut bet: f64;
let mut precision: f64;
let mut gam: Vec<f64>; let mut gam: Vec<f64>;
gam = vec![Default::default(); n]; gam = vec![Default::default(); n];

View File

@ -3,21 +3,18 @@ use super::{
NEIGHBOR_DELTA, WORLD_SIZE, NEIGHBOR_DELTA, WORLD_SIZE,
}; };
use crate::{config::CONFIG, util::RandomField}; use crate::{config::CONFIG, util::RandomField};
use arr_macro::arr;
use bitvec::prelude::{bitbox, bitvec, BitBox};
use common::{terrain::TerrainChunkSize, vol::RectVolSize}; use common::{terrain::TerrainChunkSize, vol::RectVolSize};
use faster::*; // use faster::*;
use itertools::izip; use itertools::izip;
use noise::{NoiseFn, Point3}; use noise::{NoiseFn, Point3};
use num::{Float, FromPrimitive, One, Zero}; use num::{Float, Zero};
use ordered_float::NotNan; use ordered_float::NotNan;
use packed_simd::{/*f32x8, f64x8,*/ m32, m64}; use packed_simd::m32;
use rayon::prelude::*; use rayon::prelude::*;
use std::{ use std::{
cmp::{Ordering, Reverse}, cmp::{Ordering, Reverse},
collections::BinaryHeap, collections::BinaryHeap,
f32, f64, fmt, mem, f32, f64, fmt, mem,
path::PathBuf,
time::Instant, time::Instant,
u32, u32,
}; };
@ -28,7 +25,7 @@ pub type Alt = f64;
pub type Compute = f64; pub type Compute = f64;
pub type Computex8 = [Compute; 8]; pub type Computex8 = [Compute; 8];
/// This is a fast approximation of powf. This should only be used when minor accuracy loss is acceptable. /* /// This is a fast approximation of powf. This should only be used when minor accuracy loss is acceptable.
#[inline(always)] #[inline(always)]
#[allow(unsafe_code)] #[allow(unsafe_code)]
fn approx_powf(b: f32, e: f32) -> f32 { fn approx_powf(b: f32, e: f32) -> f32 {
@ -44,7 +41,7 @@ fn approx_powf(b: f32, e: f32) -> f32 {
b.a[0] = 0; b.a[0] = 0;
b.f as f32 b.f as f32
} }
} } */
/// Compute the water flux at all chunks, given a list of chunk indices sorted by increasing /// Compute the water flux at all chunks, given a list of chunk indices sorted by increasing
/// height. /// height.
@ -236,7 +233,7 @@ pub fn get_rivers<F: fmt::Debug + Float + Into<f64>, G: Float + Into<f64>>(
let chunk_area_factor = neighbor_coef.x * neighbor_coef.y * mins_per_sec; let chunk_area_factor = neighbor_coef.x * neighbor_coef.y * mins_per_sec;
// NOTE: This technically makes us discontinuous, so we should be cautious about using this. // NOTE: This technically makes us discontinuous, so we should be cautious about using this.
let derivative_divisor = 1.0; let derivative_divisor = 1.0;
let height_scale = 1.0; // 1.0 / CONFIG.mountain_scale as f64; // let height_scale = 1.0; // 1.0 / CONFIG.mountain_scale as f64;
newh.into_iter().rev().for_each(|&chunk_idx| { newh.into_iter().rev().for_each(|&chunk_idx| {
let chunk_idx = chunk_idx as usize; let chunk_idx = chunk_idx as usize;
let downhill_idx = downhill[chunk_idx]; let downhill_idx = downhill[chunk_idx];
@ -326,7 +323,7 @@ pub fn get_rivers<F: fmt::Debug + Float + Into<f64>, G: Float + Into<f64>>(
let pass_idx = (-indirection_idx) as usize; let pass_idx = (-indirection_idx) as usize;
/* let pass_pos = uniform_idx_as_vec2(pass_idx); /* let pass_pos = uniform_idx_as_vec2(pass_idx);
let lake_direction = neighbor_coef * (neighbor_pass_pos - pass_pos).map(|e| e as f64); */ let lake_direction = neighbor_coef * (neighbor_pass_pos - pass_pos).map(|e| e as f64); */
let pass = &rivers[pass_idx]; // let pass = &rivers[pass_idx];
/* // Our side of the pass must have already been traversed (even if our side of the pass /* // Our side of the pass must have already been traversed (even if our side of the pass
// is the lake bottom), so we acquire its computed river_spline_derivative. // is the lake bottom), so we acquire its computed river_spline_derivative.
debug_assert!(pass.is_lake()); */ debug_assert!(pass.is_lake()); */
@ -711,9 +708,8 @@ fn erode(
// a: &mut [Alt], // a: &mut [Alt],
// Height above sea level of water // Height above sea level of water
wh: &mut [Alt], wh: &mut [Alt],
is_done: &mut BitBox, // is_done: &mut BitBox,
done_val: bool, // done_val: bool,
erosion_base: f32,
max_uplift: f32, max_uplift: f32,
max_g: f32, max_g: f32,
kdsed: f64, kdsed: f64,
@ -768,7 +764,7 @@ fn erode(
// let l = /*200.0 * max_uplift as f64;*/(1.0e-2 /*/ CONFIG.mountain_scale as f64*/ * height_scale); // let l = /*200.0 * max_uplift as f64;*/(1.0e-2 /*/ CONFIG.mountain_scale as f64*/ * height_scale);
// let l_tot = l * dt; // let l_tot = l * dt;
// Debris flow coefficient (m / year). // Debris flow coefficient (m / year).
let k_df = 1.0e-4/*0.0*/; // let k_df = 1.0e-4/*0.0*/;
// Debris flow area coefficient (m^(-2q)). // Debris flow area coefficient (m^(-2q)).
let q = 0.2; let q = 0.2;
let q_ = /*1.0*/1.5/*1.0*/; let q_ = /*1.0*/1.5/*1.0*/;
@ -832,19 +828,19 @@ fn erode(
/* let n = 2.4;// 1.0;//1.5;//2.4;//1.0; /* let n = 2.4;// 1.0;//1.5;//2.4;//1.0;
let m = n * 0.5;// n * 0.4;// 0.96;// 0.4;//0.6;//0.96;//0.4; */ let m = n * 0.5;// n * 0.4;// 0.96;// 0.4;//0.6;//0.96;//0.4; */
// Stream power erosion constant (bedrock), in m^(1-2m) / year (times dt). // Stream power erosion constant (bedrock), in m^(1-2m) / year (times dt).
let k_fb = // erosion_base as f64 + 2.244 / mmaxh as f64 * max_uplift as f64; /* let k_fb = // erosion_base as f64 + 2.244 / mmaxh as f64 * max_uplift as f64;
// 2.244*(5.010e-4)/512*5- (1.097e-5) // 2.244*(5.010e-4)/512*5- (1.097e-5)
// 2.244*(5.010e-4)/2048*5- (1.097e-5) // 2.244*(5.010e-4)/2048*5- (1.097e-5)
// 2.244*(5.010e-4)/512- (8e-6) // 2.244*(5.010e-4)/512- (8e-6)
// 2.244*(5.010e-4)/512- (2e-6) // 2.244*(5.010e-4)/512- (2e-6)
// 2e-6 * dt; // 2e-6 * dt;
// 8e-6 * dt // 8e-6 * dt
// 2e-5 * dt; // 2e-5 * dt;
// 2.244/2048*5*32/(250000/4)*10^6 // 2.244/2048*5*32/(250000/4)*10^6
// ln(tan(30/360*2*pi))-ln(tan(6/360*2*pi))*1500 = 3378 // ln(tan(30/360*2*pi))-ln(tan(6/360*2*pi))*1500 = 3378
//erosion_base as f64 + 2.244 / mmaxh as f64 * /*10.0*//*5.0*//*9.0*//*7.5*//*5.0*//*2.5*//*1.5*//*5.0*//*1.0*//*1.5*//*2.5*//*3.75*/ * max_uplift as f64; //erosion_base as f64 + 2.244 / mmaxh as f64 * /*10.0*//*5.0*//*9.0*//*7.5*//*5.0*//*2.5*//*1.5*//*5.0*//*1.0*//*1.5*//*2.5*//*3.75*/ * max_uplift as f64;
// 2.5e-6 * dt; // 2.5e-6 * dt;
2e-5 * dt; 2e-5 * dt; */
// see http://geosci.uchicago.edu/~kite/doc/Whipple_and_Tucker_1999.pdf // see http://geosci.uchicago.edu/~kite/doc/Whipple_and_Tucker_1999.pdf
//5e-6 * dt; // 2e-5 was designed for steady state uplift of 2mm / y whih would amount to 500 m / 250,000 y. //5e-6 * dt; // 2e-5 was designed for steady state uplift of 2mm / y whih would amount to 500 m / 250,000 y.
// (2.244*(5.010e-4)/512)/(2.244*(5.010e-4)/2500) = 4.88... // (2.244*(5.010e-4)/512)/(2.244*(5.010e-4)/2500) = 4.88...
@ -852,13 +848,13 @@ fn erode(
// Stream power erosion constant (sediment), in m^(1-2m) / year (times dt). // Stream power erosion constant (sediment), in m^(1-2m) / year (times dt).
let k_fs_mult_sed = /*1.0;*//*2.0*/4.0; /*1.0;*///2.0;/*1.5*/; let k_fs_mult_sed = /*1.0;*//*2.0*/4.0; /*1.0;*///2.0;/*1.5*/;
// Stream power erosion constant (underwater). // Stream power erosion constant (underwater).
let k_fs_mult_water = /*1.0*//*0.5*/0.25; // let k_fs_mult_water = /*1.0*//*0.5*/0.25;
let g_fs_mult_sed = 1.0/*0.5*/; let g_fs_mult_sed = 1.0/*0.5*/;
// let k_fs = k_fb * 1.0/*1.5*//*2.0*//*2.0*//*4.0*/; // let k_fs = k_fb * 1.0/*1.5*//*2.0*//*2.0*//*4.0*/;
// u = k * h_max / 2.244 // u = k * h_max / 2.244
// let uplift_scale = erosion_base as f64 + (k_fb * mmaxh / 2.244 / 5.010e-4 as f64 * mmaxh as f64) * dt; // let uplift_scale = erosion_base as f64 + (k_fb * mmaxh / 2.244 / 5.010e-4 as f64 * mmaxh as f64) * dt;
let ( let (
(dh, indirection, newh, maxh, mrec, mstack, mwrec, area), (dh, /*indirection, */ newh, maxh, mrec, mstack, mwrec, area),
(mut max_slopes, /*(ht, at)*/ h_t), (mut max_slopes, /*(ht, at)*/ h_t),
) = rayon::join( ) = rayon::join(
|| { || {
@ -871,7 +867,7 @@ fn erode(
}, },
); );
log::debug!("Computed downhill..."); log::debug!("Computed downhill...");
let (boundary_len, indirection, newh, maxh) = get_lakes( let (boundary_len, _indirection, newh, maxh) = get_lakes(
|posi| h[posi], /* + uplift(posi) as Alt*/ |posi| h[posi], /* + uplift(posi) as Alt*/
/* + a[posi].max(0.0)*//* + uplift(posi) as Alt*/ /* + a[posi].max(0.0)*//* + uplift(posi) as Alt*/
&mut dh, &mut dh,
@ -892,7 +888,9 @@ fn erode(
// let area = get_drainage(&newh, &dh, boundary_len); // let area = get_drainage(&newh, &dh, boundary_len);
let area = get_multi_drainage(&mstack, &mrec, &*mwrec, boundary_len); let area = get_multi_drainage(&mstack, &mrec, &*mwrec, boundary_len);
log::debug!("Got flux..."); log::debug!("Got flux...");
(dh, indirection, newh, maxh, mrec, mstack, mwrec, area) (
dh, /*indirection, */ newh, maxh, mrec, mstack, mwrec, area,
)
}, },
|| { || {
rayon::join( rayon::join(
@ -928,7 +926,7 @@ fn erode(
type SimdType = f32; type SimdType = f32;
type MaskType = m32; type MaskType = m32;
let simd_func = /*f64s*/f32s; // let simd_func = /*f64s*/f32s;
// Precompute factors for Stream Power Law. // Precompute factors for Stream Power Law.
let czero = </*Compute*/SimdType as Zero>::zero(); let czero = </*Compute*/SimdType as Zero>::zero();
@ -1014,7 +1012,7 @@ fn erode(
// Higher rock strength tends to lead to higher curvature? // Higher rock strength tends to lead to higher curvature?
let kd_factor = let kd_factor =
// 1.0; // 1.0;
(/*1.0 / */(max_slope / mid_slope/*.sqrt()*//*.powf(0.03125)*/).powf(/*2.0*/2.0/* * q*/))/*.min(kdsed)*/; /*(1.0 / */(max_slope / mid_slope/*.sqrt()*//*.powf(0.03125)*/).powf(/*2.0*/2.0/* * q*/)/*).min(kdsed)*/;
let k_da = k_da /*/ /*max_slope*/*/ * kd_factor;// .powf(q/* / q_*/); let k_da = k_da /*/ /*max_slope*/*/ * kd_factor;// .powf(q/* / q_*/);
// let k_df = /*uplift_i*/0.05e-3 / (1.0 + k_da * /*chunk_area_pow*/(10_000.0).powf(q)) / max_slope.powf(q_); // let k_df = /*uplift_i*/0.05e-3 / (1.0 + k_da * /*chunk_area_pow*/(10_000.0).powf(q)) / max_slope.powf(q_);
@ -1169,7 +1167,7 @@ fn erode(
assert!(mstack.len() == dh.len()); assert!(mstack.len() == dh.len());
assert!(b.len() == dh.len()); assert!(b.len() == dh.len());
assert!(h_t.len() == dh.len()); assert!(h_t.len() == dh.len());
let mut mstack_inv = &mut *mstack_inv; let mstack_inv = &mut *mstack_inv;
mstack.iter().enumerate().for_each(|(stacki, &posi)| { mstack.iter().enumerate().for_each(|(stacki, &posi)| {
let posi = posi as usize; let posi = posi as usize;
mstack_inv[posi] = stacki; mstack_inv[posi] = stacki;
@ -1215,7 +1213,7 @@ fn erode(
(&mut *h_p, &*h_stack) (&mut *h_p, &*h_stack)
.into_par_iter() .into_par_iter()
// .enumerate() // .enumerate()
.for_each(|(/*stacki, */((mut h_p, h_)/*, wh_*/))| { .for_each(|(/*stacki, ((*/h_p, h_/*), wh_*//*)*/)| {
*h_p = (*h_)/*.max(*wh_)*/ as Compute/* + (0.5 - (stacki & 1) as Compute) * err as Compute*/; *h_p = (*h_)/*.max(*wh_)*/ as Compute/* + (0.5 - (stacki & 1) as Compute) * err as Compute*/;
}); });
/* hp.par_iter_mut().zip(h.par_iter()).for_each(|(mut hp, h)| { /* hp.par_iter_mut().zip(h.par_iter()).for_each(|(mut hp, h)| {
@ -1236,7 +1234,7 @@ fn erode(
{ {
// calculate erosion/deposition of sediment at each node // calculate erosion/deposition of sediment at each node
(&*mstack, &mut *deltah, &*h_t_stack, &*h_stack).into_par_iter()/*.enumerate()*/ (&*mstack, &mut *deltah, &*h_t_stack, &*h_stack).into_par_iter()/*.enumerate()*/
.for_each(|(/*stacki, */(&posi, mut deltah, &h_t_i, &h_i))| { .for_each(|(/*stacki, (*/&posi, deltah, &h_t_i, &h_i/*)*/)| {
let posi = posi as usize; let posi = posi as usize;
/* assert_eq!(mstack_inv[posi], stacki); /* assert_eq!(mstack_inv[posi], stacki);
assert_eq!(h_t[posi], h_t_i); */ assert_eq!(h_t[posi], h_t_i); */
@ -1295,7 +1293,7 @@ fn erode(
/* lake_sediment[posi] = deltah_sediment[posi]; /* lake_sediment[posi] = deltah_sediment[posi];
lake_alluvium[posi] = deltah_alluvium[posi]; */ lake_alluvium[posi] = deltah_alluvium[posi]; */
} else { } else {
let posj = posj as usize; // let posj = posj as usize;
let uplift_i = uplift(posi) as Alt; let uplift_i = uplift(posi) as Alt;
/* if (deltah[posi] - (deltah_sediment[posi] + deltah_alluvium[posi])).abs() > 1.0e-2 { /* if (deltah[posi] - (deltah_sediment[posi] + deltah_alluvium[posi])).abs() > 1.0e-2 {
println!("deltah_sediment: {:?}, deltah_alluvium: {:?}, deltah: {:?}, hp: {:?}, ap: {:?}, h_p: {:?}, ht: {:?}, at: {:?}, h: {:?}, a: {:?}, h_: {:?}", println!("deltah_sediment: {:?}, deltah_alluvium: {:?}, deltah: {:?}, hp: {:?}, ap: {:?}, h_p: {:?}, ht: {:?}, at: {:?}, h: {:?}, a: {:?}, h_: {:?}",
@ -1372,7 +1370,7 @@ fn erode(
// enddo // enddo
let start_time = Instant::now(); let start_time = Instant::now();
(&*mstack, &mut *elev, &*dh_stack, &*h_t_stack, &*area_stack, &*deltah, &*h_p, &*b_stack).into_par_iter()./*enumerate().*/for_each(|(/*stacki, */(&posi, mut elev, &dh_i, &h_t_i, &area_i, &deltah_i, &h_p_i, &b_i))| { (&*mstack, &mut *elev, &*dh_stack, &*h_t_stack, &*area_stack, &*deltah, &*h_p, &*b_stack).into_par_iter()./*enumerate().*/for_each(|(/*stacki, (*/&posi, elev, &dh_i, &h_t_i, &area_i, &deltah_i, &h_p_i, &b_i/*)*/)| {
let posi = posi as usize; let posi = posi as usize;
/* assert_eq!(mstack_inv[posi], stacki); /* assert_eq!(mstack_inv[posi], stacki);
assert_eq!(dh_i, dh[posi]); assert_eq!(dh_i, dh[posi]);
@ -1411,7 +1409,7 @@ fn erode(
// actually was material to deposit. The current assumption is that as long as we // actually was material to deposit. The current assumption is that as long as we
// are storing at most as much sediment as there actually was along the river, we // are storing at most as much sediment as there actually was along the river, we
// are in the clear. // are in the clear.
let g_i_ratio = (g_i / (p * area_i))/*.min(1.0)*/; let g_i_ratio = /*(*/g_i / (p * area_i)/*).min(1.0)*/;
// One side of nonlinear equation (23): // One side of nonlinear equation (23):
// //
// h_i(t) + U_i * Δt + G / (p̃ * Ã_i) * Σ{j ∈ upstream_i(t)}(h_j(t, FINAL) + U_j * Δt - h_j(t + Δt, k)) // h_i(t) + U_i * Δt + G / (p̃ * Ã_i) * Σ{j ∈ upstream_i(t)}(h_j(t, FINAL) + U_j * Δt - h_j(t + Δt, k))
@ -1444,22 +1442,22 @@ fn erode(
/* let mut k_df_weights = [0.0; 8]; /* let mut k_df_weights = [0.0; 8];
let mut k_fs_weights = [0.0; 8]; let mut k_fs_weights = [0.0; 8];
let mut rec_heights = [0.0; 8]; */ let mut rec_heights = [0.0; 8]; */
let mut simd_buf = [0.0; 8]; /* let mut simd_buf = [0.0; 8];
let mut simd_buf2 = [0.0; 8]; let mut simd_buf2 = [0.0; 8];
let mut simd_buf3 = [0.0; 8]; let mut simd_buf3 = [0.0; 8]; */
/*&*newh*/ /*&*newh*/
itertools::izip!(&*mstack, &*elev, /*&mut *wh, */&*b_stack/*, &mut *h_stack*/, &*h_t_stack, &*dh_stack, &*h_p) itertools::izip!(&*mstack, &*elev, /*&mut *wh, */&*b_stack/*, &mut *h_stack*/, &*h_t_stack, &*dh_stack, &*h_p)
.enumerate() .enumerate()
.rev() .rev()
.for_each(|(stacki, (&posi, &elev_i, /*wh_i, */&b_i, /*h_i, */&h_t_i, &dh_i, &h_p_i))| { .for_each(|(stacki, (&posi, &elev_i, /*wh_i, */&b_i, /*h_i, */&h_t_i, &dh_i, &h_p_i))| {
let mut iteration_error = 0.0; let iteration_error = 0.0;
let posi = posi as usize; let posi = posi as usize;
/* assert_eq!(mstack_inv[posi], stacki); /* assert_eq!(mstack_inv[posi], stacki);
assert_eq!(dh_i, dh[posi]); assert_eq!(dh_i, dh[posi]);
assert_eq!(h_t_i, h_t[posi]); assert_eq!(h_t_i, h_t[posi]);
assert_eq!(b_i, b[posi]); */ assert_eq!(b_i, b[posi]); */
let old_elev_i = /*h*//*elev[posi]*/elev_i as f64; let old_elev_i = /*h*//*elev[posi]*/elev_i as f64;
let old_wh_i = wh[posi]/*wh_i*/; // let old_wh_i = wh[posi]/*wh_i*/;
let old_b_i = /*b[posi]*/b_i; let old_b_i = /*b[posi]*/b_i;
let old_ht_i = /*ht*//*h_t[posi]*/h_t_i; let old_ht_i = /*ht*//*h_t[posi]*/h_t_i;
let sed = (old_ht_i - old_b_i) as f64; let sed = (old_ht_i - old_b_i) as f64;
@ -1484,7 +1482,7 @@ fn erode(
} else { } else {
// *is_done.at(posi) = done_val; // *is_done.at(posi) = done_val;
let posj = posj as usize; let posj = posj as usize;
let posj_stack = mstack_inv[posj]; // let posj_stack = mstack_inv[posj];
// let dxy = (uniform_idx_as_vec2(posi) - uniform_idx_as_vec2(posj)).map(|e| e as f64); // let dxy = (uniform_idx_as_vec2(posi) - uniform_idx_as_vec2(posj)).map(|e| e as f64);
// Has an outgoing flow edge (posi, posj). // Has an outgoing flow edge (posi, posj).
@ -1500,7 +1498,7 @@ fn erode(
// h[i](t + dt) = (h[i](t) + δt * (uplift[i] + flux(i) * h[j](t + δt))) / (1 + flux(i) * δt). // h[i](t + dt) = (h[i](t) + δt * (uplift[i] + flux(i) * h[j](t + δt))) / (1 + flux(i) * δt).
// NOTE: posj has already been computed since it's downhill from us. // NOTE: posj has already been computed since it's downhill from us.
// Therefore, we can rely on wh being set to the water height for that node. // Therefore, we can rely on wh being set to the water height for that node.
let h_j = h[posj_stack] as f64; // let h_j = h[posj_stack] as f64;
// let a_j = a[posj] as f64; // let a_j = a[posj] as f64;
let wh_j = wh[posj] as f64; let wh_j = wh[posj] as f64;
// let old_a_i = a[posi] as f64; // let old_a_i = a[posi] as f64;
@ -1526,7 +1524,7 @@ fn erode(
// Only perform erosion if we are above the water level of the previous node. // Only perform erosion if we are above the water level of the previous node.
if old_elev_i > wh_j/*h_j*//*h_j*//*h[posj]*/ { if old_elev_i > wh_j/*h_j*//*h_j*//*h[posj]*/ {
let mut dtherm = 0.0f64; let dtherm = 0.0f64;
/* { /* {
// Thermal erosion (landslide) // Thermal erosion (landslide)
let dxy = (uniform_idx_as_vec2(posi) - uniform_idx_as_vec2(posj)).map(|e| e as f64); let dxy = (uniform_idx_as_vec2(posi) - uniform_idx_as_vec2(posj)).map(|e| e as f64);
@ -1575,7 +1573,7 @@ fn erode(
k_fs_fact k_fs_fact
}; */ }; */
// let elev_j = h_j/* + a_j.max(0.0)*/; // let elev_j = h_j/* + a_j.max(0.0)*/;
let new_ht_i = (old_ht_i/* + uplift(posi) as f64*/); // let new_ht_i = (old_ht_i/* + uplift(posi) as f64*/);
if /*n == 1.0*/(n - 1.0).abs() <= 1.0e-3/*f64::EPSILON*/ && (q_ - 1.0).abs() <= 1.0e-3 { if /*n == 1.0*/(n - 1.0).abs() <= 1.0e-3/*f64::EPSILON*/ && (q_ - 1.0).abs() <= 1.0e-3 {
let mut f = h0; let mut f = h0;
let mut df = 1.0; let mut df = 1.0;
@ -1604,14 +1602,14 @@ fn erode(
} else { } else {
// Local Newton-Raphson // Local Newton-Raphson
let omega1 = 0.875f64 * n; let omega1 = 0.875f64 * n;
let omega2 = 0.875f64 / q_;/*if q_ < 0.5 { 0.875f64/* * q_*/ } else { 0.875f64 / q_ }*/; let omega2 = 0.875f64 / q_/*if q_ < 0.5 { 0.875f64/* * q_*/ } else { 0.875f64 / q_ }*/;
let omega = omega1.max(omega2); let omega = omega1.max(omega2);
let tolp = 1.0e-3/*1.0e-4*/; let tolp = 1.0e-3/*1.0e-4*/;
// let tolp = tol; // let tolp = tol;
let mut errp = 2.0 * tolp; let mut errp = 2.0 * tolp;
// let h0 = old_elev_i + (new_h_i - old_h_i); // let h0 = old_elev_i + (new_h_i - old_h_i);
// let mut count = 0; // let mut count = 0;
let mut max = 0usize; // let mut max = 0usize;
/* let mut k_df_weights = [0.0; 8];//f64s(0.0);//f64x8::splat(0.0); /* let mut k_df_weights = [0.0; 8];//f64s(0.0);//f64x8::splat(0.0);
let mut k_fs_weights = [0.0; 8];//f64s(0.0);//f64x8::splat(0.0); let mut k_fs_weights = [0.0; 8];//f64s(0.0);//f64x8::splat(0.0);
let n_weights = simd_func(n as SimdType - 1.0); let n_weights = simd_func(n as SimdType - 1.0);
@ -1653,7 +1651,7 @@ fn erode(
}; 8]; }; 8];
(arr, max) (arr, max)
}; */ }; */
assert!(max <= 8); // assert!(max <= 8);
/* let k_fs_weights = &k_fs_weights[..max]; /* let k_fs_weights = &k_fs_weights[..max];
let k_df_weights = &k_df_weights[..max]; let k_df_weights = &k_df_weights[..max];
let rec_heights = &rec_heights[..max]; let rec_heights = &rec_heights[..max];
@ -1789,7 +1787,7 @@ fn erode(
if /*mask[kk]*/mask_kk.test() { if /*mask[kk]*/mask_kk.test() {
let h_j = rec_heights_kk;//rec_heights[kk]; let h_j = rec_heights_kk;//rec_heights[kk];
let elev_j = h_j/* + a_j.max(0.0)*/; let elev_j = h_j/* + a_j.max(0.0)*/;
let dh = 0.0.max((new_h_i as SimdType - elev_j)/*.abs()*/); let dh = 0.0.max(/*(*/new_h_i as SimdType - elev_j/*).abs()*/);
let powf = |a: SimdType, b| a.powf(b); let powf = |a: SimdType, b| a.powf(b);
// let powf = |a, b| approx_powf(a as f32, b as f32) as SimdType; // let powf = |a, b| approx_powf(a as f32, b as f32) as SimdType;
let dh_fs_sample = /*k_fs_fact[kk]*/k_fs_fact_kk as /*f64*/SimdType * powf(dh, n as SimdType - 1.0); let dh_fs_sample = /*k_fs_fact[kk]*/k_fs_fact_kk as /*f64*/SimdType * powf(dh, n as SimdType - 1.0);
@ -2139,9 +2137,9 @@ fn erode(
err = (sum_err / /*newh*/mstack.len() as Compute).sqrt(); err = (sum_err / /*newh*/mstack.len() as Compute).sqrt();
log::debug!("(RMSE: {:?})", err); log::debug!("(RMSE: {:?})", err);
/* if max_g == 0.0 { if max_g == 0.0 {
err = 0.0; err = 0.0;
} */ }
if n_gs_stream_power_law == max_n_gs_stream_power_law { if n_gs_stream_power_law == max_n_gs_stream_power_law {
log::warn!( log::warn!(
"Beware: Gauss-Siedel scheme not convergent: err={:?}, expected={:?}", "Beware: Gauss-Siedel scheme not convergent: err={:?}, expected={:?}",
@ -2210,7 +2208,7 @@ fn erode(
b.par_iter_mut() b.par_iter_mut()
.zip_eq(h.par_iter()) .zip_eq(h.par_iter())
.enumerate() .enumerate()
.for_each(|(posi, (mut b, &h_i))| { .for_each(|(posi, (b, &h_i))| {
let old_b_i = *b; let old_b_i = *b;
let uplift_i = uplift(posi) as Alt; let uplift_i = uplift(posi) as Alt;
@ -2257,25 +2255,30 @@ fn erode(
log::debug!("Done updating basement and applying soil production..."); log::debug!("Done updating basement and applying soil production...");
// update the height to reflect sediment flux. // update the height to reflect sediment flux.
(&mut *h, &*mstack_inv) if max_g > 0.0 {
.into_par_iter() // If max_g = 0.0, lake_silt will be too high during the first iteration since our
.enumerate() // initial estimate for h is very poor; however, the elevation estimate will have been
.for_each(|(posi, (mut h, &stacki))| { // unaffected by g.
let lposi = lake_sill[stacki]; (&mut *h, &*mstack_inv)
if lposi >= 0 { .into_par_iter()
let lposi = lposi as usize; .enumerate()
if lake_water_volume[lposi] > 0.0 { .for_each(|(posi, (h, &stacki))| {
// +max(0.d0,min(lake_sediment(lake_sill(ij)),lake_water_volume(lake_sill(ij))))/ let lposi = lake_sill[stacki];
// lake_water_volume(lake_sill(ij))*(water(ij)-h(ij)) if lposi >= 0 {
*h += (0.0.max( let lposi = lposi as usize;
/*lake_sediment[lposi]*/ if lake_water_volume[lposi] > 0.0 {
lake_silt[stacki].min(lake_water_volume[lposi]), // +max(0.d0,min(lake_sediment(lake_sill(ij)),lake_water_volume(lake_sill(ij))))/
) / lake_water_volume[lposi] // lake_water_volume(lake_sill(ij))*(water(ij)-h(ij))
* (wh[posi]/* - a[posi].max(0.0)*/ - *h) as Compute) *h += (0.0.max(
as Alt; /*lake_sediment[lposi]*/
lake_silt[stacki].min(lake_water_volume[lposi]),
) / lake_water_volume[lposi]
* (wh[posi]/* - a[posi].max(0.0)*/ - *h) as Compute)
as Alt;
}
} }
} });
}); }
// do ij=1,nn // do ij=1,nn
// if (lake_sill(ij).ne.0) then // if (lake_sill(ij).ne.0) then
// if (lake_water_volume(lake_sill(ij)).gt.0.d0) h(ij)=h(ij) & // if (lake_water_volume(lake_sill(ij)).gt.0.d0) h(ij)=h(ij) &
@ -2349,9 +2352,9 @@ fn erode(
let max_slope = max_slopes[posi]; let max_slope = max_slopes[posi];
// Remember k_d for this chunk in max_slopes. // Remember k_d for this chunk in max_slopes.
// higher max_slope => much lower kd_factor. // higher max_slope => much lower kd_factor.
let kd_factor = /* let kd_factor =
// 1.0; // 1.0;
(1.0 / (max_slope / mid_slope/*.sqrt()*//*.powf(0.03125)*/).powf(/*2.0*/2.0))/*.min(kdsed)*/; (1.0 / (max_slope / mid_slope/*.sqrt()*//*.powf(0.03125)*/).powf(/*2.0*/2.0))/*.min(kdsed)*/; */
let n = n_f(posi); let n = n_f(posi);
max_slopes[posi] = if sed > sediment_thickness(n) && kdsed > 0.0 { max_slopes[posi] = if sed > sediment_thickness(n) && kdsed > 0.0 {
// Sediment // Sediment
@ -2377,7 +2380,7 @@ fn erode(
let posj = posj as usize; let posj = posj as usize;
// Find the water height for this chunk's receiver; we only apply thermal erosion // Find the water height for this chunk's receiver; we only apply thermal erosion
// for chunks above water. // for chunks above water.
let mut wh_j = wh[posj] as f64; let wh_j = wh[posj] as f64;
// If you're on the lake bottom and not right next to your neighbor, don't compute a // If you're on the lake bottom and not right next to your neighbor, don't compute a
// slope. // slope.
let mut new_h_i = /*old_h_i*//*old_h_i + old_a_i.max(0.0)*/old_h_i; /*old_b_i;*/ let mut new_h_i = /*old_h_i*//*old_h_i + old_a_i.max(0.0)*/old_h_i; /*old_b_i;*/
@ -2421,12 +2424,12 @@ fn erode(
// exactly max_slope. // exactly max_slope.
// max_slope = (old_h_i + dh - h_j) / height_scale/* * CONFIG.mountain_scale */ / NEIGHBOR_DISTANCE // max_slope = (old_h_i + dh - h_j) / height_scale/* * CONFIG.mountain_scale */ / NEIGHBOR_DISTANCE
// dh = max_slope * NEIGHBOR_DISTANCE * height_scale/* / CONFIG.mountain_scale */ + h_j - old_h_i. // dh = max_slope * NEIGHBOR_DISTANCE * height_scale/* / CONFIG.mountain_scale */ + h_j - old_h_i.
let dh = max_slope * neighbor_distance/* * height_scale*//* / CONFIG.mountain_scale as f64*/; // let dh = max_slope * neighbor_distance/* * height_scale*//* / CONFIG.mountain_scale as f64*/;
// new_h_i = /*h_j.max*//*(h_k + dh).max*/(/*new_h_i*/ht[posi] as f64 + l_tot * (mag_slope - max_slope)); // new_h_i = /*h_j.max*//*(h_k + dh).max*/(/*new_h_i*/ht[posi] as f64 + l_tot * (mag_slope - max_slope));
// new_h_i = /*h_j.max*//*(h_k + dh).max*/(/*new_h_i*/h_k + dh + l_tot * (mag_slope - max_slope)); // new_h_i = /*h_j.max*//*(h_k + dh).max*/(/*new_h_i*/h_k + dh + l_tot * (mag_slope - max_slope));
// new_h_i = /*h_j.max*//*(h_k + dh).max*/(new_h_i - l_tot * (mag_slope - max_slope)); // new_h_i = /*h_j.max*//*(h_k + dh).max*/(new_h_i - l_tot * (mag_slope - max_slope));
let dtherm = 0.0/*dz - dh*//*(l_tot * (mag_slope - max_slope)).min(/*(dz/* - dh*/) / 2.0*/(1.0 + max_g) * max_uplift as f64)*/; let dtherm = 0.0/*dz - dh*//*(l_tot * (mag_slope - max_slope)).min(/*(dz/* - dh*/) / 2.0*/(1.0 + max_g) * max_uplift as f64)*/;
new_h_i = /*h_j.max*//*(h_k + dh).max*/(/*new_h_i*//*h_k + dh*/new_h_i - dtherm); new_h_i = /*h_j.max*//*(h_k + dh).max*//*(new_h_i*//*h_k + dh*/new_h_i - dtherm/*)*/;
/* let new_h_j = (old_h_j + dtherm).min(old_h_j.max(new_h_i)); /* let new_h_j = (old_h_j + dtherm).min(old_h_j.max(new_h_i));
h[posj] = new_h_j as Alt; h[posj] = new_h_j as Alt;
wh_j = wh_j.max(new_h_j); wh_j = wh_j.max(new_h_j);
@ -3032,7 +3035,7 @@ pub fn get_lakes<F: Float>(
tag[pass_idx] = Tag::InQueue; tag[pass_idx] = Tag::InQueue;
let outflow_coords = uniform_idx_as_vec2(neighbor_pass_idx); let outflow_coords = uniform_idx_as_vec2(neighbor_pass_idx);
let elev = h(neighbor_pass_idx).max(h(pass_idx));; let elev = h(neighbor_pass_idx).max(h(pass_idx));
while let Some(node) = filling_queue.pop() { while let Some(node) = filling_queue.pop() {
let coords = uniform_idx_as_vec2(node); let coords = uniform_idx_as_vec2(node);
@ -3047,8 +3050,8 @@ pub fn get_lakes<F: Float>(
return; return;
} }
let dxy = (uniform_idx_as_vec2(ineighbor) - coords).map(|e| e as f64); let dxy = (uniform_idx_as_vec2(ineighbor) - coords).map(|e| e as f64);
let neighbor_distance = (/*neighbor_coef * */dxy); let neighbor_distance = /*neighbor_coef * */dxy;
let mut tag = &mut tag[ineighbor]; let tag = &mut tag[ineighbor];
match *tag { match *tag {
Tag::WithRcv => { Tag::WithRcv => {
// TODO: Remove outdated comment. // TODO: Remove outdated comment.
@ -3066,7 +3069,7 @@ pub fn get_lakes<F: Float>(
// //
// Which is also the scalar component of vec_to_outflow in the // Which is also the scalar component of vec_to_outflow in the
// direction of vec_to_neighbor. // direction of vec_to_neighbor.
let cost = (outflow_distance.dot(neighbor_distance / neighbor_distance.magnitude()))/*.abs()*/; let cost = /*(*/outflow_distance.dot(neighbor_distance / neighbor_distance.magnitude())/*).abs()*/;
if cost > rcv_cost { if cost > rcv_cost {
rcv = ineighbor as isize; rcv = ineighbor as isize;
rcv_cost = cost; rcv_cost = cost;
@ -3176,12 +3179,12 @@ pub fn get_multi_rec<F: fmt::Debug + Float + Sync + Into<Compute>>(
let nn = nx * ny; let nn = nx * ny;
let dxdy = Vec2::new(dx, dy); let dxdy = Vec2::new(dx, dy);
// set bc /* // set bc
let i1 = 0; let i1 = 0;
let i2 = nx; let i2 = nx;
let j1 = 0; let j1 = 0;
let j2 = ny; let j2 = ny;
/* let xcyclic = false; let xcyclic = false;
let ycyclic = false; */ let ycyclic = false; */
/* /*
write (cbc,'(i4)') ibc write (cbc,'(i4)') ibc
@ -3278,7 +3281,7 @@ pub fn get_multi_rec<F: fmt::Debug + Float + Sync + Into<Compute>>(
wh_ij > wh_ijk { wh_ij > wh_ijk {
// Set neighboring edge lower than this one as being downhill. // Set neighboring edge lower than this one as being downhill.
// NOTE: relying on at most 8 neighbors. // NOTE: relying on at most 8 neighbors.
mrec_ij |= (1 << k); mrec_ij |= 1 << k;
} else if } else if
/*h_ijk*/ /*h_ijk*/
wh_ijk > wh_ij { wh_ijk > wh_ij {
@ -3395,7 +3398,6 @@ pub fn get_multi_rec<F: fmt::Debug + Float + Sync + Into<Compute>>(
/// Perform erosion n times. /// Perform erosion n times.
pub fn do_erosion( pub fn do_erosion(
erosion_base: f32,
_max_uplift: f32, _max_uplift: f32,
n_steps: usize, n_steps: usize,
seed: &RandomField, seed: &RandomField,
@ -3534,7 +3536,7 @@ pub fn do_erosion(
let height_scale = |n| height_scale(n); let height_scale = |n| height_scale(n);
let k_da_scale = |q| k_da_scale(q); let k_da_scale = |q| k_da_scale(q);
// Hillslope diffusion coefficient for sediment. // Hillslope diffusion coefficient for sediment.
let mut is_done = bitbox![0; WORLD_SIZE.x * WORLD_SIZE.y]; // let mut is_done = bitbox![0; WORLD_SIZE.x * WORLD_SIZE.y];
(0..n_steps).for_each(|i| { (0..n_steps).for_each(|i| {
log::debug!("Erosion iteration #{:?}", i); log::debug!("Erosion iteration #{:?}", i);
erode( erode(
@ -3542,12 +3544,11 @@ pub fn do_erosion(
&mut b, &mut b,
// &mut a, // &mut a,
&mut wh, &mut wh,
&mut is_done, // &mut is_done,
// The value to use to indicate that erosion is complete on a chunk. Should toggle /* // The value to use to indicate that erosion is complete on a chunk. Should toggle
// once per iteration, to avoid having to reset the bits, and start at true, since // once per iteration, to avoid having to reset the bits, and start at true, since
// we initialize to 0 (false). // we initialize to 0 (false).
i & 1 == 0, i & 1 == 0, */
erosion_base,
max_uplift, max_uplift,
max_g, max_g,
// -1.0, // -1.0,

View File

@ -1,6 +1,5 @@
use crate::{ use crate::{
sim::{self, uniform_idx_as_vec2, RiverKind, WorldSim, WORLD_SIZE}, sim::{RiverKind, WorldSim, WORLD_SIZE},
util::Sampler,
CONFIG, CONFIG,
}; };
use common::{terrain::TerrainChunkSize, vol::RectVolSize}; use common::{terrain::TerrainChunkSize, vol::RectVolSize};

View File

@ -209,7 +209,7 @@ pub enum WorldFileError {
#[derive(Serialize, Deserialize)] #[derive(Serialize, Deserialize)]
#[repr(u32)] #[repr(u32)]
pub enum WorldFile { pub enum WorldFile {
Veloren_0_5_0(WorldMap_0_5_0) = 0, Veloren0_5_0(WorldMap_0_5_0) = 0,
} }
/// Data for the most recent map type. Update this when you add a new map verson. /// Data for the most recent map type. Update this when you add a new map verson.
@ -268,15 +268,15 @@ impl WorldFile {
/// using the latest map version. /// using the latest map version.
pub fn new(map: ModernMap) -> Self { pub fn new(map: ModernMap) -> Self {
WorldFile::Veloren_0_5_0(map) WorldFile::Veloren0_5_0(map)
} }
#[inline] #[inline]
/// Turns a WorldFile into the latest version. Whenever a new map version is added, just add /// Turns a WorldFile into the latest version. Whenever a new map version is added, just add
/// it to this match statement. /// it to this match statement.
pub fn into_modern(self) -> Result<ModernMap, (WorldFileError)> { pub fn into_modern(self) -> Result<ModernMap, WorldFileError> {
match self { match self {
WorldFile::Veloren_0_5_0(map) => map.into_modern(), WorldFile::Veloren0_5_0(map) => map.into_modern(),
} }
} }
} }
@ -458,8 +458,8 @@ impl WorldSim {
// a chunk isn't available). // a chunk isn't available).
let n_approx = 1.0; let n_approx = 1.0;
let max_erosion_per_delta_t = /*8.0*//*32.0*//*1.0*//*32.0*//*32.0*//*16.0*//*64.0*//*32.0*/64.0/*128.0*//*1.0*//*0.2 * /*100.0*/250.0*//*128.0*//*16.0*//*128.0*//*32.0*/ * delta_t_scale(n_approx); let max_erosion_per_delta_t = /*8.0*//*32.0*//*1.0*//*32.0*//*32.0*//*16.0*//*64.0*//*32.0*/64.0/*128.0*//*1.0*//*0.2 * /*100.0*/250.0*//*128.0*//*16.0*//*128.0*//*32.0*/ * delta_t_scale(n_approx);
let erosion_pow_low = /*0.25*//*1.5*//*2.0*//*0.5*//*4.0*//*0.25*//*1.0*//*2.0*//*1.5*//*1.5*//*0.35*//*0.43*//*0.5*//*0.45*//*0.37*/1.002; /* let erosion_pow_low = /*0.25*//*1.5*//*2.0*//*0.5*//*4.0*//*0.25*//*1.0*//*2.0*//*1.5*//*1.5*//*0.35*//*0.43*//*0.5*//*0.45*//*0.37*/1.002;
let erosion_pow_high = /*1.5*//*1.0*//*0.55*//*0.51*//*2.0*/1.002; let erosion_pow_high = /*1.5*//*1.0*//*0.55*//*0.51*//*2.0*/1.002; */
let erosion_center = /*0.45*//*0.75*//*0.75*//*0.5*//*0.75*/0.5; let erosion_center = /*0.45*//*0.75*//*0.75*//*0.5*//*0.75*/0.5;
let n_steps = /*200*//*10_000*//*1000*//*50*//*100*/100; //100; // /*100*//*50*//*100*//*100*//*50*//*25*/25/*100*//*37*/;//150;//37/*100*/;//50;//50;//37;//50;//37; // /*37*//*29*//*40*//*150*/37; //150;//200; let n_steps = /*200*//*10_000*//*1000*//*50*//*100*/100; //100; // /*100*//*50*//*100*//*100*//*50*//*25*/25/*100*//*37*/;//150;//37/*100*/;//50;//50;//37;//50;//37; // /*37*//*29*//*40*//*150*/37; //150;//200;
let n_small_steps = 0; //25;//8;//50;//50;//8;//8;//8;//8;//8; // 8 let n_small_steps = 0; //25;//8;//50;//50;//8;//8;//8;//8;//8; // 8
@ -469,14 +469,14 @@ impl WorldSim {
let logit = |x: f64| x.ln() - (-x).ln_1p(); let logit = |x: f64| x.ln() - (-x).ln_1p();
// 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi))) // 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi)))
let logistic_2_base = 3.0f64.sqrt() * f64::consts::FRAC_2_PI; let logistic_2_base = 3.0f64.sqrt() * f64::consts::FRAC_2_PI;
let logistic_base = /*3.0f64.sqrt() * f64::consts::FRAC_1_PI*/1.0f64; // let logistic_base = /*3.0f64.sqrt() * f64::consts::FRAC_1_PI*/1.0f64;
// Assumes μ = 0, σ = 1 // Assumes μ = 0, σ = 1
let logistic_cdf = |x: f64| (x / logistic_2_base).tanh() * 0.5 + 0.5; let logistic_cdf = |x: f64| (x / logistic_2_base).tanh() * 0.5 + 0.5;
let exp_inverse_cdf = |x: f64/*, pow: f64*/| -(-x).ln_1p()/* / ln(pow)*/; /* let exp_inverse_cdf = |x: f64/*, pow: f64*/| -(-x).ln_1p()/* / ln(pow)*/;
// 2 / pi * ln(tan(pi/2 * p)) // 2 / pi * ln(tan(pi/2 * p))
let hypsec_inverse_cdf = let hypsec_inverse_cdf =
|x: f64| f64::consts::FRAC_2_PI * ((x * f64::consts::FRAC_PI_2).tan().ln()); |x: f64| f64::consts::FRAC_2_PI * ((x * f64::consts::FRAC_PI_2).tan().ln()); */
let min_epsilon = let min_epsilon =
1.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64).max(f64::EPSILON as f64 * 0.5); 1.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64).max(f64::EPSILON as f64 * 0.5);
@ -708,9 +708,9 @@ impl WorldSim {
if is_ocean_fn(posi) { if is_ocean_fn(posi) {
return 1.0; return 1.0;
} }
let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) /* let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
.map(|e| e as f64); .map(|e| e as f64); */
let turb_wposf = wposf /* let turb_wposf = wposf
.mul(5_000.0 / continent_scale) .mul(5_000.0 / continent_scale)
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
.div(turb_wposf_div); .div(turb_wposf_div);
@ -720,21 +720,21 @@ impl WorldSim {
) * uplift_turb_scale ) * uplift_turb_scale
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64); * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
// let turb = Vec2::zero(); // let turb = Vec2::zero();
let turb_wposf = wposf + turb; let turb_wposf = wposf + turb; */
let turb_wposi = turb_wposf /* let turb_wposi = turb_wposf
.div(5_000.0 / continent_scale) .div(5_000.0 / continent_scale)
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
let turb_posi = vec2_as_uniform_idx(turb_wposi); let turb_posi = vec2_as_uniform_idx(turb_wposi); */
let uheight = gen_ctx /* let uheight = gen_ctx
.uplift_nz .uplift_nz
.get(turb_wposf.into_array()) .get(turb_wposf.into_array())
/* .min(0.5) /* .min(0.5)
.max(-0.5)*/ .max(-0.5)*/
.min(1.0) .min(1.0)
.max(-1.0) .max(-1.0)
.mul(0.5) .mul(0.5)
.add(0.5); .add(0.5); */
/* if uheight > 0.8 { /* if uheight > 0.8 {
1.5 1.5
} else { } else {
@ -749,7 +749,7 @@ impl WorldSim {
alt_old[posi].1 * CONFIG.mountain_scale * height_scale(n_func(posi)) as f32 alt_old[posi].1 * CONFIG.mountain_scale * height_scale(n_func(posi)) as f32
}; };
let uplift_nz_dist = gen_ctx.uplift_nz.clone().enable_range(true); // let uplift_nz_dist = gen_ctx.uplift_nz.clone().enable_range(true);
// Recalculate altitudes without oceans. // Recalculate altitudes without oceans.
// NaNs in these uniform vectors wherever is_ocean_fn returns true. // NaNs in these uniform vectors wherever is_ocean_fn returns true.
let (alt_old_no_ocean, alt_old_inverse) = uniform_noise(|posi, _| { let (alt_old_no_ocean, alt_old_inverse) = uniform_noise(|posi, _| {
@ -759,11 +759,11 @@ impl WorldSim {
Some(old_height(posi) /*.abs()*/) Some(old_height(posi) /*.abs()*/)
} }
}); });
let (uplift_uniform, _) = uniform_noise(|posi, wposf| { let (uplift_uniform, _) = uniform_noise(|posi, _wposf| {
if is_ocean_fn(posi) { if is_ocean_fn(posi) {
None None
} else { } else {
let turb_wposf = wposf /* let turb_wposf = wposf
.mul(5_000.0 / continent_scale) .mul(5_000.0 / continent_scale)
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
.div(turb_wposf_div); .div(turb_wposf_div);
@ -773,13 +773,13 @@ impl WorldSim {
) * uplift_turb_scale ) * uplift_turb_scale
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64); * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
// let turb = Vec2::zero(); // let turb = Vec2::zero();
let turb_wposf = wposf + turb; let turb_wposf = wposf + turb; */
let turb_wposi = turb_wposf /* let turb_wposi = turb_wposf
.div(5_000.0 / continent_scale) .div(5_000.0 / continent_scale)
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
let turb_posi = vec2_as_uniform_idx(turb_wposi); let turb_posi = vec2_as_uniform_idx(turb_wposi); */
let udist = uplift_nz_dist /* let udist = uplift_nz_dist
.get(turb_wposf.into_array()) .get(turb_wposf.into_array())
.min(1.0) .min(1.0)
.max(-1.0) .max(-1.0)
@ -793,18 +793,18 @@ impl WorldSim {
.min(1.0) .min(1.0)
.max(-1.0) .max(-1.0)
.mul(0.5) .mul(0.5)
.add(0.5); .add(0.5); */
let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) /* let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array())
.min(1.0) .min(1.0)
.max(-1.0) .max(-1.0)
.mul(0.5) .mul(0.5)
.add(0.5); */ .add(0.5); */
chaos[posi].1; chaos[posi].1;
let uchaos_1 = (uchaos as f64) / 1.32; let uchaos_1 = (uchaos as f64) / 1.32; */
let oheight = /*alt_old*//*alt_base*/alt_old_no_ocean[/*(turb_posi / 64) * 64*/posi].0 as f64 - 0.5; let oheight = /*alt_old*//*alt_base*/alt_old_no_ocean[/*(turb_posi / 64) * 64*/posi].0 as f64 - 0.5;
assert!(udist >= 0.0); /* assert!(udist >= 0.0);
assert!(udist <= 1.0); assert!(udist <= 1.0);
let uheight_1 = uheight; //.powf(2.0); let uheight_1 = uheight; //.powf(2.0);
let udist_1 = (0.5 - udist).mul(2.0).max(0.0); let udist_1 = (0.5 - udist).mul(2.0).max(0.0);
@ -820,7 +820,7 @@ impl WorldSim {
/ 128.0 / 128.0
/ 128.0)), / 128.0)),
); );
let variation_1 = (uheight * /*udist_2*/udist_4).min(variation); let variation_1 = (uheight * /*udist_2*/udist_4).min(variation); */
let height = (oheight + 0.5).powf(2.0); let height = (oheight + 0.5).powf(2.0);
// 1.0 - variation + variation * uchaos_1; // 1.0 - variation + variation * uchaos_1;
// uheight * /*udist_2*/udist_4 - variation_1 + variation_1 * uchaos_1; // uheight * /*udist_2*/udist_4 - variation_1 + variation_1 * uchaos_1;
@ -846,16 +846,16 @@ impl WorldSim {
} }
}); });
let old_height_uniform = |posi: usize| alt_old_no_ocean[posi].0; // let old_height_uniform = |posi: usize| alt_old_no_ocean[posi].0;
let alt_old_min_uniform = 0.0; let alt_old_min_uniform = 0.0;
let alt_old_max_uniform = 1.0; let alt_old_max_uniform = 1.0;
let alt_old_center_uniform = erosion_center; // let alt_old_center_uniform = erosion_center;
let (_alt_old_min_index, alt_old_min) = alt_old_inverse.first().unwrap(); let (_alt_old_min_index, _alt_old_min) = alt_old_inverse.first().unwrap();
let (_alt_old_max_index, alt_old_max) = alt_old_inverse.last().unwrap(); let (_alt_old_max_index, _alt_old_max) = alt_old_inverse.last().unwrap();
let (_alt_old_mid_index, alt_old_mid) = let (_alt_old_mid_index, _alt_old_mid) =
alt_old_inverse[(alt_old_inverse.len() as f64 * erosion_center) as usize]; alt_old_inverse[(alt_old_inverse.len() as f64 * erosion_center) as usize];
let alt_old_center = /* let alt_old_center =
((alt_old_mid - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64); ((alt_old_mid - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64); */
/* // Find the minimum and maximum original altitudes. /* // Find the minimum and maximum original altitudes.
// NOTE: Will panic if there is no land, and will not work properly if the minimum and // NOTE: Will panic if there is no land, and will not work properly if the minimum and
@ -893,19 +893,19 @@ impl WorldSim {
// let erosion_pow = 2.0; // let erosion_pow = 2.0;
// let n_steps = 100;//150; // let n_steps = 100;//150;
// let erosion_factor = |x: f64| logistic_cdf(erosion_pow * logit(x)); // let erosion_factor = |x: f64| logistic_cdf(erosion_pow * logit(x));
let log_odds = |x: f64| { /* let log_odds = |x: f64| {
logit(x) logit(x)
- logit( - logit(
/*erosion_center*/ alt_old_center_uniform, /*alt_old_center*/ /*erosion_center*/ alt_old_center_uniform, /*alt_old_center*/
) )
}; }; */
/* let erosion_factor = |x: f64| logistic_cdf(logistic_base * if x <= /*erosion_center*/alt_old_center_uniform/*alt_old_center*/ { erosion_pow_low.ln() } else { erosion_pow_high.ln() } * log_odds(x))/*0.5 + (x - 0.5).signum() * ((x - 0.5).mul(2.0).abs( /* let erosion_factor = |x: f64| logistic_cdf(logistic_base * if x <= /*erosion_center*/alt_old_center_uniform/*alt_old_center*/ { erosion_pow_low.ln() } else { erosion_pow_high.ln() } * log_odds(x))/*0.5 + (x - 0.5).signum() * ((x - 0.5).mul(2.0).abs(
).powf(erosion_pow).mul(0.5))*/; */ ).powf(erosion_pow).mul(0.5))*/; */
let erosion_factor = |x: f64| (/*if x <= /*erosion_center*/alt_old_center_uniform/*alt_old_center*/ { erosion_pow_low.ln() } else { erosion_pow_high.ln() } * */(/*exp_inverse_cdf*//*logit*/inv_func(x) - alt_exp_min_uniform) / (alt_exp_max_uniform - alt_exp_min_uniform))/*0.5 + (x - 0.5).signum() * ((x - 0.5).mul(2.0).abs( let erosion_factor = |x: f64| (/*if x <= /*erosion_center*/alt_old_center_uniform/*alt_old_center*/ { erosion_pow_low.ln() } else { erosion_pow_high.ln() } * */(/*exp_inverse_cdf*//*logit*/inv_func(x) - alt_exp_min_uniform) / (alt_exp_max_uniform - alt_exp_min_uniform))/*0.5 + (x - 0.5).signum() * ((x - 0.5).mul(2.0).abs(
).powf(erosion_pow).mul(0.5))*//*.powf(0.5)*//*.powf(1.5)*//*.powf(2.0)*/; ).powf(erosion_pow).mul(0.5))*//*.powf(0.5)*//*.powf(1.5)*//*.powf(2.0)*/;
let rock_strength_div_factor = /*8.0*/(2.0 * TerrainChunkSize::RECT_SIZE.x as f64) / 8.0; let rock_strength_div_factor = /*8.0*/(2.0 * TerrainChunkSize::RECT_SIZE.x as f64) / 8.0;
// let time_scale = 1.0; //4.0/*4.0*/; // let time_scale = 1.0; //4.0/*4.0*/;
let theta_func = |posi| 0.4; let theta_func = |_posi| 0.4;
let kf_func = { let kf_func = {
|posi| { |posi| {
let kf_scale_i = k_fs_scale(theta_func(posi), n_func(posi)) as f64; let kf_scale_i = k_fs_scale(theta_func(posi), n_func(posi)) as f64;
@ -918,10 +918,10 @@ impl WorldSim {
// return 2.0e-10; // return 2.0e-10;
// return 0.0; // return 0.0;
} }
let wposf = (uniform_idx_as_vec2(posi) /* let wposf = (uniform_idx_as_vec2(posi)
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
.map(|e| e as f64); .map(|e| e as f64); */
let turb_wposf = wposf /* let turb_wposf = wposf
.mul(5_000.0 / continent_scale) .mul(5_000.0 / continent_scale)
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
.div(turb_wposf_div); .div(turb_wposf_div);
@ -931,31 +931,31 @@ impl WorldSim {
) * uplift_turb_scale ) * uplift_turb_scale
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64); * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
// let turb = Vec2::zero(); // let turb = Vec2::zero();
let turb_wposf = wposf + turb; let turb_wposf = wposf + turb; */
let turb_wposi = turb_wposf /* let turb_wposi = turb_wposf
.div(5_000.0 / continent_scale) .div(5_000.0 / continent_scale)
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
let turb_posi = vec2_as_uniform_idx(turb_wposi); let turb_posi = vec2_as_uniform_idx(turb_wposi); */
let uheight = gen_ctx /* let uheight = gen_ctx
.uplift_nz .uplift_nz
.get(turb_wposf.into_array()) .get(turb_wposf.into_array())
/* .min(0.5) /* .min(0.5)
.max(-0.5)*/ .max(-0.5)*/
.min(1.0) .min(1.0)
.max(-1.0) .max(-1.0)
.mul(0.5) .mul(0.5)
.add(0.5); .add(0.5); */
let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) /* let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array())
.min(1.0) .min(1.0)
.max(-1.0) .max(-1.0)
.mul(0.5) .mul(0.5)
.add(0.5); */ .add(0.5); */
chaos[posi].1; chaos[posi].1; */
let oheight = /*alt_old*//*alt_base*/alt_old_no_ocean[/*(turb_posi / 64) * 64*/posi].0 as f64; /* let oheight = /*alt_old*//*alt_base*/alt_old_no_ocean[/*(turb_posi / 64) * 64*/posi].0 as f64;
let oheight_2 = /*alt_old*//*alt_base*/(alt_old_no_ocean[/*(turb_posi / 64) * 64*/posi].1 as f64 / CONFIG.mountain_scale as f64); let oheight_2 = /*alt_old*//*alt_base*/(alt_old_no_ocean[/*(turb_posi / 64) * 64*/posi].1 as f64 / CONFIG.mountain_scale as f64); */
let kf_i = // kf = 1.5e-4: high-high (plateau [fan sediment]) let kf_i = // kf = 1.5e-4: high-high (plateau [fan sediment])
// kf = 1e-4: high (plateau) // kf = 1e-4: high (plateau)
@ -1002,12 +1002,12 @@ impl WorldSim {
/*1.0e-2*/ /*1.0e-2*/
1.0e-2 / 4.0 1.0e-2 / 4.0
; ;
kd_i * kd_scale_i; return kd_i * kd_scale_i;
} }
let wposf = (uniform_idx_as_vec2(posi) /* let wposf = (uniform_idx_as_vec2(posi)
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
.map(|e| e as f64); .map(|e| e as f64); */
let turb_wposf = wposf /* let turb_wposf = wposf
.mul(5_000.0 / continent_scale) .mul(5_000.0 / continent_scale)
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
.div(turb_wposf_div); .div(turb_wposf_div);
@ -1017,27 +1017,27 @@ impl WorldSim {
) * uplift_turb_scale ) * uplift_turb_scale
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64); * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
// let turb = Vec2::zero(); // let turb = Vec2::zero();
let turb_wposf = wposf + turb; let turb_wposf = wposf + turb; */
let turb_wposi = turb_wposf /* let turb_wposi = turb_wposf
.div(5_000.0 / continent_scale) .div(5_000.0 / continent_scale)
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
let turb_posi = vec2_as_uniform_idx(turb_wposi); let turb_posi = vec2_as_uniform_idx(turb_wposi); */
let uheight = gen_ctx /* let uheight = gen_ctx
.uplift_nz .uplift_nz
.get(turb_wposf.into_array()) .get(turb_wposf.into_array())
/* .min(0.5) /* .min(0.5)
.max(-0.5)*/ .max(-0.5)*/
.min(1.0) .min(1.0)
.max(-1.0) .max(-1.0)
.mul(0.5) .mul(0.5)
.add(0.5); .add(0.5); */
let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) /* let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array())
.min(1.0) .min(1.0)
.max(-1.0) .max(-1.0)
.mul(0.5) .mul(0.5)
.add(0.5); */ .add(0.5); */
chaos[posi].1; chaos[posi].1; */
// kd = 1e-1: high (mountain, dike) // kd = 1e-1: high (mountain, dike)
// kd = 1.5e-2: normal-high (plateau [fan sediment]) // kd = 1.5e-2: normal-high (plateau [fan sediment])
@ -1045,7 +1045,7 @@ impl WorldSim {
// multiplied by height_scale² to account for change in area, then divided by // multiplied by height_scale² to account for change in area, then divided by
// time_scale to account for lower dt. // time_scale to account for lower dt.
let kd_i = // 1.0e-2 * kd_scale_i;// m_old^2 / y * (1 m_new / 4 m_old)^2 let kd_i = // 1.0e-2 * kd_scale_i;// m_old^2 / y * (1 m_new / 4 m_old)^2
1.10e-2 / 4.0 1.0e-2 / 4.0
// (uheight * (1.0e-1 - 1.0e-2) + 1.0e-2) // (uheight * (1.0e-1 - 1.0e-2) + 1.0e-2)
// ((1.0 - uheight) * (0.5 + 0.5 * ((1.32 - uchaos as f64) / 1.32)) * (1.0e-2 - 1.0e-3) + 1.0e-3) // ((1.0 - uheight) * (0.5 + 0.5 * ((1.32 - uchaos as f64) / 1.32)) * (1.0e-2 - 1.0e-3) + 1.0e-3)
// (uheight * (1.0e-2 - 1.0e-3) + 1.0e-3) / 2.0 // (uheight * (1.0e-2 - 1.0e-3) + 1.0e-3) / 2.0
@ -1060,9 +1060,9 @@ impl WorldSim {
return 0.0; return 0.0;
// return 5.0; // return 5.0;
} }
let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) /* let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
.map(|e| e as f64); .map(|e| e as f64); */
let turb_wposf = wposf /* let turb_wposf = wposf
.mul(5_000.0 / continent_scale) .mul(5_000.0 / continent_scale)
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
.div(turb_wposf_div); .div(turb_wposf_div);
@ -1072,30 +1072,30 @@ impl WorldSim {
) * uplift_turb_scale ) * uplift_turb_scale
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64); * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
// let turb = Vec2::zero(); // let turb = Vec2::zero();
let turb_wposf = wposf + turb; let turb_wposf = wposf + turb; */
let turb_wposi = turb_wposf /* let turb_wposi = turb_wposf
.div(5_000.0 / continent_scale) .div(5_000.0 / continent_scale)
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
let turb_posi = vec2_as_uniform_idx(turb_wposi); let turb_posi = vec2_as_uniform_idx(turb_wposi); */
let uheight = gen_ctx /* let uheight = gen_ctx
.uplift_nz .uplift_nz
.get(turb_wposf.into_array()) .get(turb_wposf.into_array())
/* .min(0.5) /* .min(0.5)
.max(-0.5)*/ .max(-0.5)*/
.min(1.0) .min(1.0)
.max(-1.0) .max(-1.0)
.mul(0.5) .mul(0.5)
.add(0.5); .add(0.5); */
let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) /* let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array())
.min(1.0) .min(1.0)
.max(-1.0) .max(-1.0)
.mul(0.5) .mul(0.5)
.add(0.5); */ .add(0.5); */
chaos[posi].1; chaos[posi].1;
assert!(uchaos <= 1.32); assert!(uchaos <= 1.32); */
// G = d* v_s / p_0, where // G = d* v_s / p_0, where
// v_s is the settling velocity of sediment grains // v_s is the settling velocity of sediment grains
@ -1171,11 +1171,11 @@ impl WorldSim {
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64); * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
// let turb = Vec2::zero(); // let turb = Vec2::zero();
let turb_wposf = wposf + turb; let turb_wposf = wposf + turb;
let turb_wposi = turb_wposf /* let turb_wposi = turb_wposf
.div(5_000.0 / continent_scale) .div(5_000.0 / continent_scale)
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
let turb_posi = vec2_as_uniform_idx(turb_wposi); let turb_posi = vec2_as_uniform_idx(turb_wposi); */
let uheight = gen_ctx let uheight = gen_ctx
.uplift_nz .uplift_nz
.get(turb_wposf.into_array()) .get(turb_wposf.into_array())
@ -1221,7 +1221,6 @@ impl WorldSim {
let epsilon_0_i = let epsilon_0_i =
// ((1.0 - ustrength) * (/*3.18e-4*/2.078e-3 - 5.3e-5) + 5.3e-5) as f32 // ((1.0 - ustrength) * (/*3.18e-4*/2.078e-3 - 5.3e-5) + 5.3e-5) as f32
((1.0 - ustrength) * (/*3.18e-4*/2.078e-3 - 5.3e-5) + 5.3e-5) as f32 / 4.0 ((1.0 - ustrength) * (/*3.18e-4*/2.078e-3 - 5.3e-5) + 5.3e-5) as f32 / 4.0
;
/* * time_scale*/ /* * time_scale*/
// 0.0 // 0.0
; ;
@ -1254,11 +1253,11 @@ impl WorldSim {
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64); * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
// let turb = Vec2::zero(); // let turb = Vec2::zero();
let turb_wposf = wposf + turb; let turb_wposf = wposf + turb;
let turb_wposi = turb_wposf /* let turb_wposi = turb_wposf
.div(5_000.0 / continent_scale) .div(5_000.0 / continent_scale)
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
let turb_posi = vec2_as_uniform_idx(turb_wposi); let turb_posi = vec2_as_uniform_idx(turb_wposi); */
let uheight = gen_ctx let uheight = gen_ctx
.uplift_nz .uplift_nz
.get(turb_wposf.into_array()) .get(turb_wposf.into_array())
@ -1309,7 +1308,7 @@ impl WorldSim {
.mul(max_erosion_per_delta_t) as f32; */ .mul(max_erosion_per_delta_t) as f32; */
return 0.0; return 0.0;
} }
let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) /* let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
.map(|e| e as f64); .map(|e| e as f64);
let alt_main = { let alt_main = {
// Extension upwards from the base. A positive number from 0 to 1 curved to be // Extension upwards from the base. A positive number from 0 to 1 curved to be
@ -1337,10 +1336,10 @@ impl WorldSim {
.add(1.0) .add(1.0)
.mul(0.4)/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0) .mul(0.4)/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0)
.mul(0.045)*/) .mul(0.045)*/)
}; }; */
let height = let height =
((/*old_height_uniform*/uplift_uniform[posi]./*0*/1 - alt_old_min_uniform) as f64 (/*old_height_uniform*/uplift_uniform[posi]./*0*/1 - alt_old_min_uniform) as f64
/ (alt_old_max_uniform - alt_old_min_uniform) as f64) / (alt_old_max_uniform - alt_old_min_uniform) as f64
/*((old_height(posi) - alt_old_min) as f64 /*((old_height(posi) - alt_old_min) as f64
/ (alt_old_max - alt_old_min) as f64)*/ / (alt_old_max - alt_old_min) as f64)*/
; ;
@ -1386,7 +1385,8 @@ impl WorldSim {
false { false {
( (
/*(alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64*/ /*(alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64*/
(alt_main / CONFIG.mountain_scale as f64 * 128.0).mul(0.1).powf(1.2) * /*(1.0 / CONFIG.mountain_scale as f64)*/(f32::EPSILON * 0.5) as f64, /* (alt_main / CONFIG.mountain_scale as f64 * 128.0).mul(0.1).powf(1.2) * /*(1.0 / CONFIG.mountain_scale as f64)*/(f32::EPSILON * 0.5) as f64, */
0.0,
(f32::EPSILON * 0.5) as f64, (f32::EPSILON * 0.5) as f64,
) )
} else { } else {
@ -1398,7 +1398,7 @@ impl WorldSim {
// tan(pi/6)*32 ~ 18 // tan(pi/6)*32 ~ 18
// tan(54/360*2*pi)*32 // tan(54/360*2*pi)*32
// let height = 1.0f64; // let height = 1.0f64;
let turb_wposf = wposf /* let turb_wposf = wposf
.mul(5_000.0 / continent_scale) .mul(5_000.0 / continent_scale)
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
.div(turb_wposf_div); .div(turb_wposf_div);
@ -1416,7 +1416,7 @@ impl WorldSim {
.min(1.0) .min(1.0)
.max(-1.0) .max(-1.0)
.mul(0.5) .mul(0.5)
.add(0.5); .add(0.5); */
// u = 1e-3: normal-high (dike, mountain) // u = 1e-3: normal-high (dike, mountain)
// u = 5e-4: normal (mid example in Yuan, average mountain uplift) // u = 5e-4: normal (mid example in Yuan, average mountain uplift)
// u = 2e-4: low (low example in Yuan; known that lagoons etc. may have u ~ 0.05). // u = 2e-4: low (low example in Yuan; known that lagoons etc. may have u ~ 0.05).
@ -1457,7 +1457,7 @@ impl WorldSim {
old_height(posi) // 0.0 old_height(posi) // 0.0
} else { } else {
// uplift_fn(posi) // uplift_fn(posi)
let wposf = (uniform_idx_as_vec2(posi) /* let wposf = (uniform_idx_as_vec2(posi)
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
.map(|e| e as f64); .map(|e| e as f64);
let alt_main = { let alt_main = {
@ -1486,7 +1486,7 @@ impl WorldSim {
.add(1.0) .add(1.0)
.mul(0.4)/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0) .mul(0.4)/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0)
.mul(0.045)*/) .mul(0.045)*/)
}; }; */
// (kf_func(posi) / 1.5e-4 * CONFIG.mountain_scale as f64) as f32 // (kf_func(posi) / 1.5e-4 * CONFIG.mountain_scale as f64) as f32
// (old_height_uniform(posi) as f64 * CONFIG.mountain_scale as f64) as f32 // (old_height_uniform(posi) as f64 * CONFIG.mountain_scale as f64) as f32
@ -1611,7 +1611,6 @@ impl WorldSim {
) )
} else { } else {
let (alt, basement /*, alluvium*/) = do_erosion( let (alt, basement /*, alluvium*/) = do_erosion(
0.0,
max_erosion_per_delta_t as f32, max_erosion_per_delta_t as f32,
n_steps, n_steps,
&river_seed, &river_seed,
@ -1647,7 +1646,6 @@ impl WorldSim {
// Quick "small scale" erosion cycle in order to lower extreme angles. // Quick "small scale" erosion cycle in order to lower extreme angles.
do_erosion( do_erosion(
0.0,
(1.0/* * height_scale*/) as f32, (1.0/* * height_scale*/) as f32,
n_small_steps, n_small_steps,
&river_seed, &river_seed,
@ -1716,7 +1714,6 @@ impl WorldSim {
(alt, basement /*, alluvium*/) (alt, basement /*, alluvium*/)
} else { } else {
do_erosion( do_erosion(
0.0,
(1.0/* * height_scale*/) as f32, (1.0/* * height_scale*/) as f32,
n_post_load_steps, n_post_load_steps,
&river_seed, &river_seed,
@ -2483,7 +2480,7 @@ impl SimChunk {
// let height_scale = 1.0; // 1.0 / CONFIG.mountain_scale; // let height_scale = 1.0; // 1.0 / CONFIG.mountain_scale;
let mut alt = CONFIG.sea_level.add(alt_pre /*.div(height_scale)*/); let mut alt = CONFIG.sea_level.add(alt_pre /*.div(height_scale)*/);
let mut basement = CONFIG.sea_level.add(basement_pre /*.div(height_scale)*/); let basement = CONFIG.sea_level.add(basement_pre /*.div(height_scale)*/);
let water_alt = CONFIG.sea_level.add(water_alt_pre /*.div(height_scale)*/); let water_alt = CONFIG.sea_level.add(water_alt_pre /*.div(height_scale)*/);
let downhill = if downhill_pre == -2 { let downhill = if downhill_pre == -2 {
None None

View File

@ -258,7 +258,7 @@ pub fn downhill<F: Float>(
(0..WORLD_SIZE.x * WORLD_SIZE.y) (0..WORLD_SIZE.x * WORLD_SIZE.y)
.into_par_iter() .into_par_iter()
// .enumerate() // .enumerate()
.map(|(posi/*, &nh*/)| { .map(|/*(*/ posi /*, &nh)*/| {
let nh = h(posi); let nh = h(posi);
let _pos = uniform_idx_as_vec2(posi); let _pos = uniform_idx_as_vec2(posi);
if is_ocean(posi) { if is_ocean(posi) {

View File

@ -1,5 +1,4 @@
use super::{RandomField, Sampler}; use super::{RandomField, Sampler};
use crate::block::BlockGen;
use rayon::prelude::*; use rayon::prelude::*;
use vek::*; use vek::*;