mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
Make humidity ignore ocean chunks.
This commit is contained in:
parent
f7f0958d41
commit
25a02ae6e0
@ -132,10 +132,26 @@ impl WorldSim {
|
||||
.set_seed(gen_seed()),
|
||||
};
|
||||
|
||||
// From 0 to 1.6, but the distribution before the max is from -1 and 1, so there is a 50%
|
||||
// chance that hill will end up at 0.
|
||||
let hill = uniform_noise(|_, wposf| {
|
||||
(0.0 + gen_ctx
|
||||
// "Base" of the chunk, to be multiplied by CONFIG.mountain_scale (multiplied value is
|
||||
// from -0.25 * (CONFIG.mountain_scale * 1.1) to 0.25 * (CONFIG.mountain_scale * 0.9),
|
||||
// but value here is from -0.275 to 0.225).
|
||||
let alt_base = uniform_noise(|_, wposf| {
|
||||
Some((gen_ctx.alt_nz.get((wposf.div(12_000.0)).into_array()) as f32)
|
||||
.sub(0.1)
|
||||
.mul(0.25))
|
||||
});
|
||||
|
||||
// -1 to 1.
|
||||
let temp_base = uniform_noise(|_, wposf| {
|
||||
Some((gen_ctx.temp_nz.get((wposf.div(12000.0)).into_array()) as f32))
|
||||
});
|
||||
|
||||
// chaos produces a value in [0.1, 1.24]. It is a meta-level factor intended to reflect how
|
||||
// "chaotic" the region is--how much weird stuff is going on on this terrain.
|
||||
let chaos = uniform_noise(|posi, wposf| {
|
||||
// From 0 to 1.6, but the distribution before the max is from -1 and 1, so there is a
|
||||
// 50% chance that hill will end up at 0.
|
||||
let hill = (0.0 + gen_ctx
|
||||
.hill_nz
|
||||
.get((wposf.div(1_500.0)).into_array())
|
||||
.mul(1.0) as f32
|
||||
@ -144,34 +160,9 @@ impl WorldSim {
|
||||
.get((wposf.div(400.0)).into_array())
|
||||
.mul(0.3) as f32)
|
||||
.add(0.3)
|
||||
.max(0.0)
|
||||
});
|
||||
.max(0.0);
|
||||
|
||||
// 0 to 1, hopefully.
|
||||
let humid_base = uniform_noise(|_, wposf| {
|
||||
(gen_ctx.humid_nz.get(wposf.div(1024.0).into_array()) as f32)
|
||||
.add(1.0)
|
||||
.mul(0.5)
|
||||
});
|
||||
|
||||
// -1 to 1.
|
||||
let temp_base = uniform_noise(|_, wposf| {
|
||||
(gen_ctx.temp_nz.get((wposf.div(12000.0)).into_array()) as f32)
|
||||
});
|
||||
|
||||
// "Base" of the chunk, to be multiplied by CONFIG.mountain_scale (multiplied value is
|
||||
// from -0.25 * (CONFIG.mountain_scale * 1.1) to 0.25 * (CONFIG.mountain_scale * 0.9),
|
||||
// but value here is from -0.275 to 0.225).
|
||||
let alt_base = uniform_noise(|_, wposf| {
|
||||
(gen_ctx.alt_nz.get((wposf.div(12_000.0)).into_array()) as f32)
|
||||
.sub(0.1)
|
||||
.mul(0.25)
|
||||
});
|
||||
|
||||
// chaos produces a value in [0.1, 1.24]. It is a meta-level factor intended to reflect how
|
||||
// "chaotic" the region is--how much weird stuff is going on on this terrain.
|
||||
let chaos = uniform_noise(|posi, wposf| {
|
||||
(gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) as f32)
|
||||
Some((gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) as f32)
|
||||
.add(1.0)
|
||||
.mul(0.5)
|
||||
// [0, 1] * [0.25, 1] = [0, 1] (but probably towards the lower end)
|
||||
@ -184,7 +175,7 @@ impl WorldSim {
|
||||
// Chaos is always increased by a little when we're on a hill (but remember that
|
||||
// hill is 0 about 50% of the time).
|
||||
// [0, 1] + 0.15 * [0, 1.6] = [0, 1.24]
|
||||
.add(0.2 * hill[posi].1)
|
||||
.add(0.2 * hill)
|
||||
// [0, 1.24] * [0.35, 1.0] = [0, 1.24].
|
||||
// Sharply decreases (towards 0.35) when temperature is near desert_temp (from below),
|
||||
// then saturates just before it actually becomes desert. Otherwise stays at 1.
|
||||
@ -200,7 +191,7 @@ impl WorldSim {
|
||||
.min(1.0),
|
||||
)
|
||||
// We can't have *no* chaos!
|
||||
.max(0.1)
|
||||
.max(0.1))
|
||||
});
|
||||
|
||||
// We ignore sea level because we actually want to be relative to sea level here and want
|
||||
@ -227,9 +218,9 @@ impl WorldSim {
|
||||
(0.0 + alt_main
|
||||
+ (gen_ctx.small_nz.get((wposf.div(300.0)).into_array()) as f32)
|
||||
.mul(alt_main.max(0.25))
|
||||
.mul(0.3))
|
||||
.mul(0.3)
|
||||
.add(1.0)
|
||||
.mul(0.5)
|
||||
.mul(0.5))
|
||||
};
|
||||
|
||||
// Now we can compute the final altitude using chaos.
|
||||
@ -237,7 +228,18 @@ impl WorldSim {
|
||||
// alt_pre, then multiply by CONFIG.mountain_scale and add to the base and sea level to
|
||||
// get an adjusted value, then multiply the whole thing by map_edge_factor
|
||||
// (TODO: compute final bounds).
|
||||
(alt_base[posi].1 + alt_main.mul(chaos[posi].1)).mul(map_edge_factor(posi))
|
||||
Some((alt_base[posi].1 + alt_main.mul(chaos[posi].1)).mul(map_edge_factor(posi)))
|
||||
});
|
||||
|
||||
// 0 to 1, hopefully.
|
||||
let humid_base = uniform_noise(|posi, wposf| {
|
||||
if alt[posi].1 <= 5.0.div(CONFIG.mountain_scale) {
|
||||
None
|
||||
} else {
|
||||
Some((gen_ctx.humid_nz.get(wposf.div(1024.0).into_array()) as f32)
|
||||
.add(1.0)
|
||||
.mul(0.5))
|
||||
}
|
||||
});
|
||||
|
||||
let gen_cdf = GenCdf {
|
||||
|
@ -123,36 +123,37 @@ pub fn uniform_idx_as_vec2(idx: usize) -> Vec2<i32> {
|
||||
/// vector returned by uniform_noise, and (for convenience) the float-translated version of those
|
||||
/// coordinates.
|
||||
/// f should return a value with no NaNs. If there is a NaN, it will panic. There are no other
|
||||
/// conditions on f.
|
||||
/// conditions on f. If f returns None, the value will be set to 0.0, and will be ignored for the
|
||||
/// purposes of computing the uniform range.
|
||||
///
|
||||
/// Returns a vec of (f32, f32) pairs consisting of the percentage of chunks with a value lower than
|
||||
/// this one, and the actual noise value (we don't need to cache it, but it makes ensuring that
|
||||
/// subsequent code that needs the noise value actually uses the same one we were using here
|
||||
/// easier).
|
||||
pub fn uniform_noise(f: impl Fn(usize, Vec2<f64>) -> f32) -> InverseCdf {
|
||||
pub fn uniform_noise(f: impl Fn(usize, Vec2<f64>) -> Option<f32>) -> InverseCdf {
|
||||
let mut noise = (0..WORLD_SIZE.x * WORLD_SIZE.y)
|
||||
.map(|i| {
|
||||
.filter_map(|i| {
|
||||
(
|
||||
i,
|
||||
f(
|
||||
i,
|
||||
(uniform_idx_as_vec2(i) * TerrainChunkSize::SIZE.map(|e| e as i32))
|
||||
.map(|e| e as f64),
|
||||
),
|
||||
).map(|res| (i, res))
|
||||
)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// sort_unstable_by is equivalent to sort_by here since we include the index in the
|
||||
// sort_unstable_by is equivalent to sort_by here since we include a unique index in the
|
||||
// comparison. We could leave out the index, but this might make the order not
|
||||
// reproduce the same way between different versions of Rust (for example).
|
||||
noise.sort_unstable_by(|f, g| (f.1, f.0).partial_cmp(&(g.1, g.0)).unwrap());
|
||||
|
||||
// Construct a vector that associates each chunk position with the 1-indexed
|
||||
// position of the noise in the sorted vector (divided by the vector length).
|
||||
// This guarantees a uniform distribution among the samples.
|
||||
// This guarantees a uniform distribution among the samples (excluding those that returned
|
||||
// None, which will remain at zero).
|
||||
let mut uniform_noise = vec![(0.0, 0.0); WORLD_SIZE.x * WORLD_SIZE.y].into_boxed_slice();
|
||||
let total = (WORLD_SIZE.x * WORLD_SIZE.y) as f32;
|
||||
let total = noise.len() as f32;
|
||||
for (noise_idx, (chunk_idx, noise_val)) in noise.into_iter().enumerate() {
|
||||
uniform_noise[chunk_idx] = ((1 + noise_idx) as f32 / total, noise_val);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user