Propagate light via queue to avoid block lookups

This commit is contained in:
Imbris 2020-01-12 00:50:58 -05:00
parent 211c076b8d
commit 3347438d51

View File

@ -5,9 +5,9 @@ use crate::{
use common::{
terrain::Block,
vol::{ReadVol, RectRasterableVol, Vox},
volumes::vol_grid_2d::VolGrid2d,
volumes::vol_grid_2d::{CachedVolGrid2d, VolGrid2d},
};
use std::fmt::Debug;
use std::{collections::VecDeque, fmt::Debug};
use vek::*;
type TerrainVertex = <TerrainPipeline as render::Pipeline>::Vertex;
@ -33,10 +33,12 @@ fn calc_light<V: RectRasterableVol<Vox = Block> + ReadVol + Debug>(
bounds: Aabb<i32>,
vol: &VolGrid2d<V>,
) -> impl Fn(Vec3<i32>) -> f32 {
const NOT_VOID: u8 = 255;
const UNKOWN: u8 = 255;
const OPAQUE: u8 = 254;
const SUNLIGHT: u8 = 24;
let outer = Aabb {
// TODO: subtract 1 from sunlight here
min: bounds.min - Vec3::new(SUNLIGHT as i32, SUNLIGHT as i32, 1),
max: bounds.max + Vec3::new(SUNLIGHT as i32, SUNLIGHT as i32, 1),
};
@ -45,109 +47,166 @@ fn calc_light<V: RectRasterableVol<Vox = Block> + ReadVol + Debug>(
// Voids are voxels that that contain air or liquid that are protected from direct rays by blocks
// above them
//
let mut voids = vec![NOT_VOID; outer.size().product() as usize];
let void_idx = {
let (_, h, d) = outer.clone().size().into_tuple();
move |x, y, z| (x * h * d + y * d + z) as usize
let mut light_map = vec![UNKOWN; outer.size().product() as usize];
// TODO: would a morton curve be more efficient?
let lm_idx = {
let (w, h, _) = outer.clone().size().into_tuple();
move |x, y, z| (z * h * w + x * h + y) as usize
};
// List of voids for efficient iteration
let mut voids_list = vec![];
// Rays are cast down
// Vec<(highest non air block, lowest non air block)>
let mut rays = vec![(outer.size().d, 0); (outer.size().w * outer.size().h) as usize];
// Light propagation queue
let mut prop_que = VecDeque::new();
// Start rays
// TODO: how much would it cost to clone the whole sample into a flat array?
for x in 0..outer.size().w {
for y in 0..outer.size().h {
let mut outside = true;
for z in (0..outer.size().d).rev() {
let block = vol_cached
.get(outer.min + Vec3::new(x, y, z))
let z = outer.size().d - 1;
let is_air = vol_cached
.get(outer.min + Vec3::new(x, y, z))
.ok()
.map_or(false, |b| b.is_air());
light_map[lm_idx(x, y, z)] = if is_air {
if vol_cached
.get(outer.min + Vec3::new(x, y, z - 1))
.ok()
.copied()
.unwrap_or(Block::empty());
if !block.is_air() {
if outside {
rays[(outer.size().w * y + x) as usize].0 = z;
outside = false;
}
rays[(outer.size().w * y + x) as usize].1 = z;
.map_or(false, |b| b.is_air())
{
light_map[lm_idx(x, y, z - 1)] = SUNLIGHT;
// TODO: access efficiency of using less space to store pos
prop_que.push_back(Vec3::new(x, y, z - 1));
}
if (block.is_air() || block.is_fluid()) && !outside {
voids_list.push(Vec3::new(x, y, z));
voids[void_idx(x, y, z)] = 0;
}
}
SUNLIGHT
} else {
OPAQUE
};
}
}
// Propagate light into voids adjacent to rays
let mut opens = Vec::new();
'voids: for pos in &mut voids_list {
let void_idx = void_idx(pos.x, pos.y, pos.z);
for dir in &DIRS {
let col = Vec2::<i32>::from(*pos) + dir;
// If above highest non air block (ray passes by)
if pos.z
> *rays
.get(((outer.size().w * col.y) + col.x) as usize)
.map(|(ray, _)| ray)
.unwrap_or(&0)
{
voids[void_idx] = SUNLIGHT - 1;
opens.push(*pos);
continue 'voids;
}
}
// Ray hits directly (occurs for liquids)
if pos.z
>= *rays
.get(((outer.size().w * pos.y) + pos.x) as usize)
.map(|(ray, _)| ray)
.unwrap_or(&0)
{
voids[void_idx] = SUNLIGHT - 1;
opens.push(*pos);
}
}
while opens.len() > 0 {
let mut new_opens = Vec::new();
for open in &opens {
let parent_l = voids[void_idx(open.x, open.y, open.z)];
for dir in &DIRS_3D {
let other = *open + *dir;
if let Some(l) = voids.get_mut(void_idx(other.x, other.y, other.z)) {
if *l < parent_l - 1 {
new_opens.push(other);
*l = parent_l - 1;
// Determines light propagation
let propagate = |src: u8,
dest: &mut u8,
pos: Vec3<i32>,
prop_que: &mut VecDeque<_>,
vol: &mut CachedVolGrid2d<V>| {
if *dest != OPAQUE {
if *dest == UNKOWN {
if vol
.get(outer.min + pos)
.ok()
.map_or(false, |b| b.is_air() || b.is_fluid())
{
*dest = src - 1;
// Can't propagate further
if *dest > 1 {
prop_que.push_back(pos);
}
} else {
*dest = OPAQUE;
}
} else if *dest < src - 1 {
*dest = src - 1;
// Can't propagate further
if *dest > 1 {
prop_que.push_back(pos);
}
}
}
opens = new_opens;
};
// Propage light
while let Some(pos) = prop_que.pop_front() {
// TODO: access efficiency of storing current light level in queue
// TODO: access efficiency of storing originating direction index in queue so that dir
// doesn't need to be checked
let light = light_map[lm_idx(pos.x, pos.y, pos.z)];
// If ray propagate downwards at full strength
if light == SUNLIGHT {
// Down is special cased and we know up is a ray
// Special cased ray propagation
let pos = Vec3::new(pos.x, pos.y, pos.z - 1);
let (is_air, is_fluid) = vol_cached
.get(outer.min + pos)
.ok()
.map_or((false, false), |b| (b.is_air(), b.is_fluid()));
light_map[lm_idx(pos.x, pos.y, pos.z)] = if is_air {
prop_que.push_back(pos);
SUNLIGHT
} else if is_fluid {
prop_que.push_back(pos);
SUNLIGHT - 1
} else {
OPAQUE
}
} else {
// Up
// Bounds checking
// TODO: check if propagated light level can ever reach area of interest
if pos.z + 1 < outer.size().d {
propagate(
light,
light_map.get_mut(lm_idx(pos.x, pos.y, pos.z + 1)).unwrap(),
Vec3::new(pos.x, pos.y, pos.z + 1),
&mut prop_que,
&mut vol_cached,
)
}
// Down
if pos.z > 0 {
propagate(
light,
light_map.get_mut(lm_idx(pos.x, pos.y, pos.z - 1)).unwrap(),
Vec3::new(pos.x, pos.y, pos.z - 1),
&mut prop_que,
&mut vol_cached,
)
}
}
// The XY directions
if pos.y + 1 < outer.size().h {
propagate(
light,
light_map.get_mut(lm_idx(pos.x, pos.y + 1, pos.z)).unwrap(),
Vec3::new(pos.x, pos.y + 1, pos.z),
&mut prop_que,
&mut vol_cached,
)
}
if pos.y > 0 {
propagate(
light,
light_map.get_mut(lm_idx(pos.x, pos.y - 1, pos.z)).unwrap(),
Vec3::new(pos.x, pos.y - 1, pos.z),
&mut prop_que,
&mut vol_cached,
)
}
if pos.x + 1 < outer.size().w {
propagate(
light,
light_map.get_mut(lm_idx(pos.x + 1, pos.y, pos.z)).unwrap(),
Vec3::new(pos.x + 1, pos.y, pos.z),
&mut prop_que,
&mut vol_cached,
)
}
if pos.x > 0 {
propagate(
light,
light_map.get_mut(lm_idx(pos.x - 1, pos.y, pos.z)).unwrap(),
Vec3::new(pos.x - 1, pos.y, pos.z),
&mut prop_que,
&mut vol_cached,
)
}
}
move |wpos| {
let pos = wpos - outer.min;
rays.get(((outer.size().w * pos.y) + pos.x) as usize)
.and_then(|(ray, deep)| {
if pos.z > *ray {
Some(1.0)
} else if pos.z < *deep {
Some(0.0)
} else {
None
}
})
.or_else(|| {
voids
.get(void_idx(pos.x, pos.y, pos.z))
.filter(|l| **l != NOT_VOID)
.map(|l| *l as f32 / SUNLIGHT as f32)
})
light_map
.get(lm_idx(pos.x, pos.y, pos.z))
.filter(|l| **l != OPAQUE && **l != UNKOWN)
.map(|l| *l as f32 / SUNLIGHT as f32)
.unwrap_or(0.0)
}
}
@ -168,16 +227,46 @@ impl<V: RectRasterableVol<Vox = Block> + ReadVol + Debug> Meshable<TerrainPipeli
let light = calc_light(range, self);
let mut vol_cached = self.cached();
//let mut vol_cached = self.cached();
for x in range.min.x + 1..range.max.x - 1 {
for y in range.min.y + 1..range.max.y - 1 {
let flat_get = {
let (w, h, d) = range.size().into_tuple();
// z can range from -1..range.size().d + 1
let d = d + 2;
let mut flat = vec![Block::empty(); (w * h * d) as usize];
let mut i = 0;
let mut volume = self.cached();
for x in 0..range.size().w {
for y in 0..range.size().h {
for z in -1..range.size().d + 1 {
flat[i] = *volume.get(range.min + Vec3::new(x, y, z)).unwrap();
i += 1;
}
}
}
// Cleanup
drop(i);
let flat = flat;
move |Vec3 { x, y, z }| {
// z can range from -1..range.size().d + 1
let z = z + 1;
match flat.get((x * h * d + y * d + z) as usize).copied() {
Some(b) => b,
None => panic!("x {} y {} z {} d {} h {}"),
}
}
};
for x in 1..range.size().w - 1 {
for y in 1..range.size().w - 1 {
let mut lights = [[[0.0; 3]; 3]; 3];
for i in 0..3 {
for j in 0..3 {
for k in 0..3 {
lights[k][j][i] = light(
Vec3::new(x, y, range.min.z)
Vec3::new(x + range.min.x, y + range.min.y, range.min.z)
+ Vec3::new(i as i32, j as i32, k as i32)
- 1,
);
@ -198,23 +287,23 @@ impl<V: RectRasterableVol<Vox = Block> + ReadVol + Debug> Meshable<TerrainPipeli
for i in 0..3 {
for j in 0..3 {
for k in 0..3 {
let block = vol_cached
let block = /*vol_cached
.get(
Vec3::new(x, y, range.min.z)
+ Vec3::new(i as i32, j as i32, k as i32)
- 1,
)
.ok()
.copied();
.copied()*/ Some(flat_get(Vec3::new(x, y, 0) + Vec3::new(i as i32, j as i32, k as i32) - 1));
colors[k][j][i] = get_color(block.as_ref());
blocks[k][j][i] = block;
}
}
}
for z in range.min.z..range.max.z {
for z in 0..range.size().d {
let pos = Vec3::new(x, y, z);
let offs = (pos - (range.min + 1) * Vec3::new(1, 1, 0)).map(|e| e as f32);
let offs = (pos - Vec3::new(1, 1, 0)).map(|e| e as f32);
lights[0] = lights[1];
lights[1] = lights[2];
@ -230,10 +319,10 @@ impl<V: RectRasterableVol<Vox = Block> + ReadVol + Debug> Meshable<TerrainPipeli
}
for i in 0..3 {
for j in 0..3 {
let block = vol_cached
let block = /*vol_cached
.get(pos + Vec3::new(i as i32, j as i32, 2) - 1)
.ok()
.copied();
.copied()*/ Some(flat_get(pos + Vec3::new(i as i32, j as i32, 2) - 1));
colors[2][j][i] = get_color(block.as_ref());
blocks[2][j][i] = block;
}
@ -242,6 +331,7 @@ impl<V: RectRasterableVol<Vox = Block> + ReadVol + Debug> Meshable<TerrainPipeli
let block = blocks[1][1][1];
// Create mesh polygons
let pos = pos + range.min;
if block.map(|vox| vox.is_opaque()).unwrap_or(false) {
vol::push_vox_verts(
&mut opaque_mesh,
@ -380,3 +470,16 @@ impl<V: BaseVol<Vox = Block> + ReadVol + Debug> Meshable for VolGrid3d<V> {
}
}
*/
fn interleave_i32_with_zeros(mut x: i32) -> i64 {
x = (x ^ (x << 16)) & 0x0000ffff0000ffff;
x = (x ^ (x << 8)) & 0x00ff00ff00ff00ff;
x = (x ^ (x << 4)) & 0x0f0f0f0f0f0f0f0f;
x = (x ^ (x << 2)) & 0x3333333333333333;
x = (x ^ (x << 1)) & 0x5555555555555555;
x
}
fn morton_code(pos: Vec2<i32>) -> i64 {
interleave_i32_with_zeros(pos.x) | (interleave_i32_with_zeros(pos.y) << 1)
}