Merge branch 'zesterer/small-fixes' into 'master'

Zesterer/small fixes

See merge request veloren/veloren!1190
This commit is contained in:
Joshua Barretto 2020-07-14 09:54:17 +00:00
commit 446923f7d8
8 changed files with 390 additions and 149 deletions

View File

@ -42,6 +42,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Training dummy items - Training dummy items
- Added spin attack for axe - Added spin attack for axe
- Creature specific stats - Creature specific stats
- Minimap compass
### Changed ### Changed

View File

@ -4,7 +4,7 @@ use crate::{
vol::{BaseVol, ReadVol}, vol::{BaseVol, ReadVol},
}; };
use hashbrown::hash_map::DefaultHashBuilder; use hashbrown::hash_map::DefaultHashBuilder;
use rand::{thread_rng, Rng}; use rand::prelude::*;
use std::iter::FromIterator; use std::iter::FromIterator;
use vek::*; use vek::*;
@ -56,6 +56,18 @@ impl From<Path<Vec3<i32>>> for Route {
fn from(path: Path<Vec3<i32>>) -> Self { Self { path, next_idx: 0 } } fn from(path: Path<Vec3<i32>>) -> Self { Self { path, next_idx: 0 } }
} }
pub struct TraversalConfig {
/// The distance to a node at which node is considered visited.
pub node_tolerance: f32,
/// The slowdown factor when following corners.
/// 0.0 = no slowdown on corners, 1.0 = total slowdown on corners.
pub slow_factor: f32,
/// Whether the agent is currently on the ground.
pub on_ground: bool,
/// The distance to the target below which it is considered reached.
pub min_tgt_dist: f32,
}
impl Route { impl Route {
pub fn path(&self) -> &Path<Vec3<i32>> { &self.path } pub fn path(&self) -> &Path<Vec3<i32>> { &self.path }
@ -70,91 +82,228 @@ impl Route {
vol: &V, vol: &V,
pos: Vec3<f32>, pos: Vec3<f32>,
vel: Vec3<f32>, vel: Vec3<f32>,
traversal_tolerance: f32, traversal_cfg: TraversalConfig,
) -> Option<(Vec3<f32>, f32)> ) -> Option<(Vec3<f32>, f32)>
where where
V: BaseVol<Vox = Block> + ReadVol, V: BaseVol<Vox = Block> + ReadVol,
{ {
let next0 = self let (next0, next1, next_tgt, be_precise) = loop {
.next(0) let next0 = self
.unwrap_or_else(|| pos.map(|e| e.floor() as i32)); .next(0)
let next1 = self.next(1).unwrap_or(next0); .unwrap_or_else(|| pos.map(|e| e.floor() as i32));
if vol.get(next0).map(|b| b.is_solid()).unwrap_or(false) {
None // Stop using obstructed paths
} else { if vol.get(next0).map(|b| b.is_solid()).unwrap_or(false) {
let next_tgt = next0.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0); return None;
if pos.xy().distance_squared(next_tgt.xy()) < traversal_tolerance.powf(2.0) }
&& next_tgt.z - pos.z < 0.2
&& next_tgt.z - pos.z > -2.2 let diagonals = [
Vec2::new(1, 0),
Vec2::new(1, 1),
Vec2::new(0, 1),
Vec2::new(-1, 1),
Vec2::new(-1, 0),
Vec2::new(-1, -1),
Vec2::new(0, -1),
Vec2::new(1, -1),
];
let next1 = self.next(1).unwrap_or(next0);
let be_precise = diagonals.iter().any(|pos| {
!walkable(vol, next0 + Vec3::new(pos.x, pos.y, 0))
&& !walkable(vol, next0 + Vec3::new(pos.x, pos.y, -1))
&& !walkable(vol, next0 + Vec3::new(pos.x, pos.y, -2))
&& !walkable(vol, next0 + Vec3::new(pos.x, pos.y, 1))
});
let next0_tgt = next0.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0);
let next1_tgt = next1.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0);
let next_tgt = next0_tgt;
// Maybe skip a node (useful with traversing downhill)
let closest_tgt = if next0_tgt.distance_squared(pos) < next1_tgt.distance_squared(pos) {
next0_tgt
} else {
next1_tgt
};
// Determine whether we're close enough to the next to to consider it completed
let dist_sqrd = pos.xy().distance_squared(closest_tgt.xy());
if dist_sqrd < traversal_cfg.node_tolerance.powf(2.0) * if be_precise { 0.25 } else { 1.0 }
&& (pos.z - closest_tgt.z > 1.2 || (pos.z - closest_tgt.z > -0.2 && traversal_cfg.on_ground))
&& (pos.z - closest_tgt.z < 1.2 || (pos.z - closest_tgt.z < 2.9 && vel.z < -0.05))
&& vel.z <= 0.0 && vel.z <= 0.0
// Only consider the node reached if there's nothing solid between us and it
&& vol && vol
.ray(pos + Vec3::unit_z() * 0.5, next_tgt + Vec3::unit_z() * 0.5) .ray(pos + Vec3::unit_z() * 1.5, closest_tgt + Vec3::unit_z() * 1.5)
.until(|block| block.is_solid()) .until(|block| block.is_solid())
.cast() .cast()
.0 .0
> pos.distance(next_tgt) * 0.9 > pos.distance(closest_tgt) * 0.9
&& self.next_idx < self.path.len()
{ {
// Node completed, move on to the next one
self.next_idx += 1; self.next_idx += 1;
} else {
// The next node hasn't been reached yet, use it as a target
break (next0, next1, next_tgt, be_precise);
} }
};
let line = LineSegment2 { fn gradient(line: LineSegment2<f32>) -> f32 {
start: pos.xy(), let r = (line.start.y - line.end.y) / (line.start.x - line.end.x);
end: pos.xy() + vel.xy() * 100.0, if r.is_nan() { 100000.0 } else { r }
};
let align = |block_pos: Vec3<i32>| {
(0..2)
.map(|i| (0..2).map(move |j| Vec2::new(i, j)))
.flatten()
.map(|rpos| block_pos + rpos)
.map(|block_pos| {
let block_posf = block_pos.xy().map(|e| e as f32);
let proj = line.projected_point(block_posf);
let clamped = proj.clamped(
block_pos.xy().map(|e| e as f32),
block_pos.xy().map(|e| e as f32),
);
(proj.distance_squared(clamped), clamped)
})
.min_by_key(|(d2, _)| (d2 * 1000.0) as i32)
.unwrap()
.1
};
let cb = CubicBezier2 {
start: pos.xy(),
ctrl0: pos.xy() + vel.xy().try_normalized().unwrap_or_else(Vec2::zero),
ctrl1: align(next0),
end: align(next1),
};
let tgt2d = cb.evaluate(0.5);
let tgt = Vec3::from(tgt2d) + Vec3::unit_z() * next_tgt.z;
let tgt_dir = (tgt - pos)
.xy()
.try_normalized()
.unwrap_or_else(Vec2::unit_y);
let next_dir = cb
.evaluate_derivative(0.5)
.try_normalized()
.unwrap_or(tgt_dir);
//let vel_dir = vel.xy().try_normalized().unwrap_or(Vec2::zero());
//let avg_dir = (tgt_dir * 0.2 + vel_dir *
// 0.8).try_normalized().unwrap_or(Vec2::zero()); let bearing =
// Vec3::<f32>::from(avg_dir * (tgt - pos).xy().magnitude()) + Vec3::unit_z() *
// (tgt.z - pos.z);
Some((
tgt - pos,
next_dir
.dot(vel.xy().try_normalized().unwrap_or_else(Vec2::zero))
.max(0.0)
* 0.75
+ 0.25,
))
} }
fn intersect(a: LineSegment2<f32>, b: LineSegment2<f32>) -> Option<Vec2<f32>> {
let ma = gradient(a);
let mb = gradient(b);
let ca = a.start.y - ma * a.start.x;
let cb = b.start.y - mb * b.start.x;
if (ma - mb).abs() < 0.0001 || (ca - cb).abs() < 0.0001 {
None
} else {
let x = (cb - ca) / (ma - mb);
let y = ma * x + ca;
Some(Vec2::new(x, y))
}
}
// We don't always want to aim for the centre of block since this can create
// jerky zig-zag movement. This function attempts to find a position
// inside a target block's area that aligned nicely with our velocity.
// This has a twofold benefit:
//
// 1. Entities can move at any angle when
// running on a flat surface
//
// 2. We don't have to search diagonals when
// pathfinding - cartesian positions are enough since this code will
// make the entity move smoothly along them
let corners = [
Vec2::new(0, 0),
Vec2::new(1, 0),
Vec2::new(1, 1),
Vec2::new(0, 1),
Vec2::new(0, 0), // Repeated start
];
let vel_line = LineSegment2 {
start: pos.xy(),
end: pos.xy() + vel.xy() * 100.0,
};
let align = |block_pos: Vec3<i32>, precision: f32| {
let lerp_block =
|x, precision| Lerp::lerp(x, block_pos.xy().map(|e| e as f32), precision);
(0..4)
.filter_map(|i| {
let edge_line = LineSegment2 {
start: lerp_block(
(block_pos.xy() + corners[i]).map(|e| e as f32),
precision,
),
end: lerp_block(
(block_pos.xy() + corners[i + 1]).map(|e| e as f32),
precision,
),
};
intersect(vel_line, edge_line).filter(|intersect| {
intersect
.clamped(
block_pos.xy().map(|e| e as f32),
block_pos.xy().map(|e| e as f32 + 1.0),
)
.distance_squared(*intersect)
< 0.001
})
})
.min_by_key(|intersect: &Vec2<f32>| {
(intersect.distance_squared(vel_line.end) * 1000.0) as i32
})
.unwrap_or_else(|| {
(0..2)
.map(|i| (0..2).map(move |j| Vec2::new(i, j)))
.flatten()
.map(|rpos| block_pos + rpos)
.map(|block_pos| {
let block_posf = block_pos.xy().map(|e| e as f32);
let proj = vel_line.projected_point(block_posf);
let clamped = lerp_block(
proj.clamped(
block_pos.xy().map(|e| e as f32),
block_pos.xy().map(|e| e as f32),
),
precision,
);
(proj.distance_squared(clamped), clamped)
})
.min_by_key(|(d2, _)| (d2 * 1000.0) as i32)
.unwrap()
.1
})
};
let bez = CubicBezier2 {
start: pos.xy(),
ctrl0: pos.xy() + vel.xy().try_normalized().unwrap_or_default() * 1.0,
ctrl1: align(next0, 1.0),
end: align(next1, 1.0),
};
// Use a cubic spline of the next few targets to come up with a sensible target
// position. We want to use a position that gives smooth movement but is
// also accurate enough to avoid the agent getting stuck under ledges or
// falling off walls.
let next_dir = bez
.evaluate_derivative(0.85)
.try_normalized()
.unwrap_or_default();
let straight_factor = next_dir
.dot(vel.xy().try_normalized().unwrap_or(next_dir))
.max(0.0)
.powf(2.0);
let bez = CubicBezier2 {
start: pos.xy(),
ctrl0: pos.xy() + vel.xy().try_normalized().unwrap_or_default() * 1.0,
ctrl1: align(
next0,
(1.0 - if (next0.z as f32 - pos.z).abs() < 0.25 && !be_precise {
straight_factor
} else {
0.0
})
.max(0.1),
),
end: align(next1, 1.0),
};
let tgt2d = bez.evaluate(if (next0.z as f32 - pos.z).abs() < 0.25 {
0.25
} else {
0.5
});
let tgt = if be_precise {
next_tgt
} else {
Vec3::from(tgt2d) + Vec3::unit_z() * next_tgt.z
};
Some((
tgt - pos,
// Control the entity's speed to hopefully stop us falling off walls on sharp corners.
// This code is very imperfect: it does its best but it can still fail for particularly
// fast entities.
straight_factor * traversal_cfg.slow_factor + (1.0 - traversal_cfg.slow_factor),
))
.filter(|(bearing, _)| bearing.z < 2.1)
} }
} }
@ -178,41 +327,64 @@ impl Chaser {
pos: Vec3<f32>, pos: Vec3<f32>,
vel: Vec3<f32>, vel: Vec3<f32>,
tgt: Vec3<f32>, tgt: Vec3<f32>,
min_dist: f32, traversal_cfg: TraversalConfig,
traversal_tolerance: f32,
) -> Option<(Vec3<f32>, f32)> ) -> Option<(Vec3<f32>, f32)>
where where
V: BaseVol<Vox = Block> + ReadVol, V: BaseVol<Vox = Block> + ReadVol,
{ {
let pos_to_tgt = pos.distance(tgt); let pos_to_tgt = pos.distance(tgt);
if ((pos - tgt) * Vec3::new(1.0, 1.0, 2.0)).magnitude_squared() < min_dist.powf(2.0) { // If we're already close to the target then there's nothing to do
if ((pos - tgt) * Vec3::new(1.0, 1.0, 2.0)).magnitude_squared()
< traversal_cfg.min_tgt_dist.powf(2.0)
{
self.route = None;
return None; return None;
} }
let bearing = if let Some(end) = self.route.as_ref().and_then(|r| r.path().end().copied()) { let bearing = if let Some(end) = self.route.as_ref().and_then(|r| r.path().end().copied()) {
let end_to_tgt = end.map(|e| e as f32).distance(tgt); let end_to_tgt = end.map(|e| e as f32).distance(tgt);
if end_to_tgt > pos_to_tgt * 0.3 + 5.0 || thread_rng().gen::<f32>() < 0.005 { // If the target has moved significantly since the path was generated then it's
// time to search for a new path. Also, do this randomly from time
// to time to avoid any edge cases that cause us to get stuck. In
// theory this shouldn't happen, but in practice the world is full
// of unpredictable obstacles that are more than willing to mess up
// our day. TODO: Come up with a better heuristic for this
if end_to_tgt > pos_to_tgt * 0.3 + 5.0
/* || thread_rng().gen::<f32>() < 0.005 */
{
None None
} else { } else {
self.route self.route
.as_mut() .as_mut()
.and_then(|r| r.traverse(vol, pos, vel, traversal_tolerance)) .and_then(|r| r.traverse(vol, pos, vel, traversal_cfg))
// In theory this filter isn't needed, but in practice agents often try to take
// stale paths that start elsewhere. This code makes sure that we're only using
// paths that start near us, avoiding the agent doubling back to chase a stale
// path.
.filter(|(bearing, _)| bearing.xy()
.magnitude_squared() < 1.75f32.powf(2.0)
&& thread_rng().gen::<f32>() > 0.025)
} }
} else { } else {
None None
}; };
// TODO: What happens when we get stuck? if let Some((bearing, speed)) = bearing {
if let Some(bearing) = bearing { Some((bearing, speed))
Some(bearing)
} else { } else {
// Only search for a path if the target has moved from their last position. We
// don't want to be thrashing the pathfinding code for targets that
// we're unable to access!
if self if self
.last_search_tgt .last_search_tgt
.map(|last_tgt| last_tgt.distance(tgt) > pos_to_tgt * 0.15 + 5.0) .map(|last_tgt| last_tgt.distance(tgt) > pos_to_tgt * 0.15 + 5.0)
.unwrap_or(true) .unwrap_or(true)
|| self.astar.is_some()
|| self.route.is_none()
{ {
let (start_pos, path) = find_path(&mut self.astar, vol, pos, tgt); let (start_pos, path) = find_path(&mut self.astar, vol, pos, tgt);
// Don't use a stale path
if start_pos.distance_squared(pos) < 4.0f32.powf(2.0) { if start_pos.distance_squared(pos) < 4.0f32.powf(2.0) {
self.route = path.map(Route::from); self.route = path.map(Route::from);
} else { } else {
@ -225,6 +397,24 @@ impl Chaser {
} }
} }
#[allow(clippy::float_cmp)] // TODO: Pending review in #587
fn walkable<V>(vol: &V, pos: Vec3<i32>) -> bool
where
V: BaseVol<Vox = Block> + ReadVol,
{
vol.get(pos - Vec3::new(0, 0, 1))
.map(|b| b.is_solid() && b.get_height() == 1.0)
.unwrap_or(false)
&& vol
.get(pos + Vec3::new(0, 0, 0))
.map(|b| !b.is_solid())
.unwrap_or(true)
&& vol
.get(pos + Vec3::new(0, 0, 1))
.map(|b| !b.is_solid())
.unwrap_or(true)
}
#[allow(clippy::float_cmp)] // TODO: Pending review in #587 #[allow(clippy::float_cmp)] // TODO: Pending review in #587
fn find_path<V>( fn find_path<V>(
astar: &mut Option<Astar<Vec3<i32>, DefaultHashBuilder>>, astar: &mut Option<Astar<Vec3<i32>, DefaultHashBuilder>>,
@ -235,19 +425,7 @@ fn find_path<V>(
where where
V: BaseVol<Vox = Block> + ReadVol, V: BaseVol<Vox = Block> + ReadVol,
{ {
let is_walkable = |pos: &Vec3<i32>| { let is_walkable = |pos: &Vec3<i32>| walkable(vol, *pos);
vol.get(*pos - Vec3::new(0, 0, 1))
.map(|b| b.is_solid() && b.get_height() == 1.0)
.unwrap_or(false)
&& vol
.get(*pos + Vec3::new(0, 0, 0))
.map(|b| !b.is_solid())
.unwrap_or(true)
&& vol
.get(*pos + Vec3::new(0, 0, 1))
.map(|b| !b.is_solid())
.unwrap_or(true)
};
let get_walkable_z = |pos| { let get_walkable_z = |pos| {
let mut z_incr = 0; let mut z_incr = 0;
for _ in 0..32 { for _ in 0..32 {
@ -291,23 +469,23 @@ where
Vec3::new(0, 0, -1), // Downwards Vec3::new(0, 0, -1), // Downwards
]; ];
let walkable = [ // let walkable = [
is_walkable(&(pos + Vec3::new(1, 0, 0))), // is_walkable(&(pos + Vec3::new(1, 0, 0))),
is_walkable(&(pos + Vec3::new(-1, 0, 0))), // is_walkable(&(pos + Vec3::new(-1, 0, 0))),
is_walkable(&(pos + Vec3::new(0, 1, 0))), // is_walkable(&(pos + Vec3::new(0, 1, 0))),
is_walkable(&(pos + Vec3::new(0, -1, 0))), // is_walkable(&(pos + Vec3::new(0, -1, 0))),
]; // ];
const DIAGONALS: [(Vec3<i32>, [usize; 2]); 8] = [ // const DIAGONALS: [(Vec3<i32>, [usize; 2]); 8] = [
(Vec3::new(1, 1, 0), [0, 2]), // (Vec3::new(1, 1, 0), [0, 2]),
(Vec3::new(-1, 1, 0), [1, 2]), // (Vec3::new(-1, 1, 0), [1, 2]),
(Vec3::new(1, -1, 0), [0, 3]), // (Vec3::new(1, -1, 0), [0, 3]),
(Vec3::new(-1, -1, 0), [1, 3]), // (Vec3::new(-1, -1, 0), [1, 3]),
(Vec3::new(1, 1, 1), [0, 2]), // (Vec3::new(1, 1, 1), [0, 2]),
(Vec3::new(-1, 1, 1), [1, 2]), // (Vec3::new(-1, 1, 1), [1, 2]),
(Vec3::new(1, -1, 1), [0, 3]), // (Vec3::new(1, -1, 1), [0, 3]),
(Vec3::new(-1, -1, 1), [1, 3]), // (Vec3::new(-1, -1, 1), [1, 3]),
]; // ];
DIRS.iter() DIRS.iter()
.map(move |dir| (pos, dir)) .map(move |dir| (pos, dir))
@ -331,24 +509,26 @@ where
.unwrap_or(true))) .unwrap_or(true)))
}) })
.map(move |(pos, dir)| pos + dir) .map(move |(pos, dir)| pos + dir)
.chain( // .chain(
DIAGONALS // DIAGONALS
.iter() // .iter()
.filter(move |(dir, [a, b])| { // .filter(move |(dir, [a, b])| {
is_walkable(&(pos + *dir)) && walkable[*a] && walkable[*b] // is_walkable(&(pos + *dir)) && walkable[*a] &&
}) // walkable[*b] })
.map(move |(dir, _)| pos + *dir), // .map(move |(dir, _)| pos + *dir),
) // )
};
let crow_line = LineSegment2 {
start: startf.xy(),
end: endf.xy(),
}; };
let transition = |a: &Vec3<i32>, b: &Vec3<i32>| { let transition = |a: &Vec3<i32>, b: &Vec3<i32>| {
let crow_line = LineSegment2 {
start: startf.xy(),
end: endf.xy(),
};
// Modify the heuristic a little in order to prefer paths that take us on a
// straight line toward our target. This means we get smoother movement.
1.0 + crow_line.distance_to_point(b.xy().map(|e| e as f32)) * 0.025 1.0 + crow_line.distance_to_point(b.xy().map(|e| e as f32)) * 0.025
+ (b.z - a.z - 1).max(0) as f32 * 3.0 + (b.z - a.z - 1).max(0) as f32 * 10.0
}; };
let satisfied = |pos: &Vec3<i32>| pos == &end; let satisfied = |pos: &Vec3<i32>| pos == &end;

View File

@ -16,6 +16,7 @@ impl Spiral2d {
impl Iterator for Spiral2d { impl Iterator for Spiral2d {
type Item = Vec2<i32>; type Item = Vec2<i32>;
#[allow(clippy::erasing_op)]
fn next(&mut self) -> Option<Self::Item> { fn next(&mut self) -> Option<Self::Item> {
let layer_size = (self.layer * 8 + 4 * self.layer.min(1) - 4).max(1); let layer_size = (self.layer * 8 + 4 * self.layer.min(1) - 4).max(1);
if self.i >= layer_size { if self.i >= layer_size {

View File

@ -31,9 +31,9 @@ impl Body {
pub fn base_accel(&self) -> f32 { pub fn base_accel(&self) -> f32 {
match self { match self {
Body::Humanoid(_) => 100.0, Body::Humanoid(_) => 100.0,
Body::QuadrupedSmall(_) => 80.0, Body::QuadrupedSmall(_) => 85.0,
Body::QuadrupedMedium(_) => 180.0, Body::QuadrupedMedium(_) => 180.0,
Body::BirdMedium(_) => 70.0, Body::BirdMedium(_) => 80.0,
Body::FishMedium(_) => 50.0, Body::FishMedium(_) => 50.0,
Body::Dragon(_) => 250.0, Body::Dragon(_) => 250.0,
Body::BirdSmall(_) => 75.0, Body::BirdSmall(_) => 75.0,
@ -41,7 +41,7 @@ impl Body {
Body::BipedLarge(_) => 120.0, Body::BipedLarge(_) => 120.0,
Body::Object(_) => 40.0, Body::Object(_) => 40.0,
Body::Golem(_) => 130.0, Body::Golem(_) => 130.0,
Body::Critter(_) => 65.0, Body::Critter(_) => 85.0,
Body::QuadrupedLow(_) => 120.0, Body::QuadrupedLow(_) => 120.0,
} }
} }

View File

@ -3,11 +3,11 @@ use crate::{
self, self,
agent::Activity, agent::Activity,
item::{tool::ToolKind, ItemKind}, item::{tool::ToolKind, ItemKind},
Agent, Alignment, CharacterState, ChatMsg, ControlAction, Controller, Loadout, MountState, Agent, Alignment, Body, CharacterState, ChatMsg, ControlAction, Controller, Loadout,
Ori, Pos, Scale, Stats, Vel, MountState, Ori, PhysicsState, Pos, Scale, Stats, Vel,
}, },
event::{EventBus, ServerEvent}, event::{EventBus, ServerEvent},
path::Chaser, path::{Chaser, TraversalConfig},
state::{DeltaTime, Time}, state::{DeltaTime, Time},
sync::{Uid, UidAllocator}, sync::{Uid, UidAllocator},
terrain::TerrainGrid, terrain::TerrainGrid,
@ -38,9 +38,11 @@ impl<'a> System<'a> for Sys {
ReadStorage<'a, Stats>, ReadStorage<'a, Stats>,
ReadStorage<'a, Loadout>, ReadStorage<'a, Loadout>,
ReadStorage<'a, CharacterState>, ReadStorage<'a, CharacterState>,
ReadStorage<'a, PhysicsState>,
ReadStorage<'a, Uid>, ReadStorage<'a, Uid>,
ReadExpect<'a, TerrainGrid>, ReadExpect<'a, TerrainGrid>,
ReadStorage<'a, Alignment>, ReadStorage<'a, Alignment>,
ReadStorage<'a, Body>,
WriteStorage<'a, Agent>, WriteStorage<'a, Agent>,
WriteStorage<'a, Controller>, WriteStorage<'a, Controller>,
ReadStorage<'a, MountState>, ReadStorage<'a, MountState>,
@ -62,9 +64,11 @@ impl<'a> System<'a> for Sys {
stats, stats,
loadouts, loadouts,
character_states, character_states,
physics_states,
uids, uids,
terrain, terrain,
alignments, alignments,
bodies,
mut agents, mut agents,
mut controllers, mut controllers,
mount_states, mount_states,
@ -78,6 +82,8 @@ impl<'a> System<'a> for Sys {
alignment, alignment,
loadout, loadout,
character_state, character_state,
physics_state,
body,
uid, uid,
agent, agent,
controller, controller,
@ -90,6 +96,8 @@ impl<'a> System<'a> for Sys {
alignments.maybe(), alignments.maybe(),
&loadouts, &loadouts,
&character_states, &character_states,
&physics_states,
bodies.maybe(),
&uids, &uids,
&mut agents, &mut agents,
&mut controllers, &mut controllers,
@ -126,7 +134,8 @@ impl<'a> System<'a> for Sys {
// and so can afford to be less precise when trying to move around // and so can afford to be less precise when trying to move around
// the world (especially since they would otherwise get stuck on // the world (especially since they would otherwise get stuck on
// obstacles that smaller entities would not). // obstacles that smaller entities would not).
let traversal_tolerance = scale + vel.0.magnitude() * 0.3; let node_tolerance = scale + vel.0.xy().magnitude() * 0.2;
let slow_factor = body.map(|b| b.base_accel() / 250.0).unwrap_or(0.0).min(1.0);
let mut do_idle = false; let mut do_idle = false;
let mut choose_target = false; let mut choose_target = false;
@ -199,8 +208,12 @@ impl<'a> System<'a> for Sys {
pos.0, pos.0,
vel.0, vel.0,
tgt_pos.0, tgt_pos.0,
AVG_FOLLOW_DIST, TraversalConfig {
traversal_tolerance, node_tolerance,
slow_factor,
on_ground: physics_state.on_ground,
min_tgt_dist: AVG_FOLLOW_DIST,
},
) { ) {
inputs.move_dir = inputs.move_dir =
bearing.xy().try_normalized().unwrap_or(Vec2::zero()) bearing.xy().try_normalized().unwrap_or(Vec2::zero())
@ -315,8 +328,12 @@ impl<'a> System<'a> for Sys {
pos.0, pos.0,
vel.0, vel.0,
tgt_pos.0, tgt_pos.0,
1.25, TraversalConfig {
traversal_tolerance, node_tolerance,
slow_factor,
on_ground: physics_state.on_ground,
min_tgt_dist: 1.25,
},
) { ) {
inputs.move_dir = Vec2::from(bearing) inputs.move_dir = Vec2::from(bearing)
.try_normalized() .try_normalized()

View File

@ -146,20 +146,20 @@ impl Sys {
}, },
ClientMsg::SetViewDistance(view_distance) => { ClientMsg::SetViewDistance(view_distance) => {
if let ClientState::Character { .. } = client.client_state { if let ClientState::Character { .. } = client.client_state {
players.get_mut(entity).map(|player| {
player.view_distance = Some(
settings
.max_view_distance
.map(|max| view_distance.min(max))
.unwrap_or(view_distance),
)
});
if settings if settings
.max_view_distance .max_view_distance
.map(|max| view_distance <= max) .map(|max| view_distance > max)
.unwrap_or(true) .unwrap_or(false)
{ {
players.get_mut(entity).map(|player| {
player.view_distance = Some(
settings
.max_view_distance
.map(|max| view_distance.min(max))
.unwrap_or(view_distance),
)
});
} else {
client.notify(ServerMsg::SetViewDistance( client.notify(ServerMsg::SetViewDistance(
settings.max_view_distance.unwrap_or(0), settings.max_view_distance.unwrap_or(0),
)); ));

View File

@ -8,7 +8,7 @@ use common::{comp, terrain::TerrainChunkSize, vol::RectVolSize};
use conrod_core::{ use conrod_core::{
color, position, color, position,
widget::{self, Button, Image, Rectangle, Text}, widget::{self, Button, Image, Rectangle, Text},
widget_ids, Colorable, Positionable, Sizeable, Widget, WidgetCommon, widget_ids, Color, Colorable, Positionable, Sizeable, Widget, WidgetCommon,
}; };
use specs::WorldExt; use specs::WorldExt;
use vek::*; use vek::*;
@ -23,7 +23,11 @@ widget_ids! {
mmap_plus, mmap_plus,
mmap_minus, mmap_minus,
grid, grid,
indicator indicator,
mmap_north,
mmap_east,
mmap_south,
mmap_west,
} }
} }
@ -39,6 +43,7 @@ pub struct MiniMap<'a> {
fonts: &'a ConrodVoxygenFonts, fonts: &'a ConrodVoxygenFonts,
#[conrod(common_builder)] #[conrod(common_builder)]
common: widget::CommonBuilder, common: widget::CommonBuilder,
ori: Vec3<f32>,
} }
impl<'a> MiniMap<'a> { impl<'a> MiniMap<'a> {
@ -49,6 +54,7 @@ impl<'a> MiniMap<'a> {
rot_imgs: &'a ImgsRot, rot_imgs: &'a ImgsRot,
world_map: &'a (img_ids::Rotations, Vec2<u32>), world_map: &'a (img_ids::Rotations, Vec2<u32>),
fonts: &'a ConrodVoxygenFonts, fonts: &'a ConrodVoxygenFonts,
ori: Vec3<f32>,
) -> Self { ) -> Self {
Self { Self {
show, show,
@ -58,6 +64,7 @@ impl<'a> MiniMap<'a> {
world_map, world_map,
fonts, fonts,
common: widget::CommonBuilder::default(), common: widget::CommonBuilder::default(),
ori,
} }
} }
} }
@ -195,10 +202,12 @@ impl<'a> Widget for MiniMap<'a> {
[w_src, h_src], [w_src, h_src],
); );
let map_size = Vec2::new(170.0, 170.0);
// Map Image // Map Image
Image::new(world_map.source_north) Image::new(world_map.source_north)
.middle_of(state.ids.mmap_frame_bg) .middle_of(state.ids.mmap_frame_bg)
.w_h(170.0 * SCALE, 170.0 * SCALE) .w_h(map_size.x * SCALE, map_size.y * SCALE)
.parent(state.ids.mmap_frame_bg) .parent(state.ids.mmap_frame_bg)
.source_rectangle(rect_src) .source_rectangle(rect_src)
.set(state.ids.grid, ui); .set(state.ids.grid, ui);
@ -212,6 +221,37 @@ impl<'a> Widget for MiniMap<'a> {
.floating(true) .floating(true)
.parent(ui.window) .parent(ui.window)
.set(state.ids.indicator, ui); .set(state.ids.indicator, ui);
// Compass directions
let dirs = [
(Vec2::new(0.0, 1.0), state.ids.mmap_north, "N", true),
(Vec2::new(1.0, 0.0), state.ids.mmap_east, "E", false),
(Vec2::new(0.0, -1.0), state.ids.mmap_south, "S", false),
(Vec2::new(-1.0, 0.0), state.ids.mmap_west, "W", false),
];
for (dir, id, name, bold) in dirs.iter() {
let cardinal_dir = Vec2::unit_x().rotated_z(self.ori.x as f64) * dir.x
+ Vec2::unit_y().rotated_z(self.ori.x as f64) * dir.y;
let clamped = (cardinal_dir * 3.0)
/ (cardinal_dir * 3.0).map(|e| e.abs()).reduce_partial_max();
let pos = clamped * (map_size * 0.73 - 10.0);
Text::new(name)
.x_y_position_relative_to(
state.ids.grid,
position::Relative::Scalar(pos.x),
position::Relative::Scalar(pos.y),
)
.font_size(self.fonts.cyri.scale(18))
.font_id(self.fonts.cyri.conrod_id)
.color(if *bold {
Color::Rgba(0.75, 0.0, 0.0, 1.0)
} else {
TEXT_COLOR
})
.floating(true)
.parent(ui.window)
.set(*id, ui);
}
} else { } else {
Image::new(self.imgs.mmap_frame_closed) Image::new(self.imgs.mmap_frame_closed)
.w_h(174.0 * SCALE, 18.0 * SCALE) .w_h(174.0 * SCALE, 18.0 * SCALE)

View File

@ -600,6 +600,7 @@ impl Hud {
debug_info: DebugInfo, debug_info: DebugInfo,
dt: Duration, dt: Duration,
info: HudInfo, info: HudInfo,
camera: &Camera,
) -> Vec<Event> { ) -> Vec<Event> {
let mut events = std::mem::replace(&mut self.events, Vec::new()); let mut events = std::mem::replace(&mut self.events, Vec::new());
let (ref mut ui_widgets, ref mut tooltip_manager) = self.ui.set_widgets(); let (ref mut ui_widgets, ref mut tooltip_manager) = self.ui.set_widgets();
@ -1499,6 +1500,7 @@ impl Hud {
&self.rot_imgs, &self.rot_imgs,
&self.world_map, &self.world_map,
&self.fonts, &self.fonts,
camera.get_orientation(),
) )
.set(self.ids.minimap, ui_widgets) .set(self.ids.minimap, ui_widgets)
{ {
@ -2251,7 +2253,7 @@ impl Hud {
if let Some(maybe_id) = self.to_focus.take() { if let Some(maybe_id) = self.to_focus.take() {
self.ui.focus_widget(maybe_id); self.ui.focus_widget(maybe_id);
} }
let events = self.update_layout(client, global_state, debug_info, dt, info); let events = self.update_layout(client, global_state, debug_info, dt, info, camera);
let camera::Dependents { let camera::Dependents {
view_mat, proj_mat, .. view_mat, proj_mat, ..
} = camera.dependents(); } = camera.dependents();