Move compression helpers to common_net::msg::compression and experiment with more image formats at more site kinds.

This commit is contained in:
Avi Weinstock 2021-04-22 01:00:57 -04:00
parent b855c2bf97
commit 64ab1c2151
5 changed files with 720 additions and 442 deletions

1
Cargo.lock generated
View File

@ -5718,6 +5718,7 @@ dependencies = [
"bincode",
"flate2",
"hashbrown",
"image",
"serde",
"specs",
"specs-idvs",

View File

@ -16,6 +16,7 @@ common = {package = "veloren-common", path = "../../common"}
bincode = "1.3.3"
flate2 = "1.0.20"
image = { version = "0.23.12", default-features = false, features = ["png", "jpeg"] }
sum_type = "0.2.0"
vek = { version = "=0.14.1", features = ["serde"] }
tracing = { version = "0.1", default-features = false }

View File

@ -0,0 +1,407 @@
use common::{
terrain::{chonk::Chonk, Block, BlockKind, SpriteKind},
vol::{BaseVol, IntoVolIterator, ReadVol, RectVolSize, SizedVol, WriteVol},
volumes::vol_grid_2d::VolGrid2d,
};
use hashbrown::HashMap;
use serde::{Deserialize, Serialize};
use std::{
fmt::Debug,
io::{Read, Write},
marker::PhantomData,
};
use tracing::trace;
use vek::*;
/// Wrapper for compressed, serialized data (for stuff that doesn't use the
/// default lz4 compression)
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct CompressedData<T> {
pub data: Vec<u8>,
compressed: bool,
_phantom: PhantomData<T>,
}
impl<T: Serialize> CompressedData<T> {
pub fn compress(t: &T, level: u32) -> Self {
use flate2::{write::DeflateEncoder, Compression};
let uncompressed = bincode::serialize(t)
.expect("bincode serialization can only fail if a byte limit is set");
if uncompressed.len() >= 32 {
const EXPECT_MSG: &str =
"compression only fails for fallible Read/Write impls (which Vec<u8> is not)";
let mut encoder = DeflateEncoder::new(Vec::new(), Compression::new(level));
encoder.write_all(&*uncompressed).expect(EXPECT_MSG);
let compressed = encoder.finish().expect(EXPECT_MSG);
trace!(
"compressed {}, uncompressed {}, ratio {}",
compressed.len(),
uncompressed.len(),
compressed.len() as f32 / uncompressed.len() as f32
);
CompressedData {
data: compressed,
compressed: true,
_phantom: PhantomData,
}
} else {
CompressedData {
data: uncompressed,
compressed: false,
_phantom: PhantomData,
}
}
}
}
impl<T: for<'a> Deserialize<'a>> CompressedData<T> {
pub fn decompress(&self) -> Option<T> {
if self.compressed {
let mut uncompressed = Vec::new();
flate2::read::DeflateDecoder::new(&*self.data)
.read_to_end(&mut uncompressed)
.ok()?;
bincode::deserialize(&*uncompressed).ok()
} else {
bincode::deserialize(&*self.data).ok()
}
}
}
/// Formula for packing voxel data into a 2d array
pub trait PackingFormula {
fn dimensions(&self, dims: Vec3<u32>) -> (u32, u32);
fn index(&self, dims: Vec3<u32>, x: u32, y: u32, z: u32) -> (u32, u32);
}
/// A tall, thin image, with no wasted space, but which most image viewers don't
/// handle well. Z levels increase from top to bottom, xy-slices are stacked
/// vertically.
pub struct TallPacking {
/// Making the borders go back and forth based on z-parity preserves spatial
/// locality better, but is more confusing to look at
pub flip_y: bool,
}
impl PackingFormula for TallPacking {
fn dimensions(&self, dims: Vec3<u32>) -> (u32, u32) { (dims.x, dims.y * dims.z) }
fn index(&self, dims: Vec3<u32>, x: u32, y: u32, z: u32) -> (u32, u32) {
let i = x;
let j0 = if self.flip_y {
if z % 2 == 0 { y } else { dims.y - y - 1 }
} else {
y
};
let j = z * dims.y + j0;
(i, j)
}
}
/// A grid of the z levels, left to right, top to bottom, like English prose.
/// Convenient for visualizing terrain, but wastes space if the number of z
/// levels isn't a perfect square.
pub struct GridLtrPacking;
impl PackingFormula for GridLtrPacking {
fn dimensions(&self, dims: Vec3<u32>) -> (u32, u32) {
let rootz = (dims.z as f64).sqrt().ceil() as u32;
(dims.x * rootz, dims.y * rootz)
}
fn index(&self, dims: Vec3<u32>, x: u32, y: u32, z: u32) -> (u32, u32) {
let rootz = (dims.z as f64).sqrt().ceil() as u32;
let i = x + (z % rootz) * dims.x;
let j = y + (z / rootz) * dims.y;
(i, j)
}
}
pub trait VoxelImageEncoding {
type Workspace;
type Output;
fn create(width: u32, height: u32) -> Self::Workspace;
fn put_solid(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>);
fn put_sprite(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, sprite: SpriteKind, ori: Option<u8>);
fn finish(ws: &Self::Workspace) -> Self::Output;
}
pub struct PngEncoding;
impl VoxelImageEncoding for PngEncoding {
type Output = Vec<u8>;
type Workspace = image::ImageBuffer<image::Rgba<u8>, Vec<u8>>;
fn create(width: u32, height: u32) -> Self::Workspace {
use image::{ImageBuffer, Rgba};
ImageBuffer::<Rgba<u8>, Vec<u8>>::new(width, height)
}
fn put_solid(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.put_pixel(x, y, image::Rgba([rgb.r, rgb.g, rgb.b, 255 - kind as u8]));
}
fn put_sprite(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, sprite: SpriteKind, ori: Option<u8>) {
ws.put_pixel(x, y, image::Rgba([kind as u8, sprite as u8, ori.unwrap_or(0), 255]));
}
fn finish(ws: &Self::Workspace) -> Self::Output {
use image::codecs::png::{CompressionType, FilterType};
let mut buf = Vec::new();
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Fast,
FilterType::Up,
);
png.encode(
&*ws.as_raw(),
ws.width(),
ws.height(),
image::ColorType::Rgba8,
)
.unwrap();
buf
}
}
pub struct JpegEncoding;
impl VoxelImageEncoding for JpegEncoding {
type Output = Vec<u8>;
type Workspace = image::ImageBuffer<image::Rgba<u8>, Vec<u8>>;
fn create(width: u32, height: u32) -> Self::Workspace {
use image::{ImageBuffer, Rgba};
ImageBuffer::<Rgba<u8>, Vec<u8>>::new(width, height)
}
fn put_solid(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.put_pixel(x, y, image::Rgba([rgb.r, rgb.g, rgb.b, 255 - kind as u8]));
}
fn put_sprite(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, sprite: SpriteKind, _: Option<u8>) {
ws.put_pixel(x, y, image::Rgba([kind as u8, sprite as u8, 255, 255]));
}
fn finish(ws: &Self::Workspace) -> Self::Output {
let mut buf = Vec::new();
let mut jpeg = image::codecs::jpeg::JpegEncoder::new_with_quality(&mut buf, 1);
jpeg.encode_image(ws).unwrap();
buf
}
}
pub struct MixedEncoding;
impl VoxelImageEncoding for MixedEncoding {
type Output = (Vec<u8>, [usize; 3]);
type Workspace = (
image::ImageBuffer<image::Luma<u8>, Vec<u8>>,
image::ImageBuffer<image::Luma<u8>, Vec<u8>>,
image::ImageBuffer<image::Luma<u8>, Vec<u8>>,
image::ImageBuffer<image::Rgb<u8>, Vec<u8>>,
);
fn create(width: u32, height: u32) -> Self::Workspace {
use image::ImageBuffer;
(
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
)
}
fn put_solid(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Luma([0]));
ws.2.put_pixel(x, y, image::Luma([0]));
ws.3.put_pixel(x, y, image::Rgb([rgb.r, rgb.g, rgb.b]));
}
fn put_sprite(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, sprite: SpriteKind, ori: Option<u8>) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Luma([sprite as u8]));
ws.2.put_pixel(x, y, image::Luma([ori.unwrap_or(0)]));
ws.3.put_pixel(x, y, image::Rgb([0; 3]));
}
fn finish(ws: &Self::Workspace) -> Self::Output {
let mut buf = Vec::new();
use image::codecs::png::{CompressionType, FilterType};
let mut indices = [0; 3];
let mut f = |x: &image::ImageBuffer<_, Vec<u8>>, i| {
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Fast,
FilterType::Up,
);
png.encode(
&*x.as_raw(),
x.width(),
x.height(),
image::ColorType::L8,
)
.unwrap();
indices[i] = buf.len();
};
f(&ws.0, 0);
f(&ws.1, 1);
f(&ws.2, 2);
let mut jpeg = image::codecs::jpeg::JpegEncoder::new_with_quality(&mut buf, 1);
jpeg.encode_image(&ws.3).unwrap();
(buf, indices)
}
}
pub fn image_terrain_chonk<S: RectVolSize, M: Clone, P: PackingFormula, VIE: VoxelImageEncoding>(
vie: VIE,
packing: P,
chonk: &Chonk<Block, S, M>,
) -> VIE::Output {
image_terrain(
vie,
packing,
chonk,
Vec3::new(0, 0, chonk.get_min_z() as u32),
Vec3::new(S::RECT_SIZE.x, S::RECT_SIZE.y, chonk.get_max_z() as u32),
)
}
pub fn image_terrain_volgrid<
S: RectVolSize + Debug,
M: Clone + Debug,
P: PackingFormula,
VIE: VoxelImageEncoding,
>(
vie: VIE,
packing: P,
volgrid: &VolGrid2d<Chonk<Block, S, M>>,
) -> VIE::Output {
let mut lo = Vec3::broadcast(i32::MAX);
let mut hi = Vec3::broadcast(i32::MIN);
for (pos, chonk) in volgrid.iter() {
lo.x = lo.x.min(pos.x * S::RECT_SIZE.x as i32);
lo.y = lo.y.min(pos.y * S::RECT_SIZE.y as i32);
lo.z = lo.z.min(chonk.get_min_z());
hi.x = hi.x.max((pos.x + 1) * S::RECT_SIZE.x as i32);
hi.y = hi.y.max((pos.y + 1) * S::RECT_SIZE.y as i32);
hi.z = hi.z.max(chonk.get_max_z());
}
image_terrain(vie, packing, volgrid, lo.as_(), hi.as_())
}
pub fn image_terrain<
V: BaseVol<Vox = Block> + ReadVol,
P: PackingFormula,
VIE: VoxelImageEncoding,
>(
_: VIE,
packing: P,
vol: &V,
lo: Vec3<u32>,
hi: Vec3<u32>,
) -> VIE::Output {
let dims = hi - lo;
let (width, height) = packing.dimensions(dims);
let mut image = VIE::create(width, height);
for z in 0..dims.z {
for y in 0..dims.y {
for x in 0..dims.x {
let (i, j) = packing.index(dims, x, y, z);
let block = *vol
.get(Vec3::new(x + lo.x, y + lo.y, z + lo.z).as_())
.unwrap_or(&Block::empty());
match (block.get_color(), block.get_sprite()) {
(Some(rgb), None) => {
VIE::put_solid(&mut image, i, j, *block, rgb);
},
(None, Some(sprite)) => {
VIE::put_sprite(&mut image, i, j, *block, sprite, block.get_ori());
},
_ => panic!(
"attr being used for color vs sprite is mutually exclusive (and that's \
required for this translation to be lossless), but there's no way to \
guarantee that at the type level with Block's public API"
),
}
}
}
}
VIE::finish(&image)
}
pub struct MixedEncodingDenseSprites;
impl VoxelImageEncoding for MixedEncodingDenseSprites {
type Output = (Vec<u8>, [usize; 3]);
type Workspace = (
image::ImageBuffer<image::Luma<u8>, Vec<u8>>,
Vec<u8>,
Vec<u8>,
image::ImageBuffer<image::Rgb<u8>, Vec<u8>>,
);
fn create(width: u32, height: u32) -> Self::Workspace {
use image::ImageBuffer;
(
ImageBuffer::new(width, height),
Vec::new(),
Vec::new(),
ImageBuffer::new(width, height),
)
}
fn put_solid(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.3.put_pixel(x, y, image::Rgb([rgb.r, rgb.g, rgb.b]));
}
fn put_sprite(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, sprite: SpriteKind, ori: Option<u8>) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.push(sprite as u8);
ws.2.push(ori.unwrap_or(0));
ws.3.put_pixel(x, y, image::Rgb([0; 3]));
}
fn finish(ws: &Self::Workspace) -> Self::Output {
let mut buf = Vec::new();
use image::codecs::png::{CompressionType, FilterType};
let mut indices = [0; 3];
let mut f = |x: &image::ImageBuffer<_, Vec<u8>>, i| {
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Fast,
FilterType::Up,
);
png.encode(
&*x.as_raw(),
x.width(),
x.height(),
image::ColorType::L8,
)
.unwrap();
indices[i] = buf.len();
};
f(&ws.0, 0);
let mut g = |x: &[u8], i| {
buf.extend_from_slice(&*CompressedData::compress(&x, 4).data);
indices[i] = buf.len();
};
g(&ws.1, 1);
g(&ws.2, 2);
let mut jpeg = image::codecs::jpeg::JpegEncoder::new_with_quality(&mut buf, 1);
jpeg.encode_image(&ws.3).unwrap();
(buf, indices)
}
}

View File

@ -1,4 +1,5 @@
pub mod client;
pub mod compression;
pub mod ecs_packet;
pub mod server;
pub mod world_msg;
@ -6,6 +7,10 @@ pub mod world_msg;
// Reexports
pub use self::{
client::{ClientGeneral, ClientMsg, ClientRegister, ClientType},
compression::{
CompressedData, GridLtrPacking, JpegEncoding, MixedEncoding, PackingFormula, PngEncoding,
TallPacking, VoxelImageEncoding,
},
ecs_packet::EcsCompPacket,
server::{
CharacterInfo, DisconnectReason, InviteAnswer, Notification, PlayerInfo, PlayerListUpdate,
@ -15,8 +20,6 @@ pub use self::{
};
use common::character::CharacterId;
use serde::{Deserialize, Serialize};
use std::marker::PhantomData;
use tracing::trace;
#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
pub enum PresenceKind {
@ -44,60 +47,3 @@ pub fn validate_chat_msg(msg: &str) -> Result<(), ChatMsgValidationError> {
Err(ChatMsgValidationError::TooLong)
}
}
/// Wrapper for compressed, serialized data (for stuff that doesn't use the
/// default lz4 compression)
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct CompressedData<T> {
pub data: Vec<u8>,
compressed: bool,
_phantom: PhantomData<T>,
}
impl<T: Serialize + for<'a> Deserialize<'a>> CompressedData<T> {
pub fn compress(t: &T, level: u32) -> Self {
use flate2::{write::DeflateEncoder, Compression};
use std::io::Write;
let uncompressed = bincode::serialize(t)
.expect("bincode serialization can only fail if a byte limit is set");
if uncompressed.len() >= 32 {
const EXPECT_MSG: &str =
"compression only fails for fallible Read/Write impls (which Vec<u8> is not)";
let mut encoder = DeflateEncoder::new(Vec::new(), Compression::new(level));
encoder.write_all(&*uncompressed).expect(EXPECT_MSG);
let compressed = encoder.finish().expect(EXPECT_MSG);
trace!(
"compressed {}, uncompressed {}, ratio {}",
compressed.len(),
uncompressed.len(),
compressed.len() as f32 / uncompressed.len() as f32
);
CompressedData {
data: compressed,
compressed: true,
_phantom: PhantomData,
}
} else {
CompressedData {
data: uncompressed,
compressed: false,
_phantom: PhantomData,
}
}
}
pub fn decompress(&self) -> Option<T> {
use std::io::Read;
if self.compressed {
let mut uncompressed = Vec::new();
flate2::read::DeflateDecoder::new(&*self.data)
.read_to_end(&mut uncompressed)
.ok()?;
bincode::deserialize(&*uncompressed).ok()
} else {
bincode::deserialize(&*self.data).ok()
}
}
}

View File

@ -7,9 +7,13 @@ use common::{
vol_grid_2d::VolGrid2d,
},
};
use common_net::msg::compression::{
image_terrain, image_terrain_chonk, image_terrain_volgrid, CompressedData, GridLtrPacking,
JpegEncoding, MixedEncoding, MixedEncodingDenseSprites, PackingFormula, PngEncoding,
TallPacking, VoxelImageEncoding,
};
use hashbrown::HashMap;
use std::{
fmt::Debug,
io::{Read, Write},
sync::Arc,
time::Instant,
@ -17,6 +21,7 @@ use std::{
use tracing::{debug, trace};
use vek::*;
use veloren_world::{
civ::SiteKind,
sim::{FileOpts, WorldOpts, DEFAULT_WORLD_MAP},
World,
};
@ -115,136 +120,18 @@ fn channelize_dyna<M: Clone, A: Access>(
(blocks, r, g, b, sprites)
}
/// Formula for packing voxel data into a 2d array
pub trait PackingFormula {
fn dimensions(&self, dims: Vec3<u32>) -> (u32, u32);
fn index(&self, dims: Vec3<u32>, x: u32, y: u32, z: u32) -> (u32, u32);
}
pub struct MixedEncodingSparseSprites;
/// A tall, thin image, with no wasted space, but which most image viewers don't
/// handle well. Z levels increase from top to bottom, xy-slices are stacked
/// vertically.
pub struct TallPacking {
/// Making the borders go back and forth based on z-parity preserves spatial
/// locality better, but is more confusing to look at
pub flip_y: bool,
}
impl PackingFormula for TallPacking {
fn dimensions(&self, dims: Vec3<u32>) -> (u32, u32) { (dims.x, dims.y * dims.z) }
fn index(&self, dims: Vec3<u32>, x: u32, y: u32, z: u32) -> (u32, u32) {
let i = x;
let j0 = if self.flip_y {
if z % 2 == 0 { y } else { dims.y - y - 1 }
} else {
y
};
let j = z * dims.y + j0;
(i, j)
}
}
/// A grid of the z levels, left to right, top to bottom, like English prose.
/// Convenient for visualizing terrain, but wastes space if the number of z
/// levels isn't a perfect square.
pub struct GridLtrPacking;
impl PackingFormula for GridLtrPacking {
fn dimensions(&self, dims: Vec3<u32>) -> (u32, u32) {
let rootz = (dims.z as f64).sqrt().ceil() as u32;
(dims.x * rootz, dims.y * rootz)
}
fn index(&self, dims: Vec3<u32>, x: u32, y: u32, z: u32) -> (u32, u32) {
let rootz = (dims.z as f64).sqrt().ceil() as u32;
let i = x + (z % rootz) * dims.x;
let j = y + (z / rootz) * dims.y;
(i, j)
}
}
pub trait VoxelImageEncoding {
type Workspace;
type Output;
fn create(width: u32, height: u32) -> Self::Workspace;
fn put_solid(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>);
fn put_sprite(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, sprite: SpriteKind);
fn finish(ws: &Self::Workspace) -> Self::Output;
}
pub struct PngEncoding;
impl VoxelImageEncoding for PngEncoding {
type Output = Vec<u8>;
type Workspace = image::ImageBuffer<image::Rgba<u8>, Vec<u8>>;
fn create(width: u32, height: u32) -> Self::Workspace {
use image::{ImageBuffer, Rgba};
ImageBuffer::<Rgba<u8>, Vec<u8>>::new(width, height)
}
fn put_solid(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.put_pixel(x, y, image::Rgba([rgb.r, rgb.g, rgb.b, 255 - kind as u8]));
}
fn put_sprite(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, sprite: SpriteKind) {
ws.put_pixel(x, y, image::Rgba([kind as u8, sprite as u8, 255, 255]));
}
fn finish(ws: &Self::Workspace) -> Self::Output {
use image::codecs::png::{CompressionType, FilterType};
let mut buf = Vec::new();
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Fast,
FilterType::Up,
);
png.encode(
&*ws.as_raw(),
ws.width(),
ws.height(),
image::ColorType::Rgba8,
)
.unwrap();
buf
}
}
pub struct JpegEncoding;
impl VoxelImageEncoding for JpegEncoding {
type Output = Vec<u8>;
type Workspace = image::ImageBuffer<image::Rgba<u8>, Vec<u8>>;
fn create(width: u32, height: u32) -> Self::Workspace {
use image::{ImageBuffer, Rgba};
ImageBuffer::<Rgba<u8>, Vec<u8>>::new(width, height)
}
fn put_solid(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.put_pixel(x, y, image::Rgba([rgb.r, rgb.g, rgb.b, 255 - kind as u8]));
}
fn put_sprite(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, sprite: SpriteKind) {
ws.put_pixel(x, y, image::Rgba([kind as u8, sprite as u8, 255, 255]));
}
fn finish(ws: &Self::Workspace) -> Self::Output {
let mut buf = Vec::new();
let mut jpeg = image::codecs::jpeg::JpegEncoder::new_with_quality(&mut buf, 1);
jpeg.encode_image(ws).unwrap();
buf
}
}
pub struct MixedEncoding;
impl VoxelImageEncoding for MixedEncoding {
type Output = (Vec<u8>, usize);
impl VoxelImageEncoding for MixedEncodingSparseSprites {
type Output = (
Vec<u8>,
usize,
CompressedData<HashMap<Vec2<u32>, (SpriteKind, u8)>>,
);
type Workspace = (
image::ImageBuffer<image::LumaA<u8>, Vec<u8>>,
image::ImageBuffer<image::Luma<u8>, Vec<u8>>,
image::ImageBuffer<image::Rgb<u8>, Vec<u8>>,
HashMap<Vec2<u32>, (SpriteKind, u8)>,
);
fn create(width: u32, height: u32) -> Self::Workspace {
@ -252,17 +139,26 @@ impl VoxelImageEncoding for MixedEncoding {
(
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
HashMap::new(),
)
}
fn put_solid(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.0.put_pixel(x, y, image::LumaA([kind as u8, 0]));
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Rgb([rgb.r, rgb.g, rgb.b]));
}
fn put_sprite(ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, sprite: SpriteKind) {
ws.0.put_pixel(x, y, image::LumaA([kind as u8, sprite as u8]));
fn put_sprite(
ws: &mut Self::Workspace,
x: u32,
y: u32,
kind: BlockKind,
sprite: SpriteKind,
ori: Option<u8>,
) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Rgb([0; 3]));
ws.2.insert(Vec2::new(x, y), (sprite, ori.unwrap_or(0)));
}
fn finish(ws: &Self::Workspace) -> Self::Output {
@ -277,92 +173,16 @@ impl VoxelImageEncoding for MixedEncoding {
&*ws.0.as_raw(),
ws.0.width(),
ws.0.height(),
image::ColorType::La8,
image::ColorType::L8,
)
.unwrap();
let index = buf.len();
let mut jpeg = image::codecs::jpeg::JpegEncoder::new_with_quality(&mut buf, 1);
jpeg.encode_image(&ws.1).unwrap();
//println!("Mixed {} {}", index, buf.len());
(buf, index)
(buf, index, CompressedData::compress(&ws.2, 4))
}
}
fn image_terrain_chonk<S: RectVolSize, M: Clone, P: PackingFormula, VIE: VoxelImageEncoding>(
vie: VIE,
packing: P,
chonk: &Chonk<Block, S, M>,
) -> VIE::Output {
image_terrain(
vie,
packing,
chonk,
Vec3::new(0, 0, chonk.get_min_z() as u32),
Vec3::new(S::RECT_SIZE.x, S::RECT_SIZE.y, chonk.get_max_z() as u32),
)
}
fn image_terrain_volgrid<
S: RectVolSize + Debug,
M: Clone + Debug,
P: PackingFormula,
VIE: VoxelImageEncoding,
>(
vie: VIE,
packing: P,
volgrid: &VolGrid2d<Chonk<Block, S, M>>,
) -> VIE::Output {
let mut lo = Vec3::broadcast(i32::MAX);
let mut hi = Vec3::broadcast(i32::MIN);
for (pos, chonk) in volgrid.iter() {
lo.x = lo.x.min(pos.x * S::RECT_SIZE.x as i32);
lo.y = lo.y.min(pos.y * S::RECT_SIZE.y as i32);
lo.z = lo.z.min(chonk.get_min_z());
hi.x = hi.x.max((pos.x + 1) * S::RECT_SIZE.x as i32);
hi.y = hi.y.max((pos.y + 1) * S::RECT_SIZE.y as i32);
hi.z = hi.z.max(chonk.get_max_z());
}
println!("{:?} {:?}", lo, hi);
image_terrain(vie, packing, volgrid, lo.as_(), hi.as_())
}
fn image_terrain<V: BaseVol<Vox = Block> + ReadVol, P: PackingFormula, VIE: VoxelImageEncoding>(
_: VIE,
packing: P,
vol: &V,
lo: Vec3<u32>,
hi: Vec3<u32>,
) -> VIE::Output {
let dims = hi - lo;
let (width, height) = packing.dimensions(dims);
let mut image = VIE::create(width, height);
//println!("jpeg dims: {:?}", dims);
for z in 0..dims.z {
for y in 0..dims.y {
for x in 0..dims.x {
let (i, j) = packing.index(dims, x, y, z);
//println!("{:?} {:?}", (x, y, z), (i, j));
let block = *vol
.get(Vec3::new(x + lo.x, y + lo.y, z + lo.z).as_())
.unwrap_or(&Block::empty());
//println!("{} {} {} {:?}", x, y, z, block);
if let Some(rgb) = block.get_color() {
VIE::put_solid(&mut image, i, j, *block, rgb);
} else {
let sprite = block.get_sprite().unwrap();
VIE::put_sprite(&mut image, i, j, *block, sprite);
}
}
}
}
VIE::finish(&image)
}
fn histogram_to_dictionary(histogram: &HashMap<Vec<u8>, usize>, dictionary: &mut Vec<u8>) {
let mut tmp: Vec<(Vec<u8>, usize)> = histogram.iter().map(|(k, v)| (k.clone(), *v)).collect();
tmp.sort_by_key(|(_, count)| *count);
@ -389,192 +209,295 @@ fn main() {
..WorldOpts::default()
});
println!("Loaded world");
const HISTOGRAMS: bool = false;
let mut histogram: HashMap<Vec<u8>, usize> = HashMap::new();
let mut histogram2: HashMap<Vec<u8>, usize> = HashMap::new();
let mut dictionary = vec![0xffu8; 1 << 16];
let mut dictionary2 = vec![0xffu8; 1 << 16];
let k = 32;
let sz = world.sim().get_size();
let mut totals = [0.0; 10];
let mut total_timings = [0.0; 7];
let mut count = 0;
let mut volgrid = VolGrid2d::new().unwrap();
for (i, (x, y)) in Spiral2d::new()
.radius(20)
.map(|v| (v.x + sz.x as i32 / 2, v.y + sz.y as i32 / 2))
.enumerate()
{
let chunk = world.generate_chunk(index.as_index_ref(), Vec2::new(x as _, y as _), || false);
if let Ok((chunk, _)) = chunk {
let uncompressed = bincode::serialize(&chunk).unwrap();
for w in uncompressed.windows(k) {
*histogram.entry(w.to_vec()).or_default() += 1;
}
if i % 128 == 0 {
histogram_to_dictionary(&histogram, &mut dictionary);
}
let lz4chonk_pre = Instant::now();
let lz4_chonk = lz4_with_dictionary(&bincode::serialize(&chunk).unwrap(), &[]);
let lz4chonk_post = Instant::now();
//let lz4_dict_chonk = SerializedTerrainChunk::from_chunk(&chunk,
// &*dictionary);
let deflatechonk_pre = Instant::now();
let deflate_chonk = do_deflate_flate2(&bincode::serialize(&chunk).unwrap());
let deflatechonk_post = Instant::now();
let mut sites = Vec::new();
let dyna: Dyna<_, _, ColumnAccess> = chonk_to_dyna(&chunk, Block::empty());
let ser_dyna = bincode::serialize(&dyna).unwrap();
for w in ser_dyna.windows(k) {
*histogram2.entry(w.to_vec()).or_default() += 1;
}
if i % 128 == 0 {
histogram_to_dictionary(&histogram2, &mut dictionary2);
}
let lz4_dyna = lz4_with_dictionary(&*ser_dyna, &[]);
//let lz4_dict_dyna = lz4_with_dictionary(&*ser_dyna, &dictionary2);
let deflate_dyna = do_deflate(&*ser_dyna);
let deflate_channeled_dyna =
do_deflate_flate2(&bincode::serialize(&channelize_dyna(&dyna)).unwrap());
sites.push(("center", sz / 2));
sites.push((
"dungeon",
world
.civs()
.sites()
.find(|s| s.is_dungeon())
.map(|s| s.center.as_())
.unwrap(),
));
sites.push((
"town",
world
.civs()
.sites()
.find(|s| s.is_settlement())
.map(|s| s.center.as_())
.unwrap(),
));
sites.push((
"castle",
world
.civs()
.sites()
.find(|s| s.is_castle())
.map(|s| s.center.as_())
.unwrap(),
));
sites.push((
"tree",
world
.civs()
.sites()
.find(|s| matches!(s.kind, SiteKind::Tree))
.map(|s| s.center.as_())
.unwrap(),
));
let jpegchonkgrid_pre = Instant::now();
let jpegchonkgrid = image_terrain_chonk(JpegEncoding, GridLtrPacking, &chunk);
let jpegchonkgrid_post = Instant::now();
if false {
use std::fs::File;
let mut f = File::create(&format!("chonkjpegs/tmp_{}_{}.jpg", x, y)).unwrap();
f.write_all(&*jpegchonkgrid).unwrap();
}
let jpegchonktall_pre = Instant::now();
let jpegchonktall =
image_terrain_chonk(JpegEncoding, TallPacking { flip_y: false }, &chunk);
let jpegchonktall_post = Instant::now();
let jpegchonkflip_pre = Instant::now();
let jpegchonkflip =
image_terrain_chonk(JpegEncoding, TallPacking { flip_y: true }, &chunk);
let jpegchonkflip_post = Instant::now();
let mixedchonk_pre = Instant::now();
let mixedchonk =
image_terrain_chonk(MixedEncoding, TallPacking { flip_y: true }, &chunk);
let mixedchonk_post = Instant::now();
let pngchonk_pre = Instant::now();
let pngchonk = image_terrain_chonk(PngEncoding, GridLtrPacking, &chunk);
let pngchonk_post = Instant::now();
let n = uncompressed.len();
let sizes = [
lz4_chonk.len() as f32 / n as f32,
deflate_chonk.len() as f32 / n as f32,
lz4_dyna.len() as f32 / n as f32,
deflate_dyna.len() as f32 / n as f32,
deflate_channeled_dyna.len() as f32 / n as f32,
jpegchonkgrid.len() as f32 / n as f32,
jpegchonktall.len() as f32 / n as f32,
jpegchonkflip.len() as f32 / n as f32,
mixedchonk.0.len() as f32 / n as f32,
pngchonk.len() as f32 / n as f32,
];
let best_idx = sizes
.iter()
.enumerate()
.fold((1.0, 0), |(best, i), (j, ratio)| {
if ratio < &best {
(*ratio, j)
} else {
(best, i)
for (sitename, sitepos) in sites.iter() {
let mut totals = [0.0; 12];
let mut total_timings = [0.0; 9];
let mut count = 0;
let mut volgrid = VolGrid2d::new().unwrap();
for (i, spiralpos) in Spiral2d::new()
.radius(7)
.map(|v| v + sitepos.as_())
.enumerate()
{
let chunk = world.generate_chunk(index.as_index_ref(), spiralpos, || false);
if let Ok((chunk, _)) = chunk {
let uncompressed = bincode::serialize(&chunk).unwrap();
if HISTOGRAMS {
for w in uncompressed.windows(k) {
*histogram.entry(w.to_vec()).or_default() += 1;
}
})
.1;
let timings = [
(lz4chonk_post - lz4chonk_pre).subsec_nanos(),
(deflatechonk_post - deflatechonk_pre).subsec_nanos(),
(jpegchonkgrid_post - jpegchonkgrid_pre).subsec_nanos(),
(jpegchonktall_post - jpegchonktall_pre).subsec_nanos(),
(jpegchonkflip_post - jpegchonkflip_pre).subsec_nanos(),
(mixedchonk_post - mixedchonk_pre).subsec_nanos(),
(pngchonk_post - pngchonk_pre).subsec_nanos(),
];
trace!(
"{} {}: uncompressed: {}, {:?} {} {:?}",
x,
y,
n,
sizes,
best_idx,
timings
);
for j in 0..totals.len() {
totals[j] += sizes[j];
}
for j in 0..total_timings.len() {
total_timings[j] += timings[j] as f32;
}
count += 1;
let _ = volgrid.insert(Vec2::new(x, y), Arc::new(chunk));
if i % 128 == 0 {
histogram_to_dictionary(&histogram, &mut dictionary);
}
}
let lz4chonk_pre = Instant::now();
let lz4_chonk = lz4_with_dictionary(&bincode::serialize(&chunk).unwrap(), &[]);
let lz4chonk_post = Instant::now();
//let lz4_dict_chonk = SerializedTerrainChunk::from_chunk(&chunk,
// &*dictionary);
if (1usize..10)
.into_iter()
.any(|i| (2 * i + 1) * (2 * i + 1) == count)
{
use std::fs::File;
let mut f = File::create(&format!("chonkjpegs/volgrid_{}.jpg", count)).unwrap();
let jpeg_volgrid = image_terrain_volgrid(JpegEncoding, GridLtrPacking, &volgrid);
f.write_all(&*jpeg_volgrid).unwrap();
let deflatechonk_pre = Instant::now();
let deflate_chonk = do_deflate_flate2(&bincode::serialize(&chunk).unwrap());
let deflatechonk_post = Instant::now();
let dyna: Dyna<_, _, ColumnAccess> = chonk_to_dyna(&chunk, Block::empty());
let ser_dyna = bincode::serialize(&dyna).unwrap();
if HISTOGRAMS {
for w in ser_dyna.windows(k) {
*histogram2.entry(w.to_vec()).or_default() += 1;
}
if i % 128 == 0 {
histogram_to_dictionary(&histogram2, &mut dictionary2);
}
}
let lz4_dyna = lz4_with_dictionary(&*ser_dyna, &[]);
//let lz4_dict_dyna = lz4_with_dictionary(&*ser_dyna, &dictionary2);
let deflate_dyna = do_deflate(&*ser_dyna);
let deflate_channeled_dyna =
do_deflate_flate2(&bincode::serialize(&channelize_dyna(&dyna)).unwrap());
let jpegchonkgrid_pre = Instant::now();
let jpegchonkgrid = image_terrain_chonk(JpegEncoding, GridLtrPacking, &chunk);
let jpegchonkgrid_post = Instant::now();
if false {
use std::fs::File;
let mut f = File::create(&format!(
"chonkjpegs/tmp_{}_{}.jpg",
spiralpos.x, spiralpos.y
))
.unwrap();
f.write_all(&*jpegchonkgrid).unwrap();
}
let jpegchonktall_pre = Instant::now();
let jpegchonktall =
image_terrain_chonk(JpegEncoding, TallPacking { flip_y: false }, &chunk);
let jpegchonktall_post = Instant::now();
let jpegchonkflip_pre = Instant::now();
let jpegchonkflip =
image_terrain_chonk(JpegEncoding, TallPacking { flip_y: true }, &chunk);
let jpegchonkflip_post = Instant::now();
let mixedchonk_pre = Instant::now();
let mixedchonk =
image_terrain_chonk(MixedEncoding, TallPacking { flip_y: true }, &chunk);
let mixedchonk_post = Instant::now();
let mixeddeflate = CompressedData::compress(&mixedchonk, 1);
let mixeddeflate_post = Instant::now();
let mixeddense_pre = Instant::now();
let mixeddense =
image_terrain_chonk(MixedEncodingDenseSprites, TallPacking { flip_y: true }, &chunk);
let mixeddense_post = Instant::now();
let pngchonk_pre = Instant::now();
let pngchonk = image_terrain_chonk(PngEncoding, GridLtrPacking, &chunk);
let pngchonk_post = Instant::now();
let n = uncompressed.len();
let sizes = [
lz4_chonk.len() as f32 / n as f32,
deflate_chonk.len() as f32 / n as f32,
lz4_dyna.len() as f32 / n as f32,
deflate_dyna.len() as f32 / n as f32,
deflate_channeled_dyna.len() as f32 / n as f32,
jpegchonkgrid.len() as f32 / n as f32,
jpegchonktall.len() as f32 / n as f32,
jpegchonkflip.len() as f32 / n as f32,
mixedchonk.0.len() as f32 / n as f32,
mixeddeflate.data.len() as f32 / n as f32,
mixeddense.0.len() as f32 / n as f32,
pngchonk.len() as f32 / n as f32,
];
let best_idx = sizes
.iter()
.enumerate()
.fold((1.0, 0), |(best, i), (j, ratio)| {
if ratio < &best {
(*ratio, j)
} else {
(best, i)
}
})
.1;
let timings = [
(lz4chonk_post - lz4chonk_pre).subsec_nanos(),
(deflatechonk_post - deflatechonk_pre).subsec_nanos(),
(jpegchonkgrid_post - jpegchonkgrid_pre).subsec_nanos(),
(jpegchonktall_post - jpegchonktall_pre).subsec_nanos(),
(jpegchonkflip_post - jpegchonkflip_pre).subsec_nanos(),
(mixedchonk_post - mixedchonk_pre).subsec_nanos(),
(mixeddeflate_post - mixedchonk_pre).subsec_nanos(),
(mixeddense_post - mixeddense_pre).subsec_nanos(),
(pngchonk_post - pngchonk_pre).subsec_nanos(),
];
trace!(
"{} {}: uncompressed: {}, {:?} {} {:?}",
spiralpos.x,
spiralpos.y,
n,
sizes,
best_idx,
timings
);
for j in 0..totals.len() {
totals[j] += sizes[j];
}
for j in 0..total_timings.len() {
total_timings[j] += timings[j] as f32;
}
count += 1;
let _ = volgrid.insert(spiralpos, Arc::new(chunk));
if (1usize..20)
.into_iter()
.any(|i| (2 * i + 1) * (2 * i + 1) == count)
{
use std::fs::File;
let mut f =
File::create(&format!("chonkjpegs/{}_{}.jpg", sitename, count)).unwrap();
let jpeg_volgrid =
image_terrain_volgrid(JpegEncoding, GridLtrPacking, &volgrid);
f.write_all(&*jpeg_volgrid).unwrap();
let mixedgrid_pre = Instant::now();
let (mixed_volgrid, indices) =
image_terrain_volgrid(MixedEncoding, GridLtrPacking, &volgrid);
let mixedgrid_post = Instant::now();
let seconds = (mixedgrid_post - mixedgrid_pre).as_secs_f64();
println!(
"Generated mixed_volgrid in {} seconds for {} chunks ({} avg)",
seconds,
count,
seconds / count as f64,
);
for i in 0..4 {
const FMT: [&str; 4] = ["png", "png", "png", "jpg"];
let ranges: [_; 4] = [
0..indices[0],
indices[0]..indices[1],
indices[1]..indices[2],
indices[2]..mixed_volgrid.len(),
];
let mut f = File::create(&format!(
"chonkmixed/{}_{}_{}.{}",
sitename, count, i, FMT[i]
))
.unwrap();
f.write_all(&mixed_volgrid[ranges[i].clone()]).unwrap();
}
}
}
if count % 64 == 0 {
println!("Chunks processed ({}): {}\n", sitename, count);
println!("Average lz4_chonk: {}", totals[0] / count as f32);
println!("Average deflate_chonk: {}", totals[1] / count as f32);
println!("Average lz4_dyna: {}", totals[2] / count as f32);
println!("Average deflate_dyna: {}", totals[3] / count as f32);
println!(
"Average deflate_channeled_dyna: {}",
totals[4] / count as f32
);
println!("Average jpeggridchonk: {}", totals[5] / count as f32);
println!("Average jpegtallchonk: {}", totals[6] / count as f32);
println!("Average jpegflipchonk: {}", totals[7] / count as f32);
println!("Average mixedchonk: {}", totals[8] / count as f32);
println!("Average mixeddeflate: {}", totals[9] / count as f32);
println!("Average mixeddense: {}", totals[10] / count as f32);
println!("Average pngchonk: {}", totals[11] / count as f32);
println!("");
println!(
"Average lz4_chonk nanos : {:02}",
total_timings[0] / count as f32
);
println!(
"Average deflate_chonk nanos: {:02}",
total_timings[1] / count as f32
);
println!(
"Average jpeggridchonk nanos: {:02}",
total_timings[2] / count as f32
);
println!(
"Average jpegtallchonk nanos: {:02}",
total_timings[3] / count as f32
);
println!(
"Average jpegflipchonk nanos: {:02}",
total_timings[4] / count as f32
);
println!(
"Average mixedchonk nanos: {:02}",
total_timings[5] / count as f32
);
println!(
"Average mixeddeflate nanos: {:02}",
total_timings[6] / count as f32
);
println!(
"Average mixeddense nanos: {:02}",
total_timings[7] / count as f32
);
println!(
"Average pngchonk nanos: {:02}",
total_timings[8] / count as f32
);
println!("-----");
}
if i % 256 == 0 {
histogram.clear();
}
}
if i % 64 == 0 {
println!("Chunks processed: {}\n", count);
println!("Average lz4_chonk: {}", totals[0] / count as f32);
println!("Average deflate_chonk: {}", totals[1] / count as f32);
println!("Average lz4_dyna: {}", totals[2] / count as f32);
println!("Average deflate_dyna: {}", totals[3] / count as f32);
println!(
"Average deflate_channeled_dyna: {}",
totals[4] / count as f32
);
println!("Average jpeggridchonk: {}", totals[5] / count as f32);
println!("Average jpegtallchonk: {}", totals[6] / count as f32);
println!("Average jpegflipchonk: {}", totals[7] / count as f32);
println!("Average mixedchonk: {}", totals[8] / count as f32);
println!("Average pngchonk: {}", totals[9] / count as f32);
println!("");
println!(
"Average lz4_chonk nanos : {:02}",
total_timings[0] / count as f32
);
println!(
"Average deflate_chonk nanos: {:02}",
total_timings[1] / count as f32
);
println!(
"Average jpeggridchonk nanos: {:02}",
total_timings[2] / count as f32
);
println!(
"Average jpegtallchonk nanos: {:02}",
total_timings[3] / count as f32
);
println!(
"Average jpegflipchonk nanos: {:02}",
total_timings[4] / count as f32
);
println!(
"Average mixedchonk nanos: {:02}",
total_timings[5] / count as f32
);
println!(
"Average pngchonk nanos: {:02}",
total_timings[6] / count as f32
);
println!("-----");
}
if i % 256 == 0 {
histogram.clear();
}
}
}