Put rain behind expiremental shader

This commit is contained in:
IsseW 2022-02-20 17:05:25 +01:00
parent 9c84a20cef
commit 67683f315f
4 changed files with 88 additions and 80 deletions

View File

@ -99,49 +99,51 @@ void main() {
color.rgb = apply_point_glow(cam_pos.xyz + focus_off.xyz, dir, dist, color.rgb);
#endif
vec3 old_color = color.rgb;
#ifdef EXPERIMENTAL_RAIN
vec3 old_color = color.rgb;
float fall_rate = 20.0;
float fall_rate = 20.0;
dir.xy += wind_vel * dir.z / fall_rate;
dir = normalize(dir);
dir.xy += wind_vel * dir.z / fall_rate;
dir = normalize(dir);
float z = (-1 / (abs(dir.z) - 1) - 1) * sign(dir.z);
vec2 dir_2d = normalize(dir.xy);
vec2 view_pos = vec2(atan2(dir_2d.x, dir_2d.y), z);
float z = (-1 / (abs(dir.z) - 1) - 1) * sign(dir.z);
vec2 dir_2d = normalize(dir.xy);
vec2 view_pos = vec2(atan2(dir_2d.x, dir_2d.y), z);
vec3 cam_wpos = cam_pos.xyz + focus_off.xyz;
float rain_density = rain_density_at(cam_wpos.xy);
if (rain_density > 0) {
float rain_dist = 50.0;
for (int i = 0; i < 5; i ++) {
rain_dist *= 0.3;
vec3 cam_wpos = cam_pos.xyz + focus_off.xyz;
float rain_density = rain_density_at(cam_wpos.xy);
if (rain_density > 0) {
float rain_dist = 50.0;
for (int i = 0; i < 5; i ++) {
rain_dist *= 0.3;
vec3 rpos = vec3(vec2(dir_2d), view_pos.y) * rain_dist;
float dist_to_rain = length(rpos);
vec3 rpos = vec3(vec2(dir_2d), view_pos.y) * rain_dist;
float dist_to_rain = length(rpos);
if (dist < dist_to_rain || cam_wpos.z + rpos.z > CLOUD_AVG_ALT) {
continue;
if (dist < dist_to_rain || cam_wpos.z + rpos.z > CLOUD_AVG_ALT) {
continue;
}
float drop_density = 3;
vec2 drop_size = vec2(0.0025, 0.17);
vec2 rain_pos = (view_pos * rain_dist);
rain_pos += vec2(0, tick.x * fall_rate + cam_wpos.z);
vec2 cell = floor(rain_pos * drop_density) / drop_density;
if (hash(fract(vec4(cell, rain_dist, 0) * 0.01)) > rain_density) {
continue;
}
vec2 near_drop = cell + (vec2(0.5) + (vec2(hash(vec4(cell, 0, 0)), 0.5) - 0.5) * vec2(2, 0)) / drop_density;
float avg_alpha = (drop_size.x * drop_size.y) / 1;
float alpha = sign(max(1 - length((rain_pos - near_drop) / drop_size), 0));
float light = sqrt(dot(old_color, vec3(1))) + (get_sun_brightness() + get_moon_brightness()) * 0.01;
color.rgb = mix(color.rgb, vec3(0.3, 0.4, 0.5) * light, mix(avg_alpha, alpha, min(1000 / dist_to_rain, 1)) * 0.25);
}
float drop_density = 3;
vec2 drop_size = vec2(0.0025, 0.17);
vec2 rain_pos = (view_pos * rain_dist);
rain_pos += vec2(0, tick.x * fall_rate + cam_wpos.z);
vec2 cell = floor(rain_pos * drop_density) / drop_density;
if (hash(fract(vec4(cell, rain_dist, 0) * 0.01)) > rain_density) {
continue;
}
vec2 near_drop = cell + (vec2(0.5) + (vec2(hash(vec4(cell, 0, 0)), 0.5) - 0.5) * vec2(2, 0)) / drop_density;
float avg_alpha = (drop_size.x * drop_size.y) / 1;
float alpha = sign(max(1 - length((rain_pos - near_drop) / drop_size), 0));
float light = sqrt(dot(old_color, vec3(1))) + (get_sun_brightness() + get_moon_brightness()) * 0.01;
color.rgb = mix(color.rgb, vec3(0.3, 0.4, 0.5) * light, mix(avg_alpha, alpha, min(1000 / dist_to_rain, 1)) * 0.25);
}
}
#endif
tgt_color = vec4(color.rgb, 1);
}

View File

@ -149,28 +149,30 @@ void main() {
wave_sample_dist / slope
);
float rain_density = rain_density_at(cam_pos.xy + focus_off.xy);
if (rain_density > 0 && surf_norm.z > 0.5) {
vec3 drop_density = vec3(2, 2, 1);
vec3 drop_pos = wave_pos + vec3(0, 0, -time_of_day.x * 0.025);
drop_pos.z += noise_2d(floor(drop_pos.xy * drop_density.xy) * 13.1) * 10;
vec2 cell2d = floor(drop_pos.xy * drop_density.xy);
drop_pos.z *= 0.5 + hash_fast(uvec3(cell2d, 0));
vec3 cell = vec3(cell2d, floor(drop_pos.z * drop_density.z));
#ifdef EXPERIMENTAL_RAIN
float rain_density = rain_density_at(cam_pos.xy + focus_off.xy);
if (rain_density > 0 && surf_norm.z > 0.5) {
vec3 drop_density = vec3(2, 2, 1);
vec3 drop_pos = wave_pos + vec3(0, 0, -time_of_day.x * 0.025);
drop_pos.z += noise_2d(floor(drop_pos.xy * drop_density.xy) * 13.1) * 10;
vec2 cell2d = floor(drop_pos.xy * drop_density.xy);
drop_pos.z *= 0.5 + hash_fast(uvec3(cell2d, 0));
vec3 cell = vec3(cell2d, floor(drop_pos.z * drop_density.z));
if (hash(fract(vec4(cell, 0) * 0.01)) < rain_density) {
vec3 off = vec3(hash_fast(uvec3(cell * 13)), hash_fast(uvec3(cell * 5)), 0);
vec3 near_cell = (cell + 0.5 + (off - 0.5) * 0.5) / drop_density;
if (hash(fract(vec4(cell, 0) * 0.01)) < rain_density) {
vec3 off = vec3(hash_fast(uvec3(cell * 13)), hash_fast(uvec3(cell * 5)), 0);
vec3 near_cell = (cell + 0.5 + (off - 0.5) * 0.5) / drop_density;
float dist = length((drop_pos - near_cell) / vec3(1, 1, 2));
float drop_rad = 0.125;
nmap.xy += (drop_pos - near_cell).xy
* max(1.0 - abs(dist - drop_rad) * 50, 0)
* 2500
* sign(dist - drop_rad)
* max(drop_pos.z - near_cell.z, 0);
float dist = length((drop_pos - near_cell) / vec3(1, 1, 2));
float drop_rad = 0.125;
nmap.xy += (drop_pos - near_cell).xy
* max(1.0 - abs(dist - drop_rad) * 50, 0)
* 2500
* sign(dist - drop_rad)
* max(drop_pos.z - near_cell.z, 0);
}
}
}
#endif
nmap = mix(f_norm, normalize(nmap), min(1.0 / pow(frag_dist, 0.75), 1));

View File

@ -230,35 +230,37 @@ void main() {
vec3 k_a = vec3(1.0);
vec3 k_d = vec3(1.0);
vec3 k_s = vec3(R_s);
#ifdef EXPERIMENTAL_RAIN
float rain_density = rain_density_at(cam_pos.xy + focus_off.xy);
if (rain_density > 0 && !faces_fluid && f_norm.z > 0.5) {
vec3 pos = f_pos + focus_off.xyz;
vec3 drop_density = vec3(2, 2, 1);
vec3 drop_pos = pos + vec3(pos.zz, 0) + vec3(0, 0, -tick.x * 1.0);
drop_pos.z += noise_2d(floor(drop_pos.xy * drop_density.xy) * 13.1) * 10;
vec2 cell2d = floor(drop_pos.xy * drop_density.xy);
drop_pos.z *= 0.5 + hash_fast(uvec3(cell2d, 0));
vec3 cell = vec3(cell2d, floor(drop_pos.z * drop_density.z));
float rain_density = rain_density_at(cam_pos.xy + focus_off.xy);
if (rain_density > 0 && !faces_fluid && f_norm.z > 0.5) {
vec3 pos = f_pos + focus_off.xyz;
vec3 drop_density = vec3(2, 2, 1);
vec3 drop_pos = pos + vec3(pos.zz, 0) + vec3(0, 0, -tick.x * 1.0);
drop_pos.z += noise_2d(floor(drop_pos.xy * drop_density.xy) * 13.1) * 10;
vec2 cell2d = floor(drop_pos.xy * drop_density.xy);
drop_pos.z *= 0.5 + hash_fast(uvec3(cell2d, 0));
vec3 cell = vec3(cell2d, floor(drop_pos.z * drop_density.z));
if (hash(fract(vec4(cell, 0) * 0.01)) < rain_density) {
vec3 off = vec3(hash_fast(uvec3(cell * 13)), hash_fast(uvec3(cell * 5)), 0);
vec3 near_cell = (cell + 0.5 + (off - 0.5) * 0.5) / drop_density;
if (hash(fract(vec4(cell, 0) * 0.01)) < rain_density) {
vec3 off = vec3(hash_fast(uvec3(cell * 13)), hash_fast(uvec3(cell * 5)), 0);
vec3 near_cell = (cell + 0.5 + (off - 0.5) * 0.5) / drop_density;
float dist = length((drop_pos - near_cell) / vec3(1, 1, 2));
float drop_rad = 0.1;
float distort = max(1.0 - abs(dist - drop_rad) * 100, 0) * 1.5 * max(drop_pos.z - near_cell.z, 0);
k_a += distort;
k_d += distort;
k_s += distort;
f_norm.xy += (drop_pos - near_cell).xy
* max(1.0 - abs(dist - drop_rad) * 30, 0)
* 500.0
* max(drop_pos.z - near_cell.z, 0)
* sign(dist - drop_rad)
* max(drop_pos.z - near_cell.z, 0);
float dist = length((drop_pos - near_cell) / vec3(1, 1, 2));
float drop_rad = 0.1;
float distort = max(1.0 - abs(dist - drop_rad) * 100, 0) * 1.5 * max(drop_pos.z - near_cell.z, 0);
k_a += distort;
k_d += distort;
k_s += distort;
f_norm.xy += (drop_pos - near_cell).xy
* max(1.0 - abs(dist - drop_rad) * 30, 0)
* 500.0
* max(drop_pos.z - near_cell.z, 0)
* sign(dist - drop_rad)
* max(drop_pos.z - near_cell.z, 0);
}
}
}
#endif
// float sun_light = get_sun_brightness(sun_dir);
// float moon_light = get_moon_brightness(moon_dir);

View File

@ -467,4 +467,6 @@ pub enum ExperimentalShader {
/// Display grid lines to visualize the distribution of shadow map texels
/// for the directional light from the sun.
DirectionalShadowMapTexelGrid,
// Enable rain, unfinished and goes through blocks
Rain,
}