mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
Reduce abstraction for lift calculation; remove RigidWings struct
This commit is contained in:
parent
96168b5654
commit
7186569259
@ -1,6 +1,6 @@
|
||||
use super::{
|
||||
body::{object, Body},
|
||||
Density, Ori, Vel,
|
||||
CharacterState, Density, Ori, Vel,
|
||||
};
|
||||
use crate::{
|
||||
consts::{AIR_DENSITY, WATER_DENSITY},
|
||||
@ -90,10 +90,9 @@ impl Default for Fluid {
|
||||
impl Body {
|
||||
pub fn aerodynamic_forces(
|
||||
&self,
|
||||
ori: &Ori,
|
||||
rel_flow: &Vel,
|
||||
fluid_density: f32,
|
||||
wings: Option<&RigidWings>,
|
||||
character_state: Option<&CharacterState>,
|
||||
) -> Vec3<f32> {
|
||||
let v_sq = rel_flow.0.magnitude_squared();
|
||||
if v_sq < 0.25 {
|
||||
@ -104,39 +103,41 @@ impl Body {
|
||||
// All the coefficients come pre-multiplied by their reference area
|
||||
0.5 * fluid_density
|
||||
* v_sq
|
||||
* wings
|
||||
.map(|wings| {
|
||||
// Since we have wings, we proceed to calculate the lift and drag
|
||||
* character_state
|
||||
.and_then(|cs| match cs {
|
||||
CharacterState::Glide(data) => {
|
||||
Some((data.aspect_ratio, data.planform_area, data.ori))
|
||||
},
|
||||
_ => None,
|
||||
})
|
||||
.map(|(ar, area, ori)| {
|
||||
// We have an elliptical wing; proceed to calculate its lift and drag
|
||||
|
||||
let ar = wings.aspect_ratio();
|
||||
// aoa will be positive when we're pitched up and negative otherwise
|
||||
let aoa = angle_of_attack(ori, &rel_flow_dir);
|
||||
let aoa = angle_of_attack(&ori, &rel_flow_dir);
|
||||
// c_l will be positive when aoa is positive (we have positive lift,
|
||||
// producing an upward force) and negative otherwise
|
||||
let c_l = wings.lift_coefficient(aoa);
|
||||
let c_l = lift_coefficient(ar, area, aoa);
|
||||
|
||||
// lift dir will be orthogonal to the local relative flow vector.
|
||||
// Local relative flow is the resulting vector of (relative) freestream flow
|
||||
// + downwash (created by the vortices of the wing tips)
|
||||
// Local relative flow is the resulting vector of (relative) freestream
|
||||
// flow + downwash (created by the vortices
|
||||
// of the wing tips)
|
||||
let lift_dir: Dir = {
|
||||
// induced angle of attack
|
||||
let aoa_i = c_l / (PI * ar);
|
||||
// effective angle of attack; the aoa as seen by aerofoil after downwash
|
||||
// effective angle of attack; the aoa as seen by aerofoil after
|
||||
// downwash
|
||||
let aoa_eff = aoa - aoa_i;
|
||||
/*println!(
|
||||
"CL={:.1}, α={:.1}°, αᵢ={:.1}°, αₑ={:.1}°, AR={:.1}",
|
||||
c_l,
|
||||
aoa.to_degrees(),
|
||||
aoa_i.to_degrees(),
|
||||
aoa_eff.to_degrees(),
|
||||
ar
|
||||
);*/
|
||||
// Angle between chord line and local relative wind is aoa_eff radians.
|
||||
// Direction of lift is perpendicular to local relative wind.
|
||||
// At positive lift, local relative wind will be below our cord line at
|
||||
// an angle of aoa_eff. Thus if we pitch down by aoa_eff radians then
|
||||
// our chord line will be colinear with local relative wind vector and
|
||||
// our up will be the direction of lift.
|
||||
// Angle between chord line and local relative wind is aoa_eff
|
||||
// radians. Direction of lift is
|
||||
// perpendicular to local relative wind.
|
||||
// At positive lift, local relative wind will be below our cord line
|
||||
// at an angle of aoa_eff. Thus if
|
||||
// we pitch down by aoa_eff radians then
|
||||
// our chord line will be colinear with local relative wind vector
|
||||
// and our up will be the direction
|
||||
// of lift.
|
||||
ori.pitched_down(aoa_eff).up()
|
||||
};
|
||||
|
||||
@ -146,20 +147,12 @@ impl Body {
|
||||
// (this definition should not be used for aspect ratios > 25)
|
||||
let e = 1.78 * (1.0 - 0.045 * ar.powf(0.68)) - 0.64;
|
||||
|
||||
wings.zero_lift_drag_coefficient()
|
||||
zero_lift_drag_coefficient(area)
|
||||
+ self.parasite_drag_coefficient()
|
||||
+ c_l.powi(2) / (PI * e * ar)
|
||||
};
|
||||
debug_assert!(c_d.is_sign_positive());
|
||||
debug_assert!(c_l.is_sign_positive() || aoa.is_sign_negative());
|
||||
/*println!(
|
||||
"L/D (at α={:.1}, AR={:.1}) = {:.1}/{:.1} = {:.1}",
|
||||
aoa.to_degrees(),
|
||||
ar,
|
||||
0.5 * fluid_density * v_sq * c_l,
|
||||
0.5 * fluid_density * v_sq * c_d,
|
||||
c_l / c_d
|
||||
);*/
|
||||
|
||||
c_l * *lift_dir + c_d * *rel_flow_dir
|
||||
})
|
||||
@ -192,24 +185,28 @@ impl Body {
|
||||
} else {
|
||||
1.0
|
||||
};
|
||||
cd * std::f32::consts::PI * dim.x * dim.z
|
||||
cd * PI * dim.x * dim.z
|
||||
},
|
||||
|
||||
// Cross-section, zero-lift angle; exclude the wings (width * 0.2)
|
||||
Body::BirdMedium(_) | Body::BirdLarge(_) | Body::Dragon(_) => {
|
||||
let dim = self.dimensions().map(|a| a * 0.5);
|
||||
// "Field Estimates of Body Drag Coefficient on the Basis of Dives in Passerine
|
||||
// Birds", Anders Hedenström and Felix Liechti, 2001
|
||||
let cd = match self {
|
||||
Body::BirdMedium(_) => 0.2,
|
||||
Body::BirdLarge(_) => 0.4,
|
||||
Body::BirdLarge(_) | Body::BirdMedium(_) => 0.2,
|
||||
// arbitrary
|
||||
_ => 0.7,
|
||||
};
|
||||
cd * std::f32::consts::PI * dim.x * 0.2 * dim.z
|
||||
cd * PI * dim.x * 0.2 * dim.z
|
||||
},
|
||||
|
||||
// Cross-section, zero-lift angle; exclude the fins (width * 0.2)
|
||||
Body::FishMedium(_) | Body::FishSmall(_) => {
|
||||
let dim = self.dimensions().map(|a| a * 0.5);
|
||||
0.031 * std::f32::consts::PI * dim.x * 0.2 * dim.z
|
||||
// "A Simple Method to Determine Drag Coefficients in Aquatic Animals",
|
||||
// D. Bilo and W. Nachtigall, 1980
|
||||
0.031 * PI * dim.x * 0.2 * dim.z
|
||||
},
|
||||
|
||||
Body::Object(object) => match object {
|
||||
@ -225,7 +222,7 @@ impl Body {
|
||||
| object::Body::FireworkYellow
|
||||
| object::Body::MultiArrow => {
|
||||
let dim = self.dimensions().map(|a| a * 0.5);
|
||||
0.02 * std::f32::consts::PI * dim.x * dim.z
|
||||
0.02 * PI * dim.x * dim.z
|
||||
},
|
||||
|
||||
// spherical-ish objects
|
||||
@ -243,12 +240,12 @@ impl Body {
|
||||
| object::Body::Pumpkin4
|
||||
| object::Body::Pumpkin5 => {
|
||||
let dim = self.dimensions().map(|a| a * 0.5);
|
||||
0.5 * std::f32::consts::PI * dim.x * dim.z
|
||||
0.5 * PI * dim.x * dim.z
|
||||
},
|
||||
|
||||
_ => {
|
||||
let dim = self.dimensions();
|
||||
2.0 * (std::f32::consts::PI / 6.0 * dim.x * dim.y * dim.z).powf(2.0 / 3.0)
|
||||
2.0 * (PI / 6.0 * dim.x * dim.y * dim.z).powf(2.0 / 3.0)
|
||||
},
|
||||
},
|
||||
|
||||
@ -256,7 +253,7 @@ impl Body {
|
||||
// Airships tend to use the square of the cube root of its volume for
|
||||
// reference area
|
||||
let dim = self.dimensions();
|
||||
(std::f32::consts::PI / 6.0 * dim.x * dim.y * dim.z).powf(2.0 / 3.0)
|
||||
(PI / 6.0 * dim.x * dim.y * dim.z).powf(2.0 / 3.0)
|
||||
},
|
||||
}
|
||||
}
|
||||
@ -267,122 +264,73 @@ fn angle_of_attack(ori: &Ori, rel_flow_dir: &Dir) -> f32 {
|
||||
PI / 2.0 - ori.up().angle_between(rel_flow_dir.to_vec())
|
||||
}
|
||||
|
||||
/// An elliptical fixed rigid wing. Plurally named simply because it's a shape
|
||||
/// typically composed of two wings forming an elliptical lift distribution.
|
||||
//
|
||||
// Animal wings are technically flexible, not rigid, (difference being that the
|
||||
// former's shape is affected by the flow) and usually has the ability to
|
||||
// assume complex shapes with properties like curved camber line, span-wise
|
||||
// twist, dihedral angle, sweep angle, and partitioned sections. However, we
|
||||
// could make do with this model for fully extended animal wings, enabling them
|
||||
// to glide.
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct RigidWings {
|
||||
aspect_ratio: f32,
|
||||
planform_area: f32,
|
||||
// sweep_angle: Option<f32>,
|
||||
}
|
||||
|
||||
impl RigidWings {
|
||||
/// Wings from total span (wing-tip to wing-tip) and
|
||||
/// chord length (leading edge to trailing edge)
|
||||
pub fn new(span_length: f32, chord_length: f32) -> Self {
|
||||
let planform_area = std::f32::consts::PI * chord_length * span_length * 0.25;
|
||||
Self {
|
||||
aspect_ratio: span_length.powi(2) / planform_area,
|
||||
planform_area,
|
||||
}
|
||||
}
|
||||
|
||||
/// The aspect ratio is the ratio of the span squared to actual planform
|
||||
/// area
|
||||
pub fn aspect_ratio(&self) -> f32 { self.aspect_ratio }
|
||||
|
||||
pub fn planform_area(&self) -> f32 { self.planform_area }
|
||||
}
|
||||
|
||||
impl RigidWings {
|
||||
/// Total lift coefficient for a finite wing of symmetric aerofoil shape and
|
||||
/// elliptical pressure distribution.
|
||||
pub fn lift_coefficient(&self, aoa: f32) -> f32 {
|
||||
let aoa_abs = aoa.abs();
|
||||
let stall_angle = PI * 0.1;
|
||||
inline_tweak::tweak!(1.0)
|
||||
* self.planform_area()
|
||||
* if aoa_abs < stall_angle {
|
||||
self.lift_slope(None) * aoa
|
||||
} else if inline_tweak::tweak!(true) {
|
||||
// This is when flow separation and turbulence starts to kick in.
|
||||
// Going to just make something up (based on some data), as the alternative is
|
||||
// to just throw your hands up and return 0
|
||||
let aoa_s = aoa.signum();
|
||||
let c_l_max = self.lift_slope(None) * stall_angle;
|
||||
let deg_45 = PI / 4.0;
|
||||
if aoa_abs < deg_45 {
|
||||
// drop directly to 0.6 * max lift at stall angle
|
||||
// then climb back to max at 45°
|
||||
Lerp::lerp(0.6 * c_l_max, c_l_max, aoa_abs / deg_45) * aoa_s
|
||||
} else {
|
||||
// let's just say lift goes down linearly again until we're at 90°
|
||||
Lerp::lerp(c_l_max, 0.0, (aoa_abs - deg_45) / deg_45) * aoa_s
|
||||
}
|
||||
/// Total lift coefficient for a finite wing of symmetric aerofoil shape and
|
||||
/// elliptical pressure distribution.
|
||||
pub fn lift_coefficient(aspect_ratio: f32, planform_area: f32, aoa: f32) -> f32 {
|
||||
let aoa_abs = aoa.abs();
|
||||
let stall_angle = PI * 0.1;
|
||||
inline_tweak::tweak!(1.0)
|
||||
* planform_area
|
||||
* if aoa_abs < stall_angle {
|
||||
lift_slope(aspect_ratio, None) * aoa
|
||||
} else if inline_tweak::tweak!(true) {
|
||||
// This is when flow separation and turbulence starts to kick in.
|
||||
// Going to just make something up (based on some data), as the alternative is
|
||||
// to just throw your hands up and return 0
|
||||
let aoa_s = aoa.signum();
|
||||
let c_l_max = lift_slope(aspect_ratio, None) * stall_angle;
|
||||
let deg_45 = PI / 4.0;
|
||||
if aoa_abs < deg_45 {
|
||||
// drop directly to 0.6 * max lift at stall angle
|
||||
// then climb back to max at 45°
|
||||
Lerp::lerp(0.6 * c_l_max, c_l_max, aoa_abs / deg_45) * aoa_s
|
||||
} else {
|
||||
0.0
|
||||
// let's just say lift goes down linearly again until we're at 90°
|
||||
Lerp::lerp(c_l_max, 0.0, (aoa_abs - deg_45) / deg_45) * aoa_s
|
||||
}
|
||||
}
|
||||
|
||||
/// The zero-lift profile drag coefficient is the parasite drag on the wings
|
||||
/// at the angle of attack which generates no lift
|
||||
pub fn zero_lift_drag_coefficient(&self) -> f32 {
|
||||
// avg value for Harris' hawk (Parabuteo unicinctus) [1]
|
||||
self.planform_area() * 0.02
|
||||
}
|
||||
|
||||
/// The change in lift over change in angle of attack¹. Multiplying by angle
|
||||
/// of attack gives the lift coefficient (for a finite wing, not aerofoil).
|
||||
///
|
||||
/// Aspect ratio is the ratio of total wing span squared over planform area.
|
||||
///
|
||||
/// # Notes
|
||||
///
|
||||
/// Only valid for symmetric, elliptical wings at small² angles of attack³.
|
||||
/// Does not apply to twisted, cambered or delta wings. (It still gives a
|
||||
/// reasonably accurate approximation if the wing shape is not truly
|
||||
/// elliptical.)
|
||||
///
|
||||
/// 1. geometric angle of attack, i.e. the pitch angle relative to
|
||||
/// freestream flow
|
||||
/// 2. up to around ~18°, at which point maximum lift has been achieved and
|
||||
/// thereafter falls precipitously, causing a stall (this is the stall
|
||||
/// angle) 3. effective aoa, i.e. geometric aoa - induced aoa; assumes
|
||||
/// no sideslip
|
||||
fn lift_slope(&self, sweep_angle: Option<f32>) -> f32 {
|
||||
// lift slope for a thin aerofoil, given by Thin Aerofoil Theory
|
||||
let ar = self.aspect_ratio();
|
||||
let a0 = 2.0 * PI;
|
||||
if let Some(sweep) = sweep_angle {
|
||||
// for swept wings we use Kuchemann's modification to Helmbold's
|
||||
// equation
|
||||
let a0_cos_sweep = a0 * sweep.cos();
|
||||
let x = a0_cos_sweep / (PI * ar);
|
||||
a0_cos_sweep / ((1.0 + x.powi(2)).sqrt() + x)
|
||||
} else if ar < 4.0 {
|
||||
// for low aspect ratio wings (AR < 4) we use Helmbold's equation
|
||||
let x = a0 / (PI * ar);
|
||||
a0 / ((1.0 + x.powi(2)).sqrt() + x)
|
||||
} else {
|
||||
// for high aspect ratio wings (AR > 4) we use the equation given by
|
||||
// Prandtl's lifting-line theory
|
||||
a0 / (1.0 + (a0 / (PI * ar)))
|
||||
0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
## References:
|
||||
/// The zero-lift profile drag coefficient is the parasite drag on the wings
|
||||
/// at the angle of attack which generates no lift
|
||||
pub fn zero_lift_drag_coefficient(planform_area: f32) -> f32 {
|
||||
// avg value for Harris' hawk (Parabuteo unicinctus) [1]
|
||||
planform_area * 0.02
|
||||
}
|
||||
|
||||
1. "Field Estimates of Body Drag Coefficient on the Basis of Dives in Passerine Birds",
|
||||
Anders Hedenström and Felix Liechti, 2001
|
||||
2. "A Simple Method to Determine Drag Coefficients in Aquatic Animals",
|
||||
D. Bilo and W. Nachtigall, 1980
|
||||
*/
|
||||
/// The change in lift over change in angle of attack¹. Multiplying by angle
|
||||
/// of attack gives the lift coefficient (for a finite wing, not aerofoil).
|
||||
/// Aspect ratio is the ratio of total wing span squared over planform area.
|
||||
///
|
||||
/// # Notes
|
||||
/// Only valid for symmetric, elliptical wings at small² angles of attack³.
|
||||
/// Does not apply to twisted, cambered or delta wings. (It still gives a
|
||||
/// reasonably accurate approximation if the wing shape is not truly
|
||||
/// elliptical.)
|
||||
/// 1. geometric angle of attack, i.e. the pitch angle relative to
|
||||
/// freestream flow
|
||||
/// 2. up to around ~18°, at which point maximum lift has been achieved and
|
||||
/// thereafter falls precipitously, causing a stall (this is the stall
|
||||
/// angle) 3. effective aoa, i.e. geometric aoa - induced aoa; assumes
|
||||
/// no sideslip
|
||||
fn lift_slope(aspect_ratio: f32, sweep_angle: Option<f32>) -> f32 {
|
||||
// lift slope for a thin aerofoil, given by Thin Aerofoil Theory
|
||||
let a0 = 2.0 * PI;
|
||||
if let Some(sweep) = sweep_angle {
|
||||
// for swept wings we use Kuchemann's modification to Helmbold's
|
||||
// equation
|
||||
let a0_cos_sweep = a0 * sweep.cos();
|
||||
let x = a0_cos_sweep / (PI * aspect_ratio);
|
||||
a0_cos_sweep / ((1.0 + x.powi(2)).sqrt() + x)
|
||||
} else if aspect_ratio < 4.0 {
|
||||
// for low aspect ratio wings (AR < 4) we use Helmbold's equation
|
||||
let x = a0 / (PI * aspect_ratio);
|
||||
a0 / ((1.0 + x.powi(2)).sqrt() + x)
|
||||
} else {
|
||||
// for high aspect ratio wings (AR > 4) we use the equation given by
|
||||
// Prandtl's lifting-line theory
|
||||
a0 / (1.0 + (a0 / (PI * aspect_ratio)))
|
||||
}
|
||||
}
|
||||
|
@ -68,7 +68,7 @@ pub use self::{
|
||||
InputKind, InventoryAction, InventoryEvent, InventoryManip, MountState, Mounting,
|
||||
},
|
||||
energy::{Energy, EnergyChange, EnergySource},
|
||||
fluid_dynamics::{Fluid, RigidWings},
|
||||
fluid_dynamics::Fluid,
|
||||
group::Group,
|
||||
home_chunk::HomeChunk,
|
||||
inputs::CanBuild,
|
||||
|
@ -1,6 +1,6 @@
|
||||
use super::utils::handle_climb;
|
||||
use crate::{
|
||||
comp::{inventory::slot::EquipSlot, CharacterState, Ori, RigidWings, StateUpdate},
|
||||
comp::{inventory::slot::EquipSlot, CharacterState, Ori, StateUpdate},
|
||||
states::behavior::{CharacterBehavior, JoinData},
|
||||
util::Dir,
|
||||
};
|
||||
@ -9,14 +9,19 @@ use vek::*;
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct Data {
|
||||
pub wings: RigidWings,
|
||||
/// The aspect ratio is the ratio of the span squared to actual planform
|
||||
/// area
|
||||
pub aspect_ratio: f32,
|
||||
pub planform_area: f32,
|
||||
pub ori: Ori,
|
||||
}
|
||||
|
||||
impl Data {
|
||||
pub fn new(span_length: f32, chord_length: f32, ori: Ori) -> Self {
|
||||
let planform_area = std::f32::consts::PI * chord_length * span_length * 0.25;
|
||||
Self {
|
||||
wings: RigidWings::new(span_length, chord_length),
|
||||
aspect_ratio: span_length.powi(2) / planform_area,
|
||||
planform_area,
|
||||
ori,
|
||||
}
|
||||
}
|
||||
|
@ -9,7 +9,6 @@ use common::{
|
||||
event::{EventBus, ServerEvent},
|
||||
outcome::Outcome,
|
||||
resources::DeltaTime,
|
||||
states,
|
||||
terrain::{Block, TerrainGrid},
|
||||
uid::Uid,
|
||||
util::{Projection, SpatialGrid},
|
||||
@ -43,7 +42,6 @@ fn fluid_density(height: f32, fluid: &Fluid) -> Density {
|
||||
fn integrate_forces(
|
||||
dt: &DeltaTime,
|
||||
mut vel: Vel,
|
||||
ori: &Ori,
|
||||
body: &Body,
|
||||
density: &Density,
|
||||
mass: &Mass,
|
||||
@ -61,17 +59,7 @@ fn integrate_forces(
|
||||
// Aerodynamic/hydrodynamic forces
|
||||
if !rel_flow.0.is_approx_zero() {
|
||||
debug_assert!(!rel_flow.0.map(|a| a.is_nan()).reduce_or());
|
||||
let glider: Option<&states::glide::Data> = character_state.and_then(|cs| match cs {
|
||||
CharacterState::Glide(data) => Some(data),
|
||||
_ => None,
|
||||
});
|
||||
let impulse = dt.0
|
||||
* body.aerodynamic_forces(
|
||||
glider.map(|g| &g.ori).unwrap_or(ori),
|
||||
&rel_flow,
|
||||
fluid_density.0,
|
||||
glider.map(|g| g.wings).as_ref(),
|
||||
);
|
||||
let impulse = dt.0 * body.aerodynamic_forces(&rel_flow, fluid_density.0, character_state);
|
||||
debug_assert!(!impulse.map(|a| a.is_nan()).reduce_or());
|
||||
if !impulse.is_approx_zero() {
|
||||
let new_v = vel.0 + impulse / mass.0;
|
||||
@ -576,7 +564,6 @@ impl<'a> PhysicsData<'a> {
|
||||
(
|
||||
positions,
|
||||
velocities,
|
||||
&write.orientations,
|
||||
read.stickies.maybe(),
|
||||
&read.bodies,
|
||||
read.character_states.maybe(),
|
||||
@ -595,7 +582,6 @@ impl<'a> PhysicsData<'a> {
|
||||
(
|
||||
pos,
|
||||
vel,
|
||||
ori,
|
||||
sticky,
|
||||
body,
|
||||
character_state,
|
||||
@ -627,7 +613,6 @@ impl<'a> PhysicsData<'a> {
|
||||
vel.0 = integrate_forces(
|
||||
&dt,
|
||||
*vel,
|
||||
ori,
|
||||
body,
|
||||
density,
|
||||
mass,
|
||||
|
Loading…
Reference in New Issue
Block a user