mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
Initial RRT flight pathfinding
This commit is contained in:
parent
bc4455afe4
commit
7ddc229728
1
Cargo.lock
generated
1
Cargo.lock
generated
@ -5873,6 +5873,7 @@ dependencies = [
|
||||
"fxhash",
|
||||
"hashbrown 0.11.2",
|
||||
"indexmap",
|
||||
"kiddo",
|
||||
"lazy_static",
|
||||
"num-derive",
|
||||
"num-traits",
|
||||
|
@ -25,6 +25,7 @@ serde = { version = "1.0.110", features = ["derive", "rc"] }
|
||||
# Util
|
||||
enum-iterator = "0.6"
|
||||
vek = { version = "=0.14.1", features = ["serde"] }
|
||||
kiddo = "0.1"
|
||||
|
||||
# Strum
|
||||
strum = { version = "0.21", features = ["derive"] }
|
||||
|
@ -4,9 +4,11 @@ use crate::{
|
||||
vol::{BaseVol, ReadVol},
|
||||
};
|
||||
use common_base::span;
|
||||
use hashbrown::hash_map::DefaultHashBuilder;
|
||||
use rand::prelude::*;
|
||||
use std::iter::FromIterator;
|
||||
use hashbrown::{hash_map::DefaultHashBuilder, HashMap};
|
||||
use rand::{prelude::IteratorRandom, thread_rng, Rng, distributions::{Distribution, Uniform}};
|
||||
use std::{f32::consts::PI, iter::FromIterator};
|
||||
use kiddo::{distance::squared_euclidean, KdTree};
|
||||
use tracing::warn;
|
||||
use vek::*;
|
||||
|
||||
// Path
|
||||
@ -81,6 +83,8 @@ pub struct TraversalConfig {
|
||||
pub can_climb: bool,
|
||||
/// Whether the agent can fly.
|
||||
pub can_fly: bool,
|
||||
/// Testing for rrt pathing
|
||||
pub rrt_test: bool,
|
||||
}
|
||||
|
||||
const DIAGONALS: [Vec2<i32>; 8] = [
|
||||
@ -123,24 +127,34 @@ impl Route {
|
||||
let next1 = self.next(1).unwrap_or(next0);
|
||||
|
||||
// Stop using obstructed paths
|
||||
if !walkable(vol, next1) {
|
||||
if !walkable(vol, next1, traversal_cfg) {
|
||||
return None;
|
||||
}
|
||||
|
||||
let be_precise = DIAGONALS.iter().any(|pos| {
|
||||
let be_precise = if traversal_cfg.can_fly {
|
||||
false
|
||||
} else {
|
||||
DIAGONALS.iter().any(|pos| {
|
||||
(-1..2).all(|z| {
|
||||
vol.get(next0 + Vec3::new(pos.x, pos.y, z))
|
||||
.map(|b| !b.is_solid())
|
||||
.unwrap_or(false)
|
||||
})
|
||||
});
|
||||
})};
|
||||
|
||||
let next_tgt = next0.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0);
|
||||
let next_tgt = if traversal_cfg.can_fly {
|
||||
next0.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.5)
|
||||
} else {
|
||||
next0.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0)
|
||||
};
|
||||
let closest_tgt = next_tgt.map2(pos, |tgt, pos| pos.clamped(tgt.floor(), tgt.ceil()));
|
||||
|
||||
// Determine whether we're close enough to the next to to consider it completed
|
||||
let dist_sqrd = pos.xy().distance_squared(closest_tgt.xy());
|
||||
if dist_sqrd
|
||||
// FIXME use PID controller to actually hit nodes
|
||||
if traversal_cfg.can_fly && dist_sqrd < 2.0
|
||||
|| (dist_sqrd
|
||||
// FIXME: Clean up magic numbers
|
||||
< traversal_cfg.node_tolerance.powi(2) * if be_precise { 0.25 } else { 1.0 }
|
||||
&& (((pos.z - closest_tgt.z > 1.2 || (pos.z - closest_tgt.z > -0.2 && traversal_cfg.on_ground))
|
||||
&& (pos.z - closest_tgt.z < 1.2 || (pos.z - closest_tgt.z < 2.9 && vel.z < -0.05))
|
||||
@ -155,7 +169,7 @@ impl Route {
|
||||
&& self.next_idx < self.path.len())
|
||||
|| (traversal_cfg.in_liquid
|
||||
&& pos.z < closest_tgt.z + 0.8
|
||||
&& pos.z > closest_tgt.z))
|
||||
&& pos.z > closest_tgt.z)))
|
||||
{
|
||||
// Node completed, move on to the next one
|
||||
self.next_idx += 1;
|
||||
@ -304,20 +318,27 @@ impl Route {
|
||||
} else {
|
||||
0.5
|
||||
});
|
||||
let tgt = if be_precise {
|
||||
let tgt = if be_precise || traversal_cfg.can_fly {
|
||||
next_tgt
|
||||
} else {
|
||||
Vec3::from(tgt2d) + Vec3::unit_z() * next_tgt.z
|
||||
};
|
||||
|
||||
Some((
|
||||
tgt - pos,
|
||||
// Control the entity's speed to hopefully stop us falling off walls on sharp corners.
|
||||
// This code is very imperfect: it does its best but it can still fail for particularly
|
||||
// fast entities.
|
||||
straight_factor * traversal_cfg.slow_factor + (1.0 - traversal_cfg.slow_factor),
|
||||
))
|
||||
.filter(|(bearing, _)| bearing.z < 2.1)
|
||||
if traversal_cfg.can_fly {
|
||||
Some((
|
||||
tgt - pos,
|
||||
1.0,
|
||||
))
|
||||
} else {
|
||||
Some((
|
||||
tgt - pos,
|
||||
// Control the entity's speed to hopefully stop us falling off walls on sharp corners.
|
||||
// This code is very imperfect: it does its best but it can still fail for particularly
|
||||
// fast entities.
|
||||
straight_factor * traversal_cfg.slow_factor + (1.0 - traversal_cfg.slow_factor),
|
||||
))
|
||||
.filter(|(bearing, _)| bearing.z < 2.1)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -336,6 +357,9 @@ pub struct Chaser {
|
||||
}
|
||||
|
||||
impl Chaser {
|
||||
/// Returns bearing and speed
|
||||
/// Bearing is a Vec3<f32> dictating the direction of movement
|
||||
/// Speed is an f32 between 0.0 and 1.0
|
||||
pub fn chase<V>(
|
||||
&mut self,
|
||||
vol: &V,
|
||||
@ -386,6 +410,9 @@ impl Chaser {
|
||||
.and_then(|(r, _)| r.traverse(vol, pos, vel, &traversal_cfg))
|
||||
}
|
||||
} else {
|
||||
if traversal_cfg.can_fly {
|
||||
warn!("I think no route?");
|
||||
}
|
||||
None
|
||||
};
|
||||
|
||||
@ -406,7 +433,12 @@ impl Chaser {
|
||||
{
|
||||
self.last_search_tgt = Some(tgt);
|
||||
|
||||
let (path, complete) = find_path(&mut self.astar, vol, pos, tgt, &traversal_cfg);
|
||||
let (path, complete) = if traversal_cfg.can_fly && traversal_cfg.rrt_test {
|
||||
find_air_path(vol, pos, tgt, &traversal_cfg)
|
||||
} else {
|
||||
find_path(&mut self.astar, vol, pos, tgt, &traversal_cfg)
|
||||
};
|
||||
//let (path, complete) = find_path(&mut self.astar, vol, pos, tgt, &traversal_cfg);
|
||||
|
||||
self.route = path.map(|path| {
|
||||
let start_index = path
|
||||
@ -430,17 +462,59 @@ impl Chaser {
|
||||
});
|
||||
}
|
||||
|
||||
let walking_towards_edge = (-3..2).all(|z| {
|
||||
vol.get(
|
||||
(pos + Vec3::<f32>::from(tgt_dir) * 2.5).map(|e| e as i32) + Vec3::unit_z() * z,
|
||||
)
|
||||
.map(|b| b.is_air())
|
||||
.unwrap_or(false)
|
||||
});
|
||||
//let walking_towards_edge = (-3..2).all(|z| {
|
||||
// vol.get(
|
||||
// (pos + Vec3::<f32>::from(tgt_dir) * 2.5).map(|e| e as i32) + Vec3::unit_z() * z,
|
||||
// )
|
||||
// .map(|b| b.is_air())
|
||||
// .unwrap_or(false)
|
||||
//});
|
||||
|
||||
//if traversal_cfg.can_fly {
|
||||
// Some(((tgt - pos) , 1.0))
|
||||
//} else if !walking_towards_edge {
|
||||
// Some(((tgt - pos) * Vec3::new(1.0, 1.0, 0.0), 1.0))
|
||||
//} else {
|
||||
//warn!("Hopelessly lost in the world, with no where to go");
|
||||
// None
|
||||
//}
|
||||
if let Some(bearing) = self.route.as_mut().and_then(|(r, _)| r.traverse(vol, pos, vel, &traversal_cfg)) {
|
||||
if traversal_cfg.can_fly {
|
||||
warn!("spin?");
|
||||
}
|
||||
Some(bearing)
|
||||
|
||||
if !walking_towards_edge || traversal_cfg.can_fly {
|
||||
Some(((tgt - pos) * Vec3::new(1.0, 1.0, 0.0), 1.0))
|
||||
} else {
|
||||
if traversal_cfg.can_fly {
|
||||
warn!("welp");
|
||||
let (path, complete) = if traversal_cfg.can_fly && traversal_cfg.rrt_test {
|
||||
find_air_path(vol, pos, tgt, &traversal_cfg)
|
||||
} else {
|
||||
find_path(&mut self.astar, vol, pos, tgt, &traversal_cfg)
|
||||
};
|
||||
//let (path, complete) = find_path(&mut self.astar, vol, pos, tgt, &traversal_cfg);
|
||||
|
||||
self.route = path.map(|path| {
|
||||
let start_index = path
|
||||
.iter()
|
||||
.enumerate()
|
||||
.min_by_key(|(_, node)| {
|
||||
node.xy()
|
||||
.map(|e| e as f32)
|
||||
.distance_squared(pos.xy() + tgt_dir)
|
||||
as i32
|
||||
})
|
||||
.map(|(idx, _)| idx);
|
||||
|
||||
(
|
||||
Route {
|
||||
path,
|
||||
next_idx: start_index.unwrap_or(0),
|
||||
},
|
||||
complete,
|
||||
)
|
||||
});
|
||||
}
|
||||
None
|
||||
}
|
||||
}
|
||||
@ -448,25 +522,29 @@ impl Chaser {
|
||||
}
|
||||
|
||||
#[allow(clippy::float_cmp)] // TODO: Pending review in #587
|
||||
fn walkable<V>(vol: &V, pos: Vec3<i32>) -> bool
|
||||
fn walkable<V>(vol: &V, pos: Vec3<i32>, traversal_cfg: &TraversalConfig) -> bool
|
||||
where
|
||||
V: BaseVol<Vox = Block> + ReadVol,
|
||||
{
|
||||
let below = vol
|
||||
.get(pos - Vec3::unit_z())
|
||||
.ok()
|
||||
.copied()
|
||||
.unwrap_or_else(Block::empty);
|
||||
let a = vol.get(pos).ok().copied().unwrap_or_else(Block::empty);
|
||||
let b = vol
|
||||
.get(pos + Vec3::unit_z())
|
||||
.ok()
|
||||
.copied()
|
||||
.unwrap_or_else(Block::empty);
|
||||
if traversal_cfg.can_fly {
|
||||
vol.get(pos).ok().copied().unwrap_or_else(Block::empty).is_fluid()
|
||||
} else {
|
||||
let below = vol
|
||||
.get(pos - Vec3::unit_z())
|
||||
.ok()
|
||||
.copied()
|
||||
.unwrap_or_else(Block::empty);
|
||||
let a = vol.get(pos).ok().copied().unwrap_or_else(Block::empty);
|
||||
let b = vol
|
||||
.get(pos + Vec3::unit_z())
|
||||
.ok()
|
||||
.copied()
|
||||
.unwrap_or_else(Block::empty);
|
||||
|
||||
let on_ground = below.is_filled();
|
||||
let in_liquid = a.is_liquid();
|
||||
(on_ground || in_liquid) && !a.is_solid() && !b.is_solid()
|
||||
let on_ground = below.is_filled();
|
||||
let in_liquid = a.is_liquid();
|
||||
(on_ground || in_liquid) && !a.is_solid() && !b.is_solid()
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempt to search for a path to a target, returning the path (if one was
|
||||
@ -481,7 +559,12 @@ fn find_path<V>(
|
||||
where
|
||||
V: BaseVol<Vox = Block> + ReadVol,
|
||||
{
|
||||
let is_walkable = |pos: &Vec3<i32>| walkable(vol, *pos);
|
||||
let is_walkable = |pos: &Vec3<i32>| walkable(vol, *pos, traversal_cfg);
|
||||
//let is_walkable = |pos: &Vec3<i32>| if traversal_cfg.can_fly && traversal_cfg.rrt_test {
|
||||
// vol.get(*pos).ok().copied().unwrap_or_else(Block::empty).is_fluid()
|
||||
//} else {
|
||||
// walkable(vol, *pos)
|
||||
//};
|
||||
let get_walkable_z = |pos| {
|
||||
let mut z_incr = 0;
|
||||
for _ in 0..32 {
|
||||
@ -558,14 +641,14 @@ where
|
||||
.map(|b| !b.is_liquid())
|
||||
.unwrap_or(true)
|
||||
|| traversal_cfg.can_climb
|
||||
|| traversal_cfg.can_fly
|
||||
//|| traversal_cfg.can_fly
|
||||
})
|
||||
.into_iter()
|
||||
.flatten(),
|
||||
)
|
||||
.map(move |dir| (pos, dir))
|
||||
.filter(move |(pos, dir)| {
|
||||
(traversal_cfg.can_fly || is_walkable(pos) && is_walkable(&(*pos + **dir)))
|
||||
(/*traversal_cfg.can_fly || */is_walkable(pos) && is_walkable(&(*pos + **dir)))
|
||||
&& ((dir.z < 1
|
||||
|| vol
|
||||
.get(pos + Vec3::unit_z() * 2)
|
||||
@ -631,3 +714,247 @@ where
|
||||
PathResult::Pending => (None, false),
|
||||
}
|
||||
}
|
||||
|
||||
fn find_air_path<V>(
|
||||
vol: &V,
|
||||
startf: Vec3<f32>,
|
||||
endf: Vec3<f32>,
|
||||
traversal_cfg: &TraversalConfig,
|
||||
) -> (Option<Path<Vec3<i32>>>, bool)
|
||||
where
|
||||
V: BaseVol<Vox = Block> + ReadVol,
|
||||
{
|
||||
let radius = 0.9;
|
||||
let is_traversable = |start: &Vec3<f32>, end: &Vec3<f32>| {
|
||||
vol
|
||||
.ray(*start, *end)
|
||||
.until(Block::is_solid)
|
||||
.cast()
|
||||
.0.powi(2)
|
||||
> (*start).distance_squared(*end)
|
||||
//vol.get(*pos).ok().copied().unwrap_or_else(Block::empty).is_fluid();
|
||||
};
|
||||
|
||||
let mut node_index1: usize = 0;
|
||||
let mut node_index2: usize = 0;
|
||||
|
||||
let mut nodes1 = Vec::new();
|
||||
let mut parents1 = HashMap::new();
|
||||
let mut path1 = Vec::new();
|
||||
let mut kdtree1 = KdTree::new();
|
||||
kdtree1.add(&[startf.x, startf.y, startf.z], node_index1).unwrap();
|
||||
nodes1.push(startf);
|
||||
node_index1 += 1;
|
||||
|
||||
let mut nodes2 = Vec::new();
|
||||
let mut parents2 = HashMap::new();
|
||||
let mut path2 = Vec::new();
|
||||
let mut kdtree2 = KdTree::new();
|
||||
kdtree2.add(&[endf.x, endf.y, endf.z], node_index2).unwrap();
|
||||
nodes2.push(endf);
|
||||
node_index2 += 1;
|
||||
|
||||
let mut connect = false;
|
||||
let mut connection1_idx = 0;
|
||||
let mut connection2_idx = 0;
|
||||
|
||||
let mut search_parameter = 0.01;
|
||||
|
||||
for _i in 0..7000 {
|
||||
if connect {
|
||||
break;
|
||||
}
|
||||
let (sampled_point1, sampled_point2) = {
|
||||
let point = point_in_prolate_spheroid(startf, endf, search_parameter);
|
||||
(point, point)
|
||||
};
|
||||
|
||||
let nearest_index1 = *kdtree1.nearest_one(&[sampled_point1.x, sampled_point1.y, sampled_point1.z], &squared_euclidean).unwrap().1 as usize;
|
||||
let nearest_index2 = *kdtree2.nearest_one(&[sampled_point2.x, sampled_point2.y, sampled_point2.z], &squared_euclidean).unwrap().1 as usize;
|
||||
|
||||
let nearest1 = nodes1[nearest_index1];
|
||||
let nearest2 = nodes2[nearest_index2];
|
||||
let new_point1 = nearest1
|
||||
+ (sampled_point1 - nearest1)
|
||||
.normalized()
|
||||
.map(|a| a * radius);
|
||||
let new_point2 = nearest2
|
||||
+ (sampled_point2 - nearest2)
|
||||
.normalized()
|
||||
.map(|a| a * radius);
|
||||
|
||||
if is_traversable(&nearest1, &new_point1) {
|
||||
kdtree1.add(&[new_point1.x, new_point1.y, new_point1.z], node_index1).unwrap();
|
||||
nodes1.push(new_point1);
|
||||
parents1.insert(node_index1, nearest_index1);
|
||||
node_index1 += 1;
|
||||
let (check, index) = kdtree2.nearest_one(&[new_point1.x, new_point1.y, new_point1.z], &squared_euclidean).unwrap();
|
||||
if check < radius {
|
||||
let connection = nodes2[*index];
|
||||
connection2_idx = *index;
|
||||
nodes1.push(connection);
|
||||
connection1_idx = nodes1.len() - 1;
|
||||
parents1.insert(node_index1, node_index1 - 1);
|
||||
connect = true;
|
||||
}
|
||||
}
|
||||
|
||||
if is_traversable(&nearest2, &new_point2) {
|
||||
kdtree2.add(&[new_point2.x, new_point2.y, new_point1.z], node_index2).unwrap();
|
||||
nodes2.push(new_point2);
|
||||
parents2.insert(node_index2, nearest_index2);
|
||||
node_index2 += 1;
|
||||
let (check, index) = kdtree1.nearest_one(&[new_point2.x, new_point2.y, new_point1.z], &squared_euclidean).unwrap();
|
||||
if check < radius {
|
||||
let connection = nodes1[*index];
|
||||
connection1_idx = *index;
|
||||
nodes2.push(connection);
|
||||
connection2_idx = nodes2.len() - 1;
|
||||
parents2.insert(node_index2, node_index2 - 1);
|
||||
connect = true;
|
||||
}
|
||||
}
|
||||
search_parameter += 0.02;
|
||||
}
|
||||
|
||||
let mut path = Vec::new();
|
||||
if connect {
|
||||
let mut current_node_index1 = connection1_idx;
|
||||
while current_node_index1 > 0 {
|
||||
current_node_index1 = *parents1.get(¤t_node_index1).unwrap();
|
||||
path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
|
||||
}
|
||||
let mut current_node_index2 = connection2_idx;
|
||||
while current_node_index2 > 0 {
|
||||
current_node_index2 = *parents2.get(¤t_node_index2).unwrap();
|
||||
path2.push(nodes2[current_node_index2].map(|e| e.floor() as i32));
|
||||
}
|
||||
path1.reverse();
|
||||
path.append(&mut path1);
|
||||
path.append(&mut path2);
|
||||
path.dedup();
|
||||
} else {
|
||||
let mut current_node_index1 = kdtree1.nearest_one(&[endf.x, endf.y, endf.z], &squared_euclidean).unwrap().1;
|
||||
for _i in 0..3 {
|
||||
if *current_node_index1 == 0 || nodes1[*current_node_index1].distance_squared(startf) < 4.0 {
|
||||
current_node_index1 = parents1.values().choose(&mut thread_rng()).unwrap();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
path1.push(nodes1[*current_node_index1].map(|e| e.floor() as i32));
|
||||
while *current_node_index1 != 0 && nodes1[*current_node_index1].distance_squared(startf) > 4.0 {
|
||||
current_node_index1 = parents1.get(¤t_node_index1).unwrap();
|
||||
path1.push(nodes1[*current_node_index1].map(|e| e.floor() as i32));
|
||||
}
|
||||
|
||||
path1.reverse();
|
||||
path.append(&mut path1);
|
||||
}
|
||||
println!("path: {:?}", path);
|
||||
(Some(path.into_iter().collect()), connect)
|
||||
}
|
||||
|
||||
/// Returns a random point within a radially symmetrical ellipsoid with given foci
|
||||
/// and a `search parameter` to determine the size of the ellipse beyond the foci.
|
||||
/// Technically the point is within a prolate spheroid translated and rotated to the
|
||||
/// proper place in cartesian space.
|
||||
/// The search_parameter is a float that relates to the length of the string for
|
||||
/// a two dimensional ellipse or the size of the ellipse beyond the foci. In this
|
||||
/// case that analogy still holds as the ellipse is radially symmetrical along the
|
||||
/// axis between the foci. The value of the search parameter must be greater than zero.
|
||||
/// In order to increase the sample area, the search_parameter should be increased
|
||||
/// linearly as the search continues.
|
||||
pub fn point_in_prolate_spheroid(focus1: Vec3<f32>, focus2: Vec3<f32>, search_parameter: f32) -> Vec3<f32> {
|
||||
|
||||
let mut rng = thread_rng();
|
||||
// Uniform distribution
|
||||
let range = Uniform::from(0.0..1.0);
|
||||
|
||||
// Midpoint is used as the local origin
|
||||
let midpoint = 0.5 * (focus1 + focus2);
|
||||
// Radius between the start and end of the path
|
||||
let radius: f32 = focus1.distance(focus2);
|
||||
// The linear eccentricity of an ellipse is the distance from the origin to a focus
|
||||
// A prolate spheroid is a half-ellipse rotated for a full revolution which is why
|
||||
// ellipse variables are used frequently in this function
|
||||
let linear_eccentricity: f32 = 0.5 * radius;
|
||||
|
||||
// For an ellipsoid, three variables determine the shape: a, b, and c.
|
||||
// These are the distance from the center/origin to the surface on the
|
||||
// x, y, and z axes, respectively.
|
||||
// For a prolate spheroid a and b are equal.
|
||||
// c is determined by adding the search parameter to the linear eccentricity.
|
||||
// As the search parameter increases the size of the spheroid increases
|
||||
let c: f32 = linear_eccentricity + search_parameter;
|
||||
// The width is calculated to prioritize increasing width over length of
|
||||
// the ellipsoid
|
||||
let a: f32 = (c.powi(2) - linear_eccentricity.powi(2)).powf(0.5);
|
||||
// The width should be the same in both the x and y directions
|
||||
let b: f32 = a;
|
||||
|
||||
// The parametric spherical equation for an ellipsoid measuring from the
|
||||
// center point is as follows:
|
||||
// x = a * cos(theta) * cos(lambda)
|
||||
// y = b * cos(theta) * sin(lambda)
|
||||
// z = c * sin(theta)
|
||||
//
|
||||
// where -0.5 * PI <= theta <= 0.5 * PI
|
||||
// and 0.0 <= lambda < 2.0 * PI
|
||||
//
|
||||
// Select these two angles using the uniform distribution defined at the
|
||||
// beginning of the function from 0.0 to 1.0
|
||||
let rtheta: f32 = PI * range.sample(&mut rng) - 0.5 * PI;
|
||||
let lambda: f32 = 2.0 * PI * range.sample(&mut rng);
|
||||
// Select a point on the surface of the ellipsoid
|
||||
let point = Vec3::new(a * rtheta.cos() * lambda.cos(), b * rtheta.cos() * lambda.sin(), c * rtheta.sin());
|
||||
//let surface_point = Vec3::new(a * rtheta.cos() * lambda.cos(), b * rtheta.cos() * lambda.sin(), c * rtheta.sin());
|
||||
//let magnitude = surface_point.magnitude();
|
||||
//let direction = surface_point.normalized();
|
||||
//// Randomly select a point along the vector to the previously selected surface
|
||||
//// point using the uniform distribution
|
||||
//let point = magnitude * range.sample(&mut rng) * direction;
|
||||
|
||||
|
||||
// Now that a point has been selected in local space, it must be rotated and
|
||||
// translated into global coordinates
|
||||
let dx = focus2.x - focus1.x;
|
||||
let dy = focus2.y - focus1.y;
|
||||
let dz = focus2.z - focus1.z;
|
||||
// Phi and theta are the angles from the x axis in the x-y plane and from
|
||||
// the z axis, respectively. (As found in spherical coordinates)
|
||||
// These angles are used to rotate the random point in the spheroid about
|
||||
// the local origin
|
||||
// Rotate about z axis by phi
|
||||
//let phi: f32 = if dx.abs() > 0.0 {
|
||||
// (dy / dx).atan()
|
||||
//} else {
|
||||
// 0.5 * PI
|
||||
//};
|
||||
// This is unnecessary as rtheta is randomly selected between 0.0 and 2.0 * PI
|
||||
// let rot_z_mat = Mat3::new(phi.cos(), -1.0 * phi.sin(), 0.0, phi.sin(), phi.cos(), 0.0, 0.0, 0.0, 1.0);
|
||||
|
||||
// rotate about perpendicular vector in the xy plane by theta
|
||||
let theta: f32 = if radius > 0.0 {
|
||||
(dz / radius).acos()
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
// Vector from focus1 to focus2
|
||||
let r_vec = focus2 - focus1;
|
||||
// Perpendicular vector in xy plane
|
||||
let perp_vec = Vec3::new(-1.0 * r_vec.y, r_vec.x, 0.0).normalized();
|
||||
let l = perp_vec.x;
|
||||
let m = perp_vec.y;
|
||||
let n = perp_vec.z;
|
||||
// Rotation matrix for rotation about a vector
|
||||
let rot_2_mat = Mat3::new(l * l * (1.0 - theta.cos()), m * l * (1.0 - theta.cos()) - n * theta.sin(), n * l * (1.0 - theta.cos()) + m * theta.sin(),
|
||||
l * m * (1.0 - theta.cos()) + n * theta.sin(), m * m * (1.0 - theta.cos()) + theta.cos(), n * m * (1.0 - theta.cos()) - l * theta.sin(),
|
||||
l * n * (1.0 - theta.cos()) - m * theta.sin(), m * n * (1.0 - theta.cos()) + l * theta.sin(), n * n * (1.0 - theta.cos()) + theta.cos());
|
||||
|
||||
// get the global coordinates of the point by rotating and adding the origin
|
||||
// rot_z_mat is unneeded due to the random rotation defined by lambda
|
||||
// let global_coords = midpoint + rot_2_mat * (rot_z_mat * point);
|
||||
let global_coords = midpoint + rot_2_mat * point;
|
||||
global_coords
|
||||
}
|
||||
|
@ -305,6 +305,25 @@ impl<'a> System<'a> for Sys {
|
||||
// obstacles that smaller entities would not).
|
||||
let node_tolerance = scale * 1.5;
|
||||
let slow_factor = body.map_or(0.0, |b| b.base_accel() / 250.0).min(1.0);
|
||||
let rrt_test = if let Some(target_info) = agent.target {
|
||||
let Target {
|
||||
target, hostile, ..
|
||||
} = target_info;
|
||||
if let Some(Alignment::Owned(uid)) = alignment {
|
||||
if read_data.uids.get(target) == Some(&uid) {
|
||||
controller
|
||||
.actions
|
||||
.push(ControlAction::basic_input(InputKind::Fly));
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
} else {
|
||||
false
|
||||
}
|
||||
} else {
|
||||
false
|
||||
};
|
||||
let traversal_config = TraversalConfig {
|
||||
node_tolerance,
|
||||
slow_factor,
|
||||
@ -313,6 +332,7 @@ impl<'a> System<'a> for Sys {
|
||||
min_tgt_dist: 1.0,
|
||||
can_climb: body.map_or(false, Body::can_climb),
|
||||
can_fly: body.map_or(false, |b| b.fly_thrust().is_some()),
|
||||
rrt_test,
|
||||
};
|
||||
|
||||
let flees = alignment.map_or(true, |a| {
|
||||
|
Loading…
Reference in New Issue
Block a user