make systems more stable by:
- fix wobbly, by doing CompSync and TimeSync in same ecs system
- dont interpolate on voxygen
- sync PhysState to the client in order to get rid of the jump snap to ground bug
- make the simulate_ahead more constant over time, as "jumps" in this number will be noticed by the client as "lag jumps"

There are still some problems
- [ ] Snap to the ground on jump isn't fixed completly, as we depend on tick n-1 and we only sync tick n to the client
- [ ] Arrows dont work properly yet with this commit, e.g. right click arrow attack
- [ ] Verify that clientcommands are actually broadcasted to all clients
- [ ] Followup: Agent needs to send clientcommands rather than commands
This commit is contained in:
Marcel Märtens 2022-04-06 00:12:26 +02:00
parent 65a0c15054
commit 8ab5d53f2c
13 changed files with 372 additions and 391 deletions

View File

@ -4,6 +4,7 @@
pub mod addr;
pub mod error;
mod revertclock;
// Reexports
pub use crate::error::Error;
@ -15,7 +16,7 @@ pub use specs::{
Builder, DispatcherBuilder, Entity as EcsEntity, ReadStorage, World, WorldExt,
};
use crate::addr::ConnectionArgs;
use crate::{addr::ConnectionArgs, revertclock::RevertClock};
use byteorder::{ByteOrder, LittleEndian};
use common::{
character::{CharacterId, CharacterItem},
@ -64,7 +65,7 @@ use common_net::{
sync::WorldSyncExt,
};
use common_state::State;
use common_systems::{add_local_systems, add_rewind_systems};
use common_systems::add_local_systems;
use comp::BuffKind;
use hashbrown::{HashMap, HashSet};
use image::DynamicImage;
@ -237,9 +238,7 @@ pub struct Client {
local_command_gen: CommandGenerator,
next_control: Controller,
inter_tick_reverted_time: Option<Duration>,
inter_tick_time_syncs: usize,
rewind_fluctuation_budget: f64,
revert_clock: RevertClock,
network: Option<Network>,
participant: Option<Participant>,
@ -724,9 +723,7 @@ impl Client {
local_command_gen: CommandGenerator::default(),
next_control: Controller::default(),
inter_tick_reverted_time: None,
inter_tick_time_syncs: 0,
rewind_fluctuation_budget: 0.0,
revert_clock: RevertClock::default(),
network: Some(network),
participant: Some(participant),
@ -1705,8 +1702,7 @@ impl Client {
// 1) Build up a list of events for this frame, to be passed to the frontend.
let mut frontend_events = Vec::new();
self.inter_tick_reverted_time = None;
self.inter_tick_time_syncs = 0;
self.revert_clock.reset();
// Prepare for new events
{
@ -1736,256 +1732,9 @@ impl Client {
// Handle new messages from the server.
frontend_events.append(&mut self.handle_new_messages()?);
// Simulate Ahead
//TODO: also waro budget in non rewind workflow
//Dies hier. außerdem ist immernoch 200 als fixer wert im controler drinn
let time = self.state.ecs().read_resource::<Time>().0 as f64;
common_base::plot!("recived_time_sync", self.inter_tick_time_syncs as f64);
if let Some(rewind_time) = self.inter_tick_reverted_time {
let time = self.state.ecs().read_resource::<Time>().0 as f64;
let simulate_ahead = self
.state
.ecs()
.read_storage::<RemoteController>()
.get(self.entity())
.map(|rc| rc.simulate_ahead())
.unwrap_or_default();
// We substract `dt` here, as otherwise we
// Tick1: server_time=100ms dt=60ms ping=30 simulate_ahead=130ms,
// rewind_tick=130ms end_tick=100+130+60=290
// Tick2: server_time=130ms dt=30ms ping=30 simulate_ahead=130ms,
// rewind_tick=130ms end_tick=130+130+30=290
// Tick3: server_time=160ms dt=60ms ping=30 simulate_ahead=130ms,
// rewind_tick=130ms end_tick=160+130+60=350 with dt substraction
// Tick1: server_time=100ms dt=60ms ping=30 simulate_ahead=130ms,
// rewind_tick=70ms end_tick=100+70+60=230 Tick2: server_time=130ms
// dt=30ms ping=30 simulate_ahead=130ms, rewind_tick=100ms
// end_tick=130+100+30=260 Tick3: server_time=160ms dt=60ms ping=30
// simulate_ahead=130ms, rewind_tick=70ms end_tick=160+70+60=290
let simulate_ahead = simulate_ahead.max(dt) - dt;
let simulate_ahead = simulate_ahead + Duration::from_secs_f64(1.0 / 30.0);
/*
let x = if rewind_time > simulate_ahead + Duration::from_millis(25) {
common_base::plot!("xxx", 1.0);
common_base::plot!("gggggg", simulate_ahead.as_secs_f64() - rewind_time.as_secs_f64() );
simulate_ahead + Duration::from_millis(15)
} else if rewind_time < simulate_ahead - Duration::from_millis(25) {
common_base::plot!("xxx", -1.0);
simulate_ahead - Duration::from_millis(15)
} else {
common_base::plot!("xxx", 0.0);
simulate_ahead
};
*/
{
let time = self.state.ecs().read_resource::<Time>().0;
common_base::plot!("tick_before", time);
let vel = self
.state
.ecs()
.read_storage::<Vel>()
.get(self.entity())
.cloned()
.unwrap_or(Vel(Vec3::zero()));
common_base::plot!("vel_x_before1", vel.0.x as f64);
common_base::plot!("vel_y_before1", vel.0.y as f64);
common_base::plot!("vel_z_before1", vel.0.z as f64);
let pos = self
.state
.ecs()
.read_storage::<common::comp::Pos>()
.get(self.entity())
.cloned()
.unwrap_or(common::comp::Pos(Vec3::zero()));
common_base::plot!("pos_x_before1", pos.0.x as f64);
common_base::plot!("pos_y_before1", pos.0.y as f64);
common_base::plot!("pos_z_before1", pos.0.z as f64);
}
common_base::plot!("rewind_time", rewind_time.as_secs_f64());
self.state.rewind_tick(
simulate_ahead,
|dispatch_builder| {
add_rewind_systems(dispatch_builder);
},
false,
);
{
let time = self.state.ecs().read_resource::<Time>().0;
common_base::plot!("tick_afterwards1", time);
let vel = self
.state
.ecs()
.read_storage::<Vel>()
.get(self.entity())
.cloned()
.unwrap_or(Vel(Vec3::zero()));
common_base::plot!("vel_x_after1", vel.0.x as f64);
common_base::plot!("vel_y_after1", vel.0.y as f64);
common_base::plot!("vel_z_after1", vel.0.z as f64);
let pos = self
.state
.ecs()
.read_storage::<common::comp::Pos>()
.get(self.entity())
.cloned()
.unwrap_or(common::comp::Pos(Vec3::zero()));
common_base::plot!("pos_x_after1", pos.0.x as f64);
common_base::plot!("pos_y_after1", pos.0.y as f64);
common_base::plot!("pos_z_after1", pos.0.z as f64);
}
}
/*
let mut rewind_time = Duration::from_secs_f64(0.0);
const WARP_PERCENT: f64 = 0.05; // make sure we end up not further than 5% from the estimated tick
let mut target_smooth_dt = dt.as_secs_f64();
common_base::plot!("recived_time_sync", 0.0);
if let Some(reverted_time) = self.inter_tick_reverted_time {
// At smooth_time we wouldn't notice any rewind
let smooth_time = reverted_time + dt;
common_base::plot!("recived_time_sync", 1.0);
common_base::plot!("reverted_time", reverted_time.as_secs_f64());
let time = self.state.ecs().read_resource::<Time>().0 as f64;
let simulate_ahead = self
.state
.ecs()
.read_storage::<RemoteController>()
.get(self.entity())
.map(|rc| rc.simulate_ahead())
.unwrap_or_default();
// We substract `dt` here, as otherwise we
// Tick1: server_time=100ms dt=60ms ping=30 simulate_ahead=130ms, rewind_tick=130ms end_tick=100+130+60=290
// Tick2: server_time=130ms dt=30ms ping=30 simulate_ahead=130ms, rewind_tick=130ms end_tick=130+130+30=290
// Tick3: server_time=160ms dt=60ms ping=30 simulate_ahead=130ms, rewind_tick=130ms end_tick=160+130+60=350
// with dt substraction
// Tick1: server_time=100ms dt=60ms ping=30 simulate_ahead=130ms, rewind_tick=70ms end_tick=100+70+60=230
// Tick2: server_time=130ms dt=30ms ping=30 simulate_ahead=130ms, rewind_tick=100ms end_tick=130+100+30=260
// Tick3: server_time=160ms dt=60ms ping=30 simulate_ahead=130ms, rewind_tick=70ms end_tick=160+70+60=290
let simulate_ahead = simulate_ahead.max(dt) - dt;
// measurements lead to the effect that smooth_diff is == 0.0 when we add 2 server ticks here.
let simulate_ahead = simulate_ahead + Duration::from_secs_f64(1.0 / 30.0);
rewind_time = simulate_ahead;
// Simulate_ahead still fluctionates because Server Tick != Client Tick, and we cant
// control the phase in which the sync happens.
// In order to dampen it, we calculate the target_smooth_dt and make sure to not derive
// to much from it
ERROR, muss man das hier swappen ?
target_smooth_dt = reverted_time.as_secs_f64() - simulate_ahead.as_secs_f64();
// we store it, and will apply it over the course of the next ticks
self.rewind_fluctuation_budget = target_smooth_dt;
common_base::plot!("new_rewind_fluctuation_budget", self.rewind_fluctuation_budget);
}
common_base::plot!("rewind_time", rewind_time.as_secs_f64());
// we need to subtract the normal dt as we have a separate tick call for it.
// make it positive as we wont allow direct go in past
let corrected_target_smooth_dt = (target_smooth_dt - dt.as_secs_f64()).max(0.0);
common_base::plot!("corrected_target_smooth_dt", corrected_target_smooth_dt);
// apply our budget to rewind_time
let mut smooth_rewind_time = rewind_time.as_secs_f64();
smooth_rewind_time += self.rewind_fluctuation_budget;
let xxx = smooth_rewind_time.clamp( corrected_target_smooth_dt * (1.0-WARP_PERCENT), corrected_target_smooth_dt * (1.0+WARP_PERCENT));
common_base::plot!("xxx", xxx);
smooth_rewind_time = xxx;
self.rewind_fluctuation_budget -= smooth_rewind_time - rewind_time.as_secs_f64();
common_base::plot!("rewind_fluctuation_budget", self.rewind_fluctuation_budget);
common_base::plot!("target_smooth_dt", target_smooth_dt);
tracing::warn!(?smooth_rewind_time, ?dt, "simulating ahead again");
self.state.rewind_tick(
Duration::from_secs_f64(smooth_rewind_time),
|dispatch_builder| {
add_rewind_systems(dispatch_builder);
},
false,
);
*/
/*
if let Some(rewind_time) = self.inter_tick_reverted_time {
common_base::plot!("recived_time_sync", 1.0);
let _time = self.state.ecs().read_resource::<Time>().0 as f64;
let simulate_ahead = self
.state
.ecs()
.read_storage::<RemoteController>()
.get(self.entity())
.map(|rc| rc.simulate_ahead())
.unwrap_or_default();
// We substract `dt` here, as otherwise we
// Tick1: server_time=100ms dt=60ms ping=30 simulate_ahead=130ms,
// rewind_tick=130ms end_tick=100+130+60=290
// Tick2: server_time=130ms dt=30ms ping=30 simulate_ahead=130ms,
// rewind_tick=130ms end_tick=130+130+30=290
// Tick3: server_time=160ms dt=60ms ping=30 simulate_ahead=130ms,
// rewind_tick=130ms end_tick=160+130+60=350 with dt substraction
// Tick1: server_time=100ms dt=60ms ping=30 simulate_ahead=130ms,
// rewind_tick=70ms end_tick=100+70+60=230 Tick2: server_time=130ms
// dt=30ms ping=30 simulate_ahead=130ms, rewind_tick=100ms
// end_tick=130+100+30=260 Tick3: server_time=160ms dt=60ms ping=30
// simulate_ahead=130ms, rewind_tick=70ms end_tick=160+70+60=290
let simulate_ahead = simulate_ahead.max(dt) - dt;
// measurements lead to the effect that smooth_diff is == 0.0 when we add 2
// server ticks here.
let simulate_ahead = simulate_ahead + Duration::from_secs_f64(1.0 / 30.0);
// Simulate_ahead still fluctionates because Server Tick != Client Tick, and we cant
// control the phase in which the sync happens.
// In order to dampen it, we calculate the smooth_time and make sure to not derive
// to much from it
let smooth_diff = simulate_ahead.as_secs_f64() - rewind_time.as_secs_f64();
const WARP_PERCENT: f64 = 0.05; // make sure we end up not further than 5% from the estimated tick
let mut warp_budget = dt.as_secs_f64() * WARP_PERCENT;
if smooth_diff.abs() > warp_budget {
self.rewind_fluctuation_budget += (dt.as_secs_f64() * (1.0-WARP_PERCENT)) * smooth_diff.signum();
warp_budget = warp_budget.clamp(-warp_budget, warp_budget);
}
// extend from
let add = if smooth_diff >= 0.0 {
smooth_diff.min(self.rewind_fluctuation_budget).max(0.0)
} else {
smooth_diff.max(self.rewind_fluctuation_budget).min(0.0)
};
self.rewind_fluctuation_budget -= add;
let simulate_ahead = Duration::from_secs_f64(time + rewind_time.as_secs_f64() + add);
common_base::plot!("rewind_fluctuation_budget", self.rewind_fluctuation_budget);
common_base::plot!("smooth_diff", smooth_diff);
//let simulate_ahead = simulate_ahead.max(dt)/* - dt*/;
//let simulate_ahead = rewind_time.min(simulate_ahead);
tracing::warn!(?simulate_ahead, ?dt, "simulating ahead again");
common_base::plot!("rewind_time", rewind_time.as_secs_f64());
self.state.rewind_tick(
simulate_ahead,
|dispatch_builder| {
add_rewind_systems(dispatch_builder);
},
false,
);
}
*/
// When the server sends a componenet update, rewind back
self.revert_clock.tick(&mut self.state, dt);
//prepare this tick after we rewindet
// 2) Handle input from frontend.
// Pass character actions from frontend input to the player's entity.
@ -1993,10 +1742,11 @@ impl Client {
prof_span!("handle and send inputs");
self.next_control.inputs = inputs;
let con = std::mem::take(&mut self.next_control);
let time = Duration::from_secs_f64(self.state.ecs().read_resource::<Time>().0) + dt;
let this_tick_time =
Duration::from_secs_f64(self.state.ecs().read_resource::<Time>().0) + dt;
let monotonic_time =
Duration::from_secs_f64(self.state.ecs().read_resource::<MonotonicTime>().0);
let rcon = self.local_command_gen.gen(time, con);
let rcon = self.local_command_gen.gen(this_tick_time, con);
let commands = self
.state
.ecs()
@ -2446,23 +2196,15 @@ impl Client {
) -> Result<(), Error> {
prof_span!("handle_server_in_game_msg");
match msg {
ServerGeneral::TimeSync(time) => {
self.inter_tick_time_syncs += 1;
// Even with a stable network, expect time to oscillate around the actual time
// by SERVER_TICK (33.3ms)
let old_time = self.state.ecs().read_resource::<Time>().0;
let diff = old_time - time.0;
self.state.ecs().write_resource::<Time>().0 = time.0;
if diff > 0.0 {
tracing::warn!(?old_time, ?diff, "Time was reverted by server");
let rewind_time = self.inter_tick_reverted_time.unwrap_or_default()
+ Duration::from_secs_f64(diff);
self.inter_tick_reverted_time = Some(rewind_time);
} else {
tracing::warn!(?old_time, ?diff, "Time was advanced by server");
}
ServerGeneral::TimeSync {
server_time,
inter_tick_offset,
} => {
let old_client_time = self.state.ecs().read_resource::<Time>().0;
self.state.ecs().write_resource::<Time>().0 = server_time.0;
self.revert_clock
.sync(old_client_time, server_time, inter_tick_offset);
},
ServerGeneral::AckControl {
acked_ids,
highest_ahead_command,

249
client/src/revertclock.rs Normal file
View File

@ -0,0 +1,249 @@
use common::{
comp::{RemoteController, Vel},
resources::{DeltaTime, MonotonicTime, PlayerEntity, Time, TimeOfDay},
};
use common_state::State;
use common_systems::add_rewind_systems;
use specs::WorldExt;
use std::time::Duration;
use vek::{ops::Clamp, Vec3};
#[derive(Default)]
pub(crate) struct RevertClock {
reverted_time: Option<Duration>,
time_syncs: usize,
}
impl RevertClock {
pub(crate) fn reset(&mut self) {
self.reverted_time = None;
self.time_syncs = 0;
}
// The server might need up to 33ms to calcualte its tick. It will send this
// time with it, so that we can substract it from
pub(crate) fn sync(
&mut self,
old_client_time: f64,
new_server_time: Time,
_inter_tick_offset: Duration,
) {
self.time_syncs += 1;
// Even with a stable network, expect time to oscillate around the actual time
// by SERVER_TICK (33.3ms)
let diff = old_client_time - new_server_time.0;
if diff > 0.0 {
tracing::warn!(?old_client_time, ?diff, "Time was reverted by server");
let rewind_time =
self.reverted_time.unwrap_or_default() + Duration::from_secs_f64(diff);
self.reverted_time = Some(rewind_time);
} else {
tracing::warn!(?old_client_time, ?diff, "Time was advanced by server");
}
}
/// Rewind local changes after the server send some old state
fn rewind_tick(simulate_ahead: Duration, state: &mut State) {
common_base::plot!("simulate_ahead", simulate_ahead.as_secs_f64());
// store changes
let time_of_day = state.ecs().read_resource::<TimeOfDay>().0;
let monotonic_time = state.ecs().read_resource::<MonotonicTime>().0;
let delta_time = state.ecs().read_resource::<DeltaTime>().0;
const MAX_INCREMENTS: usize = 100; // The maximum number of collision tests per tick
const STEP_SEC: f64 = 0.04;
let increments =
((simulate_ahead.as_secs_f64() / STEP_SEC).ceil() as usize).clamped(1, MAX_INCREMENTS);
for _ in 0..increments {
let partial = simulate_ahead / (increments as u32);
state.tick(
partial,
|dispatch_builder| {
add_rewind_systems(dispatch_builder);
},
false,
None, // TODO: fix metrics
);
}
// rewind changes
state.ecs().write_resource::<TimeOfDay>().0 = time_of_day;
state.ecs().write_resource::<MonotonicTime>().0 = monotonic_time;
state.ecs().write_resource::<DeltaTime>().0 = delta_time;
}
pub(crate) fn tick(&mut self, state: &mut State, dt: Duration) {
let entity = state
.ecs()
.read_resource::<PlayerEntity>()
.0
.expect("Client::entity should always have PlayerEntity be Some");
common_base::plot!("recived_time_sync", self.time_syncs as f64);
let rewind_time = match self.reverted_time {
Some(rewind_time) => rewind_time,
None => return,
};
let simulate_ahead = state
.ecs()
.read_storage::<RemoteController>()
.get(entity)
.map(|rc| rc.simulate_ahead())
.unwrap_or_default();
// We substract `dt` here, as otherwise we
// Tick1: server_time=100ms dt=60ms ping=30 simulate_ahead=130ms,
// rewind_tick=130ms end_tick=100+130+60=290
// Tick2: server_time=130ms dt=30ms ping=30 simulate_ahead=130ms,
// rewind_tick=130ms end_tick=130+130+30=290
// Tick3: server_time=160ms dt=60ms ping=30 simulate_ahead=130ms,
// rewind_tick=130ms end_tick=160+130+60=350 with dt substraction
// Tick1: server_time=100ms dt=60ms ping=30 simulate_ahead=130ms,
// rewind_tick=70ms end_tick=100+70+60=230 Tick2: server_time=130ms
// dt=30ms ping=30 simulate_ahead=130ms, rewind_tick=100ms
// end_tick=130+100+30=260 Tick3: server_time=160ms dt=60ms ping=30
// simulate_ahead=130ms, rewind_tick=70ms end_tick=160+70+60=290
let simulate_ahead = simulate_ahead.max(dt) - dt;
let simulate_ahead = simulate_ahead + Duration::from_secs_f64(1.0 / 30.0);
/*
let x = if rewind_time > simulate_ahead + Duration::from_millis(25) {
common_base::plot!("xxx", 1.0);
common_base::plot!("gggggg", simulate_ahead.as_secs_f64() - rewind_time.as_secs_f64() );
simulate_ahead + Duration::from_millis(15)
} else if rewind_time < simulate_ahead - Duration::from_millis(25) {
common_base::plot!("xxx", -1.0);
simulate_ahead - Duration::from_millis(15)
} else {
common_base::plot!("xxx", 0.0);
simulate_ahead
};
*/
{
let last_tick_time = state.ecs().read_resource::<Time>().0 as f64;
common_base::plot!("tick_before", last_tick_time);
let vel = state
.ecs()
.read_storage::<Vel>()
.get(entity)
.cloned()
.unwrap_or(Vel(Vec3::zero()));
common_base::plot!("vel_x_before1", vel.0.x as f64);
common_base::plot!("vel_y_before1", vel.0.y as f64);
common_base::plot!("vel_z_before1", vel.0.z as f64);
let pos = state
.ecs()
.read_storage::<common::comp::Pos>()
.get(entity)
.cloned()
.unwrap_or(common::comp::Pos(Vec3::zero()));
common_base::plot!("pos_x_before1", pos.0.x as f64);
common_base::plot!("pos_y_before1", pos.0.y as f64);
common_base::plot!("pos_z_before1", pos.0.z as f64);
}
common_base::plot!("rewind_time", rewind_time.as_secs_f64());
RevertClock::rewind_tick(simulate_ahead, state);
{
let time = state.ecs().read_resource::<Time>().0 as f64;
common_base::plot!("tick_afterwards1", time);
let vel = state
.ecs()
.read_storage::<Vel>()
.get(entity)
.cloned()
.unwrap_or(Vel(Vec3::zero()));
common_base::plot!("vel_x_after1", vel.0.x as f64);
common_base::plot!("vel_y_after1", vel.0.y as f64);
common_base::plot!("vel_z_after1", vel.0.z as f64);
let pos = state
.ecs()
.read_storage::<common::comp::Pos>()
.get(entity)
.cloned()
.unwrap_or(common::comp::Pos(Vec3::zero()));
common_base::plot!("pos_x_after1", pos.0.x as f64);
common_base::plot!("pos_y_after1", pos.0.y as f64);
common_base::plot!("pos_z_after1", pos.0.z as f64);
}
/*
let mut rewind_time = Duration::from_secs_f64(0.0);
const WARP_PERCENT: f64 = 0.05; // make sure we end up not further than 5% from the estimated tick
let mut target_smooth_dt = dt.as_secs_f64();
common_base::plot!("recived_time_sync", 0.0);
if let Some(reverted_time) = self.inter_tick_reverted_time {
// At smooth_time we wouldn't notice any rewind
let smooth_time = reverted_time + dt;
common_base::plot!("recived_time_sync", 1.0);
common_base::plot!("reverted_time", reverted_time.as_secs_f64());
let time = self.state.ecs().read_resource::<Time>().0 as f64;
let simulate_ahead = self
.state
.ecs()
.read_storage::<RemoteController>()
.get(entity)
.map(|rc| rc.simulate_ahead())
.unwrap_or_default();
// We substract `dt` here, as otherwise we
// Tick1: server_time=100ms dt=60ms ping=30 simulate_ahead=130ms, rewind_tick=130ms end_tick=100+130+60=290
// Tick2: server_time=130ms dt=30ms ping=30 simulate_ahead=130ms, rewind_tick=130ms end_tick=130+130+30=290
// Tick3: server_time=160ms dt=60ms ping=30 simulate_ahead=130ms, rewind_tick=130ms end_tick=160+130+60=350
// with dt substraction
// Tick1: server_time=100ms dt=60ms ping=30 simulate_ahead=130ms, rewind_tick=70ms end_tick=100+70+60=230
// Tick2: server_time=130ms dt=30ms ping=30 simulate_ahead=130ms, rewind_tick=100ms end_tick=130+100+30=260
// Tick3: server_time=160ms dt=60ms ping=30 simulate_ahead=130ms, rewind_tick=70ms end_tick=160+70+60=290
let simulate_ahead = simulate_ahead.max(dt) - dt;
// measurements lead to the effect that smooth_diff is == 0.0 when we add 2 server ticks here.
let simulate_ahead = simulate_ahead + Duration::from_secs_f64(1.0 / 30.0);
rewind_time = simulate_ahead;
// Simulate_ahead still fluctionates because Server Tick != Client Tick, and we cant
// control the phase in which the sync happens.
// In order to dampen it, we calculate the target_smooth_dt and make sure to not derive
// to much from it
ERROR, muss man das hier swappen ?
target_smooth_dt = reverted_time.as_secs_f64() - simulate_ahead.as_secs_f64();
// we store it, and will apply it over the course of the next ticks
self.rewind_fluctuation_budget = target_smooth_dt;
common_base::plot!("new_rewind_fluctuation_budget", self.rewind_fluctuation_budget);
}
common_base::plot!("rewind_time", rewind_time.as_secs_f64());
// we need to subtract the normal dt as we have a separate tick call for it.
// make it positive as we wont allow direct go in past
let corrected_target_smooth_dt = (target_smooth_dt - dt.as_secs_f64()).max(0.0);
common_base::plot!("corrected_target_smooth_dt", corrected_target_smooth_dt);
// apply our budget to rewind_time
let mut smooth_rewind_time = rewind_time.as_secs_f64();
smooth_rewind_time += self.rewind_fluctuation_budget;
let xxx = smooth_rewind_time.clamp( corrected_target_smooth_dt * (1.0-WARP_PERCENT), corrected_target_smooth_dt * (1.0+WARP_PERCENT));
common_base::plot!("xxx", xxx);
smooth_rewind_time = xxx;
self.rewind_fluctuation_budget -= smooth_rewind_time - rewind_time.as_secs_f64();
common_base::plot!("rewind_fluctuation_budget", self.rewind_fluctuation_budget);
common_base::plot!("target_smooth_dt", target_smooth_dt);
tracing::warn!(?smooth_rewind_time, ?dt, "simulating ahead again");
self.state.rewind_tick(
Duration::from_secs_f64(smooth_rewind_time),
|dispatch_builder| {
add_rewind_systems(dispatch_builder);
},
false,
);
*/
}
}

View File

@ -24,6 +24,7 @@ macro_rules! comp_packet {
Pos(comp::Pos),
Vel(comp::Vel),
Ori(comp::Ori),
PhysicsState(comp::PhysicsState),
}
}
@ -36,6 +37,7 @@ macro_rules! comp_packet {
Pos(PhantomData<comp::Pos>),
Vel(PhantomData<comp::Vel>),
Ori(PhantomData<comp::Ori>),
PhysicsState(PhantomData<comp::PhysicsState>),
}
}
@ -57,6 +59,9 @@ macro_rules! comp_packet {
Self::Ori(comp) => {
sync::handle_interp_insert(comp, entity, world, true)
},
Self::PhysicsState(comp) => {
crate::sync::packet::handle_insert(comp, entity, world);
},
}
}
@ -75,6 +80,9 @@ macro_rules! comp_packet {
Self::Ori(comp) => {
sync::handle_interp_modify(comp, entity, world, true)
},
Self::PhysicsState(comp) => {
crate::sync::packet::handle_modify(comp, entity, world);
},
}
}
@ -92,6 +100,9 @@ macro_rules! comp_packet {
EcsCompPhantom::Ori(_) => {
sync::handle_interp_remove::<comp::Ori>(entity, world)
},
EcsCompPhantom::PhysicsState(_) => {
crate::sync::packet::handle_remove::<comp::PhysicsState>(entity, world);
},
}
}
}

View File

@ -142,7 +142,10 @@ pub enum ServerGeneral {
CharacterSuccess,
SpectatorSuccess(Vec3<f32>),
//Ingame related
TimeSync(Time),
TimeSync {
server_time: Time,
inter_tick_offset: Duration,
},
AckControl {
acked_ids: HashSet<u64>,
/// measured by the time the furthest command to become active <>
@ -324,7 +327,7 @@ impl ServerMsg {
},
//Ingame related
ServerGeneral::GroupUpdate(_)
| ServerGeneral::TimeSync(_)
| ServerGeneral::TimeSync { .. }
| ServerGeneral::AckControl { .. }
| ServerGeneral::Invite { .. }
| ServerGeneral::InvitePending(_)

View File

@ -2,7 +2,7 @@
// `common_net` is downstream of `common`, and an `InterpolationSystem` that
// applies them
use super::InterpolatableComponent;
use common::comp::{Ori, Pos, Vel};
use common::comp::{Ori, Pos, Vel, PhysicsState};
use specs::Component;
use tracing::warn;
use vek::ops::{Lerp, Slerp};

View File

@ -2,7 +2,7 @@
// sync arises
pub mod interpolation;
mod net_sync;
mod packet;
pub (crate) mod packet;
mod sync_ext;
mod track;

View File

@ -20,6 +20,7 @@ pub struct RemoteController {
existing_commands: HashSet<u64>,
max_hold: Duration,
avg_latency: Duration,
avg_ahead_time: Duration,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
@ -105,7 +106,7 @@ impl RemoteController {
monotonic_time: Duration,
highest_ahead_command: f64,
) {
// calculating avg_latency.
// calculating avg_ahead_time.
// - server returns the time the furthest away command has left till it becomes
// active. As the server time is constant and we stored this value locally,
// we use it to calculate the first ahead_command for the first command in
@ -113,83 +114,54 @@ impl RemoteController {
// - we try to keep the remote_ahead in a specific window to allow for
// retransmittion and remote tick time
// Buffer we try to keep on the server, make this a config
const AHEAD_TARGET: f64 = 0.055;
const AHEAD_TARGET_DIFF: f64 = 0.005;
const AHEAD_TARGET_STEP: Duration = Duration::from_millis(2);
const AHEAD_TARGET_NO_ACK_STEP: Duration = Duration::from_nanos(500000);
// find time it took from client -> server
let high_filter = self
.commands
.iter()
.filter(|c| ids.contains(&c.id) && c.first_acked_monotonic_time.is_none());
if let Some(highest) = high_filter.max_by_key(|c| c.action_time) {
let remote_time = highest.action_time.as_secs_f64() - highest_ahead_command;
//let latency = highest.first_send_simulate_ahead_time.unwrap_or_default() -
// remote_time;
common_base::plot!("prob_remote_time", remote_time);
//common_base::plot!("prob_avg_latency", latency);
//let low_filter = self.commands.iter().filter(|c| ids.contains(&c.id) &&
// c.first_send_monotonic_time == highest.first_send_monotonic_time);
if let Some(first_send_monotonic_time) = highest.first_send_monotonic_time {
let latency = monotonic_time - first_send_monotonic_time;
self.avg_latency = Duration::from_secs_f64(
self.avg_latency.as_secs_f64() * 0.99 + latency.as_secs_f64() * 0.01,
);
}
let low_filter = self
.commands
.iter()
.filter(|c| ids.contains(&c.id) && c.first_acked_monotonic_time.is_none());
if let Some(lowest) = low_filter.min_by_key(|c| c.action_time) {
let low_high_diff = highest.action_time - lowest.action_time;
// if this is 50ms, it means the lowest command arrived at server 50 before it
// if this is 50ms, it means the lowest command arrived at server 50ms before it
// was used
common_base::plot!("highest_ahead_command", highest_ahead_command);
let ahead_time = highest_ahead_command - low_high_diff.as_secs_f64();
common_base::plot!("low_high_diff", low_high_diff.as_secs_f64());
common_base::plot!("ahead_time", ahead_time);
const LOWER_END: f64 = 0.18;
const UPPER_END: f64 = 0.22;
//if ahead_time > 2.0 {
let len = self.commands.len();
tracing::error!(
?ahead_time,
?ids,
?highest_ahead_command,
?highest,
?lowest,
?len,
"bigger2"
let avg_ahead_time = (lowest.first_send_simulate_ahead_time.unwrap_or_default()
- ahead_time)
.max(0.0)
+ AHEAD_TARGET;
// avg_ahead_time fluctuates by 1 dt, so we average it.
self.avg_ahead_time = Duration::from_secs_f64(
self.avg_ahead_time.as_secs_f64() * 0.995 + avg_ahead_time * 0.005,
);
//}
if ahead_time < LOWER_END {
self.avg_latency += Duration::from_millis(10);
}
if ahead_time > UPPER_END && self.avg_latency > Duration::from_millis(3) {
self.avg_latency -= Duration::from_millis(3);
}
}
} else {
self.avg_ahead_time += AHEAD_TARGET_NO_ACK_STEP;
tracing::warn!(?self.avg_ahead_time, "No Highest");
}
for c in &mut self.commands {
for c in &mut self.commands.iter_mut().filter(|c| ids.contains(&c.id)) {
c.first_acked_monotonic_time = Some(monotonic_time);
}
/*
let mut lowest_monotonic_time = None;
for c in &mut self.commands {
let new_acked = c.first_acked_monotonic_time.is_none() && ids.contains(&c.id);
if new_acked {
c.first_acked_monotonic_time = Some(monotonic_time);
if c.first_send_monotonic_time.map_or(false, |mt| {
mt < lowest_monotonic_time.unwrap_or(monotonic_time)
}) {
lowest_monotonic_time = c.first_send_monotonic_time;
}
}
}
if let Some(lowest_monotonic_time) = lowest_monotonic_time {
if let Some(latency) = monotonic_time.checked_sub(lowest_monotonic_time) {
common_base::plot!("latency", latency.as_secs_f64());
self.avg_latency = ((99 * self.avg_latency + latency) / 100).max(latency);
} else {
warn!(
"latency is negative, this should never be the case as this value is not \
synced and monotonic!"
);
}
}*/
common_base::plot!("avg_latency", self.avg_latency.as_secs_f64());
common_base::plot!("avg_ahead_time", self.avg_ahead_time.as_secs_f64());
}
/// prepare commands for sending
@ -305,19 +277,22 @@ impl RemoteController {
Some(result)
}
/// the average latency is 300ms by default and will be adjusted over time
/// the average latency is 500ms by default and will be adjusted over time
/// with every Ack the server sends its local tick time at the Ack
/// so we can calculate how much time was spent for 1 way from
/// server->client and assume that this is also true for client->server
/// latency
pub fn avg_latency(&self) -> Duration { self.avg_latency }
//pub fn avg_latency(&self) -> Duration { self.avg_latency }
/// In contrast to avg_latency this calculates how much ahead we should
/// simulate in order to be just received on the server in time
pub fn simulate_ahead(&self) -> Duration {
//const FIXED_OFFSET: Duration = Duration::from_millis(0);
//self.avg_latency() + FIXED_OFFSET
// TODO:: mocked, as we use it internally for the new input functions and assume
// that time - simulate ahead = server time iirc
Duration::from_millis(200)
const OVERWRITE_SIMULATE_AHEAD: Option<Duration> = None; // Some(Durations::from_millis(1100));
if let Some(d) = OVERWRITE_SIMULATE_AHEAD {
d
} else {
self.avg_ahead_time
}
}
}
@ -327,7 +302,8 @@ impl Default for RemoteController {
commands: VecDeque::new(),
existing_commands: HashSet::new(),
max_hold: Duration::from_secs(5),
avg_latency: Duration::from_millis(50),
avg_latency: Duration::from_millis(500),
avg_ahead_time: Duration::from_millis(500),
}
}
}

View File

@ -590,37 +590,6 @@ impl State {
self.ecs.write_resource::<TerrainChanges>().modified_blocks = modified_blocks;
}
/// Rewind local changes after the server send some old state
pub fn rewind_tick(
&mut self,
simulate_ahead: Duration,
add_systems: impl Fn(&mut DispatcherBuilder) + Clone,
update_terrain_and_regions: bool,
) {
common_base::plot!("simulate_ahead", simulate_ahead.as_secs_f64());
let time_of_day = self.ecs.read_resource::<TimeOfDay>().0;
let _time = self.ecs.read_resource::<Time>().0;
let monotonic_time = self.ecs.read_resource::<MonotonicTime>().0;
let delta_time = self.ecs.read_resource::<DeltaTime>().0;
const MAX_INCREMENTS: usize = 100; // The maximum number of collision tests per tick
const STEP_SEC: f64 = 0.04;
let increments =
((simulate_ahead.as_secs_f64() / STEP_SEC).ceil() as usize).clamped(1, MAX_INCREMENTS);
for _i in 0..increments {
//tracing::trace!(?i, ?increments, "subtick");
let partial = simulate_ahead / (increments as u32);
self.tick(partial, add_systems.clone(), update_terrain_and_regions);
}
// rewind changes
self.ecs.write_resource::<TimeOfDay>().0 = time_of_day;
//self.ecs.write_resource::<Time>().0 = time;
self.ecs.write_resource::<MonotonicTime>().0 = monotonic_time;
self.ecs.write_resource::<DeltaTime>().0 = delta_time;
}
/// Execute a single tick, simulating the game state by the given duration.
pub fn tick(
&mut self,

View File

@ -65,8 +65,8 @@ impl<'a> System<'a> for Sys {
for a in r.actions {
if let common::comp::ControlAction::StartInput {
input,
target_entity,
select_pos,
target_entity: _,
select_pos: _,
} = a
{
if input == common::comp::InputKind::Jump {

View File

@ -103,7 +103,7 @@ impl Client {
},
//In-game related
ServerGeneral::GroupUpdate(_)
| ServerGeneral::TimeSync(_)
| ServerGeneral::TimeSync{ .. }
| ServerGeneral::AckControl(_, _)
| ServerGeneral::Invite { .. }
| ServerGeneral::InvitePending(_)
@ -177,7 +177,7 @@ impl Client {
},
//In-game related
ServerGeneral::GroupUpdate(_)
| ServerGeneral::TimeSync(_)
| ServerGeneral::TimeSync { .. }
| ServerGeneral::AckControl { .. }
| ServerGeneral::Invite { .. }
| ServerGeneral::InvitePending(_)

View File

@ -2,7 +2,7 @@ use super::sentinel::{DeletedEntities, TrackedStorages, UpdateTrackers};
use crate::{
client::Client,
presence::{Presence, RegionSubscription},
Tick,
Tick, TickStart,
};
use common::{
calendar::Calendar,
@ -20,6 +20,7 @@ use common_net::{msg::ServerGeneral, sync::CompSyncPackage};
use itertools::Either;
use specs::{Entities, Join, Read, ReadExpect, ReadStorage, Write, WriteStorage};
use vek::*;
use common::comp::PhysicsState;
/// This system will send physics updates to the client
#[derive(Default)]
@ -33,12 +34,14 @@ impl<'a> System<'a> for Sys {
TrackedStorages<'a>,
ReadExpect<'a, TimeOfDay>,
ReadExpect<'a, Time>,
ReadExpect<'a, TickStart>,
ReadExpect<'a, Calendar>,
ReadExpect<'a, RegionMap>,
ReadExpect<'a, UpdateTrackers>,
ReadStorage<'a, Pos>,
ReadStorage<'a, Vel>,
ReadStorage<'a, Ori>,
ReadStorage<'a, PhysicsState>,
ReadStorage<'a, RegionSubscription>,
ReadStorage<'a, Presence>,
ReadStorage<'a, Client>,
@ -63,12 +66,14 @@ impl<'a> System<'a> for Sys {
tracked_storages,
time_of_day,
time,
tick_start,
calendar,
region_map,
trackers,
positions,
velocities,
orientations,
physics_states,
subscriptions,
presences,
clients,
@ -83,6 +88,11 @@ impl<'a> System<'a> for Sys {
) {
let tick = tick.0;
//use rand::Rng;
//let _rng = rand::thread_rng();
//std::thread::sleep(std::time::Duration::from_millis(rng.gen_range(0..2) *
// 28));
// Storages already provided in `TrackedStorages` that we need to use
// for other things besides change detection.
let uids = &tracked_storages.uid;
@ -229,14 +239,15 @@ impl<'a> System<'a> for Sys {
for (client, _, client_entity, client_pos) in &mut subscribers {
let mut comp_sync_package = CompSyncPackage::new();
for (_, entity, &uid, (&pos, last_pos), vel, ori, force_update, collider) in (
for (_, entity, &uid, (&pos, last_pos), vel, ori, physic_state, force_update, collider) in (
region.entities(),
&entities,
uids,
(&positions, last_pos.mask().maybe()),
(&velocities, last_vel.mask().maybe()).maybe(),
(&orientations, last_vel.mask().maybe()).maybe(),
force_updates.maybe(),
(&physics_states, physics_states.mask().maybe()).maybe(),
force_updates.mask().maybe(),
colliders.maybe(),
)
.join()
@ -246,8 +257,7 @@ impl<'a> System<'a> for Sys {
// Don't send client physics updates about itself unless force update is
// set or the client is subject to
// server-authoritative physics
true || force_update.map_or(false, |f| f.is_forced())
|| is_rider.get(entity).is_some()
true || is_rider.get(entity).is_some()
} else if matches!(collider, Some(Collider::Voxel { .. })) {
// Things with a voxel collider (airships, etc.) need to have very
// stable physics so we always send updated
@ -298,12 +308,32 @@ impl<'a> System<'a> for Sys {
comp_sync_package.comp_modified(uid, *o);
}
}
if let Some((physic_state, last_physic_state)) = physic_state {
if last_physic_state.is_none() {
comp_sync_package.comp_inserted(uid, physic_state.clone());
} else if send_now {
comp_sync_package.comp_modified(uid, physic_state.clone());
}
}
}
client.send_fallible(ServerGeneral::CompSync(
comp_sync_package,
force_updates.get(*client_entity).map_or(0, |f| f.counter()),
));
/*
multiple problems
- CompSync and TimeSync could (theoretically be received in 2 different ticks, client would be confused for 1 tick then
- we dont send the client in which part of this tick we are sending this. Imaging a fluctuating server, that either needs 1ms or 100ms per tick.
The client would get confused as the dt might be 1 ms, but the information arrives 99ms late because of server is running behind.
As we send this info as fast as possible, this also is a problem when the server is running "ahead" (faster than 33ms)
To mitigate this, we might use the Duration between now and TickStart
*/
client.send_fallible(ServerGeneral::TimeSync {
server_time: *time,
inter_tick_offset: tick_start.0.elapsed(),
});
}
},
);

View File

@ -4,7 +4,7 @@ use common::{
resources::Time,
};
use common_ecs::{Job, Origin, Phase, System};
use common_net::msg::{PingMsg, ServerGeneral};
use common_net::msg::{PingMsg};
use rayon::prelude::*;
use specs::{Entities, ParJoin, Read, WriteStorage};
use tracing::{debug, info};
@ -47,7 +47,6 @@ impl<'a> System<'a> for Sys {
client.participant.as_mut().map(|p| p.try_fetch_event())
{}
client.send_fallible(ServerGeneral::TimeSync(*time));
let res = super::try_recv_all(client, 4, Self::handle_ping_msg);
match res {

View File

@ -45,9 +45,11 @@ impl<'a> System<'a> for Sys {
// Note, these values are specifically tuned for smoother motion with high
// network latency or low network sampling rate and for smooth
// block hopping (which is instantaneous)
const POS_LERP_RATE_FACTOR: f32 = 10.0;
i.pos = Lerp::lerp(i.pos, pos.0 + vel.0 * 0.03, POS_LERP_RATE_FACTOR * dt.0);
i.ori = Ori::slerp(i.ori, *ori, base_ori_interp(body) * dt.0);
//const POS_LERP_RATE_FACTOR: f32 = 10.0;
//i.pos = Lerp::lerp(i.pos, pos.0 + vel.0 * 0.03, POS_LERP_RATE_FACTOR * dt.0);
//i.ori = Ori::slerp(i.ori, *ori, base_ori_interp(body) * dt.0);
i.pos = pos.0;
i.ori = *ori;
} else {
i.pos = pos.0;
i.ori = *ori;