Improved cloud visuals and performance

This commit is contained in:
Joshua Barretto 2022-12-15 23:56:28 +00:00
parent c90be1b56c
commit 94c0e3749e
3 changed files with 50 additions and 60 deletions

View File

@ -7,12 +7,12 @@ float falloff(float x) {
return pow(max(x > 0.577 ? (0.3849 / x - 0.1) : (0.9 - x * x), 0.0), 4); return pow(max(x > 0.577 ? (0.3849 / x - 0.1) : (0.9 - x * x), 0.0), 4);
} }
// Return the 'broad' density of the cloud at a position. This gets refined later with extra noise, but is important float billow_noise_3d(vec3 pos) {
// for computing light access. return abs(noise_3d(pos) - 0.5) * 2.0;
float cloud_broad(vec3 pos) { }
return 0.0
+ 2 * (noise_3d(pos / vec3(vec2(30000.0), 20000.0) / cloud_scale + 1000.0) - 0.5) float billow_noise_2d(vec2 pos) {
; return abs(noise_2d(pos) - 0.5) * 2.0;
} }
// Returns vec4(r, g, b, density) // Returns vec4(r, g, b, density)
@ -38,7 +38,7 @@ vec4 cloud_at(vec3 pos, float dist, out vec3 emission, out float not_underground
// Mist sits close to the ground in valleys (TODO: use base_alt to put it closer to water) // Mist sits close to the ground in valleys (TODO: use base_alt to put it closer to water)
float mist_min_alt = 0.5; float mist_min_alt = 0.5;
#if (CLOUD_MODE >= CLOUD_MODE_MEDIUM) #if (CLOUD_MODE >= CLOUD_MODE_MEDIUM)
mist_min_alt = (textureLod(sampler2D(t_noise, s_noise), pos.xy / 50000.0, 0).x - 0.5) * 1.5 + 0.5; mist_min_alt = (textureLod(sampler2D(t_noise, s_noise), pos.xy / 35000.0, 0).x - 0.5) * 1.5 + 0.5;
#endif #endif
mist_min_alt = view_distance.z * 1.5 * (1.0 + mist_min_alt * 0.5) + alt * 0.5 + 250; mist_min_alt = view_distance.z * 1.5 * (1.0 + mist_min_alt * 0.5) + alt * 0.5 + 250;
const float MIST_FADE_HEIGHT = 1000; const float MIST_FADE_HEIGHT = 1000;
@ -61,81 +61,66 @@ vec4 cloud_at(vec3 pos, float dist, out vec3 emission, out float not_underground
; ;
} }
float cloud_alt = alt + 1800; float CLOUD_DEPTH = (view_distance.w - view_distance.z) * (0.2 + sqrt(cloud_tendency) * 0.5);
float cloud_alt = alt + CLOUD_DEPTH * 2 + 1000.0;
//vec2 cloud_attr = get_cloud_heights(wind_pos.xy); //vec2 cloud_attr = get_cloud_heights(wind_pos.xy);
float sun_access = 0.0; float sun_access = 0.0;
float moon_access = 0.0; float moon_access = 0.0;
float cloud_sun_access = clamp((pos.z - cloud_alt) / 1500 + 0.5, 0, 1); float cloud_sun_access = clamp((pos.z - cloud_alt) / 1500 + 0.5, 0, 1);
float cloud_moon_access = 0.0; float cloud_moon_access = 0.0;
float cloud_broad_a = 0.0;
float cloud_broad_b = 0.0;
// This is a silly optimisation but it actually nets us a fair few fps by skipping quite a few expensive calcs // This is a silly optimisation but it actually nets us a fair few fps by skipping quite a few expensive calcs
if ((pos.z < CLOUD_AVG_ALT + 15000.0 && cloud_tendency > 0.0)) { if ((pos.z < CLOUD_AVG_ALT + 8000.0 && cloud_tendency > 0.0)) {
// Turbulence (small variations in clouds/mist) // Turbulence (small variations in clouds/mist)
const float turb_speed = -1.0; // Turbulence goes the opposite way const float turb_speed = -1.0; // Turbulence goes the opposite way
vec3 turb_offset = vec3(1, 1, 0) * time_of_day.x * turb_speed; vec3 turb_offset = vec3(1, 1, 0) * time_of_day.x * turb_speed;
float CLOUD_DEPTH = (view_distance.w - view_distance.z) * 0.8;
const float CLOUD_DENSITY = 10000.0; const float CLOUD_DENSITY = 10000.0;
const float CLOUD_ALT_VARI_WIDTH = 100000.0; const float CLOUD_ALT_VARI_WIDTH = 100000.0;
const float CLOUD_ALT_VARI_SCALE = 5000.0; const float CLOUD_ALT_VARI_SCALE = 5000.0;
cloud_broad_a = cloud_broad(wind_pos + sun_dir.xyz * 250); float small_nz = 0.0
cloud_broad_b = cloud_broad(wind_pos - sun_dir.xyz * 250); #if (CLOUD_MODE >= CLOUD_MODE_MEDIUM)
cloud = cloud_tendency + cloud_tendency * (0.0 - (billow_noise_3d((pos + turb_offset * 0.5) / 8000.0) - 0.5)
+ 24 * (cloud_broad_a + cloud_broad_b) * 0.5 #else
#if (CLOUD_MODE >= CLOUD_MODE_MINIMAL) - (billow_noise_2d((pos.xy + turb_offset.xy * 0.5) / 8000.0) - 0.5)
+ 4 * (noise_3d((wind_pos + turb_offset) / 2000.0 / cloud_scale) - 0.5)
#endif #endif
#if (CLOUD_MODE >= CLOUD_MODE_LOW) #if (CLOUD_MODE >= CLOUD_MODE_LOW)
+ 0.75 * (noise_3d((wind_pos + turb_offset * 0.5) / 750.0 / cloud_scale) - 0.5) - (noise_3d((pos - turb_offset * 0.1) / 1500.0) - 0.5) * 0.5
#endif #endif
#if (CLOUD_MODE >= CLOUD_MODE_HIGH) ;
+ 0.75 * (noise_3d(wind_pos / 500.0 / cloud_scale) - 0.5)
#endif // Sample twice to allow for self-shadowing
) * 0.1; float cloud_p0 = noise_3d((wind_pos + vec3(0, 0, small_nz) * 250 - sun_dir.xyz * 250) * vec3(0.55, 0.55, 1) / (cloud_scale * 20000.0));
cloud = pow(max(cloud, 0), 3) * sign(cloud); float cloud_p1 = noise_3d((wind_pos + vec3(0, 0, small_nz) * 250 + sun_dir.xyz * 250) * vec3(0.55, 0.55, 1) / (cloud_scale * 20000.0));
cloud *= CLOUD_DENSITY * sqrt(cloud_tendency + 0.001) * falloff(abs(pos.z - cloud_alt) / CLOUD_DEPTH);
float cloud_factor = pow(max(((cloud_p0 + cloud_p1) * 0.5
- 0.5
- small_nz * 0.1
+ cloud_tendency * 0.3
)
, 0.0) * 120.0 * cloud_tendency, 5.0)
* falloff(abs(pos.z - cloud_alt) / CLOUD_DEPTH);
cloud = cloud_factor * 10;
// What proportion of sunlight is *not* being blocked by nearby cloud? (approximation) // What proportion of sunlight is *not* being blocked by nearby cloud? (approximation)
// Basically, just throw together a few values that roughly approximate this term and come up with an average // Basically, just throw together a few values that roughly approximate this term and come up with an average
cloud_sun_access = mix(cloud_sun_access, exp(( cloud_sun_access = clamp(
// Cloud density gradient 0.7
0.25 * (cloud_broad_a - cloud_broad_b + (0.25 * (noise_3d(wind_pos / 4000 / cloud_scale) - 0.5) + 0.1 * (noise_3d(wind_pos / 1000 / cloud_scale) - 0.5))) + pow(abs(cloud_p1 - cloud_p0), 0.5) * sign(cloud_p1 - cloud_p0) * 0.5
#if (CLOUD_MODE >= CLOUD_MODE_HIGH) + (pos.z - cloud_alt) / CLOUD_DEPTH * 0.4
// More noise - pow(cloud * 10000000.0, 0.2) * 0.0075
+ 0.01 * (noise_3d(wind_pos / 500) / cloud_scale - 0.5) ,
#endif 0.15,
) * 15.0 - 1.5) * 1.5, min(cloud_tendency * 10, 1)); 10.0
) + small_nz * 0.2;
// Since we're assuming the sun/moon is always above (not always correct) it's the same for the moon // Since we're assuming the sun/moon is always above (not always correct) it's the same for the moon
cloud_moon_access = 1.0 - cloud_sun_access; cloud_moon_access = 1.0 - cloud_sun_access;
} }
#if (CLOUD_MODE >= CLOUD_MODE_LOW) float mist_sun_access = max(1.0 - cloud_tendency * 8, 0.25);
cloud += max(noise_3d((wind_pos) / 25000.0 / cloud_scale) - 0.75 + noise_3d((wind_pos) / 2500.0 / cloud_scale) * 0.1, 0)
* 0.1
/ (abs(pos.z - cloud_alt) / 500.0 + 0.2);
#endif
// Keeping this because it's something I'm likely to reenable later
/*
#if (CLOUD_MODE >= CLOUD_MODE_HIGH)
// Try to calculate a reasonable approximation of the cloud normal
float cloud_tendency_x = cloud_tendency_at(pos.xy + vec2(100, 0));
float cloud_tendency_y = cloud_tendency_at(pos.xy + vec2(0, 100));
vec3 cloud_norm = vec3(
(cloud_tendency - cloud_tendency_x) * 4,
(cloud_tendency - cloud_tendency_y) * 4,
(pos.z - cloud_attr.x) / cloud_attr.y + 0.5
);
cloud_sun_access = mix(max(dot(-sun_dir.xyz, cloud_norm) - 1.0, 0.025), cloud_sun_access, 0.25);
cloud_moon_access = mix(max(dot(-moon_dir.xyz, cloud_norm) - 0.6, 0.025), cloud_moon_access, 0.25);
#endif
*/
float mist_sun_access = exp(mist);
float mist_moon_access = mist_sun_access; float mist_moon_access = mist_sun_access;
sun_access = mix(cloud_sun_access, mist_sun_access, clamp(mist * 20000, 0, 1)); sun_access = mix(cloud_sun_access, mist_sun_access, clamp(mist * 20000, 0, 1));
moon_access = mix(cloud_moon_access, mist_moon_access, clamp(mist * 20000, 0, 1)); moon_access = mix(cloud_moon_access, mist_moon_access, clamp(mist * 20000, 0, 1));
@ -258,6 +243,11 @@ vec3 get_cloud_color(vec3 surf_color, vec3 dir, vec3 origin, const float time_of
// `sample` is a reserved keyword // `sample` is a reserved keyword
vec4 sample_ = cloud_at(origin + dir * ldist * splay, ldist, emission, not_underground); vec4 sample_ = cloud_at(origin + dir * ldist * splay, ldist, emission, not_underground);
// DEBUG
// if (max_dist > ldist && max_dist < ldist * 1.02) {
// surf_color = vec3(1, 0, 0);
// }
vec2 density_integrals = max(sample_.zw, vec2(0)); vec2 density_integrals = max(sample_.zw, vec2(0));
float sun_access = max(sample_.x, 0); float sun_access = max(sample_.x, 0);
@ -269,7 +259,7 @@ vec3 get_cloud_color(vec3 surf_color, vec3 dir, vec3 origin, const float time_of
float cloud_darken = pow(1.0 / (1.0 + cloud_scatter_factor), step); float cloud_darken = pow(1.0 / (1.0 + cloud_scatter_factor), step);
float global_darken = pow(1.0 / (1.0 + global_scatter_factor), step); float global_darken = pow(1.0 / (1.0 + global_scatter_factor), step);
// Proportion of light diffusely scattered instead of absorbed // Proportion of light diffusely scattered instead of absorbed
float cloud_diffuse = 0.25; float cloud_diffuse = 0.5;
surf_color = surf_color =
// Attenuate light passing through the clouds // Attenuate light passing through the clouds

View File

@ -155,7 +155,7 @@ float magnetosphere = sin(time_of_day.x / (3600 * 24));
#endif #endif
#if (CLOUD_MODE > CLOUD_MODE_NONE) #if (CLOUD_MODE > CLOUD_MODE_NONE)
float emission_strength = clamp((magnetosphere - 0.3) * 1.3, 0, 1) * max(-moon_dir.z, 0); float emission_strength = clamp((magnetosphere - 0.3) * 1.3, 0, 1) * max(-moon_dir.z, 0);
#if (CLOUD_MODE > CLOUD_MODE_MEDIUM) #if (CLOUD_MODE >= CLOUD_MODE_MEDIUM)
float emission_br = abs(pow(fract(time_of_day.x * 0.000005) * 2 - 1, 2)); float emission_br = abs(pow(fract(time_of_day.x * 0.000005) * 2 - 1, 2));
#else #else
float emission_br = 0.5; float emission_br = 0.5;

BIN
assets/voxygen/texture/noise.png (Stored with Git LFS)

Binary file not shown.