mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
Make RRT pathfinding a cfg feature
This commit is contained in:
@ -5,9 +5,13 @@ use crate::{
|
||||
};
|
||||
use common_base::span;
|
||||
use hashbrown::hash_map::DefaultHashBuilder;
|
||||
//use kiddo::{distance::squared_euclidean, KdTree}; // For RRT paths (disabled
|
||||
// for now)
|
||||
#[cfg(rrt_pathfinding)] use hashbrown::HashMap;
|
||||
#[cfg(rrt_pathfinding)]
|
||||
use kiddo::{distance::squared_euclidean, KdTree}; // For RRT paths (disabled for now)
|
||||
#[cfg(rrt_pathfinding)]
|
||||
use rand::distributions::Uniform;
|
||||
use rand::{thread_rng, Rng};
|
||||
#[cfg(rrt_pathfinding)] use std::f32::consts::PI;
|
||||
use std::iter::FromIterator;
|
||||
use vek::*;
|
||||
|
||||
@ -416,10 +420,10 @@ impl Chaser {
|
||||
{
|
||||
self.last_search_tgt = Some(tgt);
|
||||
|
||||
let (path, complete) = /*if traversal_cfg.can_fly {
|
||||
// NOTE: Enable air paths when air braking has been figured out
|
||||
let (path, complete) = /*if cfg!(rrt_pathfinding) && traversal_cfg.can_fly {
|
||||
find_air_path(vol, pos, tgt, &traversal_cfg)
|
||||
} else */{
|
||||
// Enable air paths when air braking has been figured out
|
||||
find_path(&mut self.astar, vol, pos, tgt, &traversal_cfg)
|
||||
};
|
||||
|
||||
@ -669,7 +673,6 @@ where
|
||||
}
|
||||
|
||||
// Enable when airbraking/sensible flight is a thing
|
||||
/*
|
||||
/// Attempts to find a path from a start to the end using an informed
|
||||
/// RRT-Connect algorithm. A point is sampled from a bounding spheroid
|
||||
/// between the start and end. Two separate rapidly exploring random
|
||||
@ -680,6 +683,7 @@ where
|
||||
/// with wider gaps, such as flying through a forest than for terrain
|
||||
/// with narrow gaps, such as navigating a maze.
|
||||
/// Returns a path and whether that path is complete or not.
|
||||
#[cfg(rrt_pathfinding)]
|
||||
fn find_air_path<V>(
|
||||
vol: &V,
|
||||
startf: Vec3<f32>,
|
||||
@ -698,19 +702,10 @@ where
|
||||
.ray(startf + Vec3::unit_z(), endf + Vec3::unit_z())
|
||||
.until(Block::is_opaque)
|
||||
.cast()
|
||||
.0.powi(2)
|
||||
>= total_dist_sqrd {
|
||||
//let step = (endf - startf).normalized().map(|a| a * radius);
|
||||
//let mut node: Vec3<f32>;
|
||||
//// Maximum of 500 steps
|
||||
//for i in 1..500 {
|
||||
// node = startf + step.map(|s| s * i as f32);
|
||||
// path.push(endf.map(|e| e.floor() as i32));
|
||||
// if node.distance_squared(endf) < radius{
|
||||
// connect = true;
|
||||
// break;
|
||||
// }
|
||||
//}
|
||||
.0
|
||||
.powi(2)
|
||||
>= total_dist_sqrd
|
||||
{
|
||||
path.push(endf.map(|e| e.floor() as i32));
|
||||
connect = true;
|
||||
// Else use RRTs
|
||||
@ -722,7 +717,8 @@ where
|
||||
.0
|
||||
.powi(2)
|
||||
> (*start).distance_squared(*end)
|
||||
//vol.get(*pos).ok().copied().unwrap_or_else(Block::empty).is_fluid();
|
||||
//vol.get(*pos).ok().copied().unwrap_or_else(Block::empty).
|
||||
// is_fluid();
|
||||
};
|
||||
let mut node_index1: usize = 0;
|
||||
let mut node_index2: usize = 0;
|
||||
@ -795,8 +791,10 @@ where
|
||||
let nearest2 = nodes2[nearest_index2];
|
||||
|
||||
// Extend toward the sampled point from the nearest node of each tree
|
||||
let new_point1 = nearest1 + (sampled_point1 - nearest1).normalized().map(|a| a * radius);
|
||||
let new_point2 = nearest2 + (sampled_point2 - nearest2).normalized().map(|a| a * radius);
|
||||
let new_point1 =
|
||||
nearest1 + (sampled_point1 - nearest1).normalized().map(|a| a * radius);
|
||||
let new_point2 =
|
||||
nearest2 + (sampled_point2 - nearest2).normalized().map(|a| a * radius);
|
||||
|
||||
// Ensure the new nodes are valid/traversable
|
||||
if is_traversable(&nearest1, &new_point1) {
|
||||
@ -889,7 +887,8 @@ where
|
||||
}
|
||||
path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
|
||||
// Construct the path
|
||||
while current_node_index1 != 0 && nodes1[current_node_index1].distance_squared(startf) > 4.0
|
||||
while current_node_index1 != 0
|
||||
&& nodes1[current_node_index1].distance_squared(startf) > 4.0
|
||||
{
|
||||
current_node_index1 = *parents1.get(¤t_node_index1).unwrap_or(&0);
|
||||
path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
|
||||
@ -913,7 +912,8 @@ where
|
||||
let next_node = path[next_idx];
|
||||
let start_pos = node.map(|e| e as f32 + 0.5);
|
||||
let end_pos = next_node.map(|e| e as f32 + 0.5);
|
||||
if vol.ray(start_pos, end_pos)
|
||||
if vol
|
||||
.ray(start_pos, end_pos)
|
||||
.until(Block::is_solid)
|
||||
.cast()
|
||||
.0
|
||||
@ -931,9 +931,7 @@ where
|
||||
}
|
||||
(Some(path.into_iter().collect()), connect)
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
/// Returns a random point within a radially symmetrical ellipsoid with given
|
||||
/// foci and a `search parameter` to determine the size of the ellipse beyond
|
||||
/// the foci. Technically the point is within a prolate spheroid translated and
|
||||
@ -945,6 +943,7 @@ where
|
||||
/// greater than zero. In order to increase the sample area, the
|
||||
/// search_parameter should be increased linearly as the search continues.
|
||||
#[allow(clippy::many_single_char_names)]
|
||||
#[cfg(rrt_pathfinding)]
|
||||
pub fn point_on_prolate_spheroid(
|
||||
focus1: Vec3<f32>,
|
||||
focus2: Vec3<f32>,
|
||||
@ -1059,4 +1058,3 @@ pub fn point_on_prolate_spheroid(
|
||||
// let global_coords = midpoint + rot_2_mat * (rot_z_mat * point);
|
||||
midpoint + rot_2_mat * point
|
||||
}
|
||||
*/
|
||||
|
Reference in New Issue
Block a user