Adding shadows.

This commit is contained in:
Joshua Yanovski 2020-02-21 14:52:17 +01:00
parent 6424ca7947
commit a1aee931e7
7 changed files with 673 additions and 56 deletions

1
Cargo.lock generated
View File

@ -3321,6 +3321,7 @@ dependencies = [
name = "veloren-world"
version = "0.5.0"
dependencies = [
"approx 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
"arr_macro 0.1.3 (registry+https://github.com/rust-lang/crates.io-index)",
"bincode 1.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
"bitvec 0.15.2 (registry+https://github.com/rust-lang/crates.io-index)",

View File

@ -5,6 +5,7 @@ authors = ["Joshua Barretto <joshua.s.barretto@gmail.com>"]
edition = "2018"
[dependencies]
approx = "0.1.1"
bincode = "1.2.0"
common = { package = "veloren-common", path = "../common" }
bitvec = "0.15.2"

View File

@ -1,8 +1,12 @@
use common::{terrain::TerrainChunkSize, vol::RectVolSize};
use rayon::prelude::*;
use std::{f64, io::Write, path::PathBuf, time::SystemTime};
use vek::*;
use veloren_world::{
sim::{self, MapConfig, MapDebug, WorldOpts, WORLD_SIZE},
sim::{
self, get_shadows, uniform_idx_as_vec2, Alt, MapConfig, MapDebug, WorldOpts, WORLD_SIZE,
},
util::Sampler,
World, CONFIG,
};
@ -18,26 +22,64 @@ fn main() {
let map_file =
// "map_1575990726223.bin";
// "map_1575987666972.bin";
"map_1576046079066.bin";
// "map_1576046079066.bin";
"map_1579539133272.bin";
let mut _map_file = PathBuf::from("./maps");
_map_file.push(map_file);
let world = World::generate(5284, WorldOpts {
seed_elements: false,
// world_file: sim::FileOpts::Load(_map_file),
world_file: sim::FileOpts::Save,
// world_file: sim::FileOpts::LoadAsset(veloren_world::sim::DEFAULT_WORLD_MAP.into()),
world_file: sim::FileOpts::Load(_map_file),
// world_file: sim::FileOpts::Save,
..WorldOpts::default()
});
log::info!("Sampling data...");
let sampler = world.sim();
let samples_data = {
let column_sample = world.sample_columns();
(0..WORLD_SIZE.product())
.into_par_iter()
.map(|posi| {
column_sample
.get(uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
})
.collect::<Vec<_>>()
.into_boxed_slice()
};
let refresh_shadows = |light_direction: Vec3<f64>, lgain, scale, is_basement, is_water| {
get_shadows(
//Vec3::new(-0.8, 0.3, /*-1.0*/-(1.0 / TerrainChunkSize::RECT_SIZE.x as Alt)),
Vec3::new(light_direction.x, light_direction.z, light_direction.y/* / lgain*/),
lgain,
TerrainChunkSize::RECT_SIZE.x as f64/* * scale*/,
TerrainChunkSize::RECT_SIZE.y as f64/* * scale*/,
Aabr {
min: Vec2::new(0.0, 0.0), // focus.into(),
max: WORLD_SIZE.map(|e| e as f64) * TerrainChunkSize::RECT_SIZE.map(|e| e as f64)/* * scale*//* + focus.into() */,
},
CONFIG.sea_level as f64, // focus.z,
(CONFIG.sea_level + sampler.max_height) as f64, // (focus.z + self.max_height) as Alt,
|posi| {
let sample = sampler.get(uniform_idx_as_vec2(posi)).unwrap();
if is_basement {
sample.alt as f64
} else {
sample.basement as f64
}.max(if is_water { sample.water_alt as f64 } else { -f64::INFINITY })
},
).ok()
};
let mut win =
minifb::Window::new("World Viewer", W, H, minifb::WindowOptions::default()).unwrap();
let sampler = world.sim();
let mut focus = Vec3::new(0.0, 0.0, CONFIG.sea_level as f64);
// Altitude is divided by gain and clamped to [0, 1]; thus, decreasing gain
// makes smaller differences in altitude appear larger.
let mut gain = CONFIG.mountain_scale;
let mut gain = /*CONFIG.mountain_scale*/sampler.max_height;
// The Z component during normal calculations is multiplied by gain; thus,
let mut lgain = 1.0;
let mut scale = WORLD_SIZE.x as f64 / W as f64;
@ -50,7 +92,7 @@ fn main() {
//
// "In world space the x-axis will be pointing east, the y-axis up and the
// z-axis will be pointing south"
let mut light_direction = Vec3::new(-0.8, -1.0, 0.3);
let mut light_direction = Vec3::new(-/*0.8*/1.3, -1.0, 0.3);
let mut is_basement = false;
let mut is_water = true;
@ -58,6 +100,9 @@ fn main() {
let mut is_temperature = true;
let mut is_humidity = true;
let mut shadows = None; //refresh_shadows(light_direction, lgain, scale, is_basement, is_water);
let mut samples = None;
while win.is_open() {
let config = MapConfig {
dimensions: Vec2::new(W, H),
@ -66,12 +111,15 @@ fn main() {
lgain,
scale,
light_direction,
shadows: shadows.as_deref(),
samples,
is_basement,
is_water,
is_shaded,
is_temperature,
is_humidity,
// is_sampled,
is_debug: true,
};
@ -161,6 +209,9 @@ fn main() {
let is_camera = win.is_key_down(minifb::Key::C);
if win.is_key_down(minifb::Key::B) {
is_basement ^= true;
shadows = shadows.and_then(|_| {
refresh_shadows(light_direction, lgain, scale, is_basement, is_water)
});
}
if win.is_key_down(minifb::Key::H) {
is_humidity ^= true;
@ -172,11 +223,25 @@ fn main() {
is_water ^= true;
}
if win.is_key_down(minifb::Key::L) {
is_shaded ^= true;
if is_camera {
shadows = match shadows {
Some(_) => None,
None => refresh_shadows(light_direction, lgain, scale, is_basement, is_water),
};
} else {
is_shaded ^= true;
}
}
if win.is_key_down(minifb::Key::M) {
samples = samples.xor(Some(&*samples_data));
// is_sampled ^= true;
}
if win.is_key_down(minifb::Key::W) {
if is_camera {
light_direction.z -= lspd;
shadows = shadows.and_then(|_| {
refresh_shadows(light_direction, lgain, scale, is_basement, is_water)
});
} else {
focus.y -= spd * scale;
}
@ -184,6 +249,9 @@ fn main() {
if win.is_key_down(minifb::Key::A) {
if is_camera {
light_direction.x -= lspd;
shadows = shadows.and_then(|_| {
refresh_shadows(light_direction, lgain, scale, is_basement, is_water)
});
} else {
focus.x -= spd * scale;
}
@ -191,6 +259,9 @@ fn main() {
if win.is_key_down(minifb::Key::S) {
if is_camera {
light_direction.z += lspd;
shadows = shadows.and_then(|_| {
refresh_shadows(light_direction, lgain, scale, is_basement, is_water)
});
} else {
focus.y += spd * scale;
}
@ -198,6 +269,9 @@ fn main() {
if win.is_key_down(minifb::Key::D) {
if is_camera {
light_direction.x += lspd;
shadows = shadows.and_then(|_| {
refresh_shadows(light_direction, lgain, scale, is_basement, is_water)
});
} else {
focus.x += spd * scale;
}
@ -206,6 +280,9 @@ fn main() {
if is_camera {
if (lgain * 2.0).is_normal() {
lgain *= 2.0;
shadows = shadows.and_then(|_| {
refresh_shadows(light_direction, lgain, scale, is_basement, is_water)
});
}
} else {
gain += 64.0;
@ -215,6 +292,9 @@ fn main() {
if is_camera {
if (lgain / 2.0).is_normal() {
lgain /= 2.0;
shadows = shadows.and_then(|_| {
refresh_shadows(light_direction, lgain, scale, is_basement, is_water)
});
}
} else {
gain = (gain - 64.0).max(64.0);
@ -226,6 +306,8 @@ fn main() {
} else {
if (scale * 2.0).is_normal() {
scale *= 2.0;
// shadows = refresh_shadows(light_direction, lgain, scale,
// is_basement);
}
}
}
@ -235,6 +317,8 @@ fn main() {
} else {
if (scale / 2.0).is_normal() {
scale /= 2.0;
// shadows = refresh_shadows(light_direction, lgain, scale,
// is_basement);
}
}
}

View File

@ -64,5 +64,5 @@ pub const CONFIG: Config = Config {
river_roughness: 0.06125,
river_max_width: 2.0,
river_min_height: 0.25,
river_width_to_depth: 1.0,
river_width_to_depth: 8.0,
};

View File

@ -1,12 +1,13 @@
use crate::{
sim::{RiverKind, WorldSim, WORLD_SIZE},
column::ColumnSample,
sim::{vec2_as_uniform_idx, Alt, RiverKind, WorldSim, WORLD_SIZE},
CONFIG,
};
use common::{terrain::TerrainChunkSize, vol::RectVolSize};
use std::{f32, f64};
use vek::*;
pub struct MapConfig {
pub struct MapConfig<'a> {
/// Dimensions of the window being written to. Defaults to WORLD_SIZE.
pub dimensions: Vec2<usize>,
/// x, y, and z of top left of map (defaults to (0.0, 0.0,
@ -43,6 +44,14 @@ pub struct MapConfig {
///
/// Defaults to (-0.8, -1.0, 0.3).
pub light_direction: Vec3<f64>,
/// If Some, uses the provided shadow map.
///
/// Defaults to None.
pub shadows: Option<&'a [Alt]>,
/// If Some, uses the provided column samples to determine surface color.
///
/// Defaults to None.
pub samples: Option<&'a [Option<ColumnSample<'a>>]>,
/// If true, only the basement (bedrock) is used for altitude; otherwise,
/// the surface is used.
///
@ -81,7 +90,7 @@ pub struct MapDebug {
pub oceans: u32,
}
impl Default for MapConfig {
impl<'a> Default for MapConfig<'a> {
fn default() -> Self {
let dimensions = WORLD_SIZE;
Self {
@ -90,7 +99,9 @@ impl Default for MapConfig {
gain: CONFIG.mountain_scale,
lgain: TerrainChunkSize::RECT_SIZE.x as f64,
scale: WORLD_SIZE.x as f64 / dimensions.x as f64,
light_direction: Vec3::new(-0.8, -1.0, 0.3),
light_direction: Vec3::new(-1.2, -1.0, 0.8),
shadows: None,
samples: None,
is_basement: false,
is_water: true,
@ -102,7 +113,7 @@ impl Default for MapConfig {
}
}
impl MapConfig {
impl<'a> MapConfig<'a> {
/// Generates a map image using the specified settings. Note that it will
/// write from left to write from (0, 0) to dimensions - 1, inclusive,
/// with 4 1-byte color components provided as (r, g, b, a). It is up
@ -120,6 +131,8 @@ impl MapConfig {
lgain,
scale,
light_direction,
shadows,
samples,
is_basement,
is_water,
@ -129,11 +142,15 @@ impl MapConfig {
is_debug,
} = *self;
let light_direction = Vec3::new(light_direction.x, light_direction.y, light_direction.z);
// let light_direction = Vec3::new(light_direction.x * lgain, light_direction.y,
// light_direction.z * lgain);
let light = light_direction.normalized();
let mut quads = [[0u32; QUADRANTS]; QUADRANTS];
let mut rivers = 0u32;
let mut lakes = 0u32;
let mut oceans = 0u32;
// let column_sample = ColumnGen::new(sampler);
let focus_rect = Vec2::from(focus);
let true_sea_level = (CONFIG.sea_level as f64 - focus.z) / gain as f64;
@ -147,32 +164,66 @@ impl MapConfig {
let pos =
(focus_rect + Vec2::new(i as f64, j as f64) * scale).map(|e: f64| e as i32);
let (alt, basement, water_alt, humidity, temperature, downhill, river_kind) =
sampler
.get(pos)
.map(|sample| {
(
sample.alt,
sample.basement,
sample.water_alt,
sample.humidity,
sample.temp,
sample.downhill,
sample.river.river_kind,
)
})
.unwrap_or((
CONFIG.sea_level,
CONFIG.sea_level,
CONFIG.sea_level,
0.0,
0.0,
None,
None,
));
let (
chunk_idx,
alt,
basement,
water_alt,
humidity,
temperature,
downhill,
river_kind,
) = sampler
.get(pos)
.map(|sample| {
(
Some(vec2_as_uniform_idx(pos)),
sample.alt,
sample.basement,
sample.water_alt,
sample.humidity,
sample.temp,
sample.downhill,
sample.river.river_kind,
)
})
.unwrap_or((
None,
CONFIG.sea_level,
CONFIG.sea_level,
CONFIG.sea_level,
0.0,
0.0,
None,
None,
));
let humidity = humidity.min(1.0).max(0.0);
let temperature = temperature.min(1.0).max(-1.0) * 0.5 + 0.5;
let pos = pos * TerrainChunkSize::RECT_SIZE.map(|e| e as i32);
let column_rgb = samples
.and_then(|samples| {
chunk_idx
.and_then(|chunk_idx| samples.get(chunk_idx))
.map(Option::as_ref)
.flatten()
})
.map(|sample| {
if is_basement {
sample.stone_col.map(|e| e as f64 / 255.0)
} else {
sample.surface_color.map(|e| e as f64)
}
});
/*let column_rgb = if is_sampled {
column_sample.get(pos)
.map(|sample| if is_basement {
sample.stone_col.map(|e| e as f64 / 255.0)
} else {
sample.surface_color.map(|e| e as f64)
})
} else {
None
};*/
let downhill_pos = (downhill
.map(|downhill_pos| downhill_pos)
.unwrap_or(pos + TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
@ -206,6 +257,8 @@ impl MapConfig {
(cross_alt - alt) as f64 * lgain,
(cross_pos.y - pos.y) as f64,
);
// let surface_normal = Vec3::new(lgain * (f.y * u.z - f.z * u.y), -(f.x * u.z -
// f.z * u.x), lgain * (f.x * u.y - f.y * u.x)).normalized();
// Then cross points "to the right" (upwards) on a right-handed coordinate
// system. (right-handed coordinate system means (0, 0, 1.0) is
// "forward" into the screen).
@ -239,29 +292,84 @@ impl MapConfig {
}
}
let shade_frac = shadows
.and_then(|shadows| chunk_idx.and_then(|chunk_idx| shadows.get(chunk_idx)))
.copied()
.map(|e| e as f64)
.unwrap_or(alt);
let water_color_factor = 2.0;
let g_water = 32.0 * water_color_factor;
let b_water = 64.0 * water_color_factor;
let g_water = 32.0
* water_color_factor
* if is_shaded {
0.2 + shade_frac * 0.8
} else {
1.0
};
let b_water = 64.0
* water_color_factor
* if is_shaded {
0.2 + shade_frac * 0.8
} else {
1.0
};
let column_rgb = column_rgb.unwrap_or(Rgb::new(
if is_shaded { shade_frac * 0.6 } else { alt },
if is_shaded {
0.4 + (shade_frac * 0.6)
} else {
alt
},
if is_shaded { shade_frac * 0.6 } else { alt },
));
let rgba = match (river_kind, (is_water, true_alt >= true_sea_level)) {
(_, (false, _)) | (None, (_, true)) => {
let (r, g, b) = (
(if is_shaded { alt } else { alt }
(column_rgb.r/*if is_shaded { shade_frac * 0.6 } else { alt }*/
* if is_temperature {
temperature as f64
} else if is_shaded {
alt
if samples.is_some() {
// column_rgb.r
0.2 + shade_frac * 0.8
} else {
shade_frac * 0.6
}
} else {
0.0
if samples.is_some() {
alt
} else {
0.0
}
})
.sqrt(),
if is_shaded { 0.4 + (alt * 0.6) } else { alt },
(if is_shaded { alt } else { alt }
(column_rgb.g
* if is_shaded {
if samples.is_some() {
// column_rgb.g
0.2 + shade_frac * 0.8
} else {
0.4 + shade_frac * 0.6
}
} else {
alt
})
.sqrt(),
(column_rgb.b/*if is_shaded { shade_frac * 0.6 } else { alt }*/
* if is_humidity {
humidity as f64
} else if is_shaded {
alt
if samples.is_some() {
// column_rgb.b
0.2 + shade_frac * 0.8
} else {
shade_frac * 0.6
}
} else {
0.0
if samples.is_some() {
alt
} else {
0.0
}
})
.sqrt(),
);
@ -281,15 +389,39 @@ impl MapConfig {
),
(Some(RiverKind::River { .. }), _) => (
0,
g_water as u8 + (alt * (127.0 - g_water)) as u8,
b_water as u8 + (alt * (255.0 - b_water)) as u8,
g_water as u8
+ (if is_shaded {
0.2 + shade_frac * 0.8
} else {
alt
} * (127.0 - g_water)) as u8,
b_water as u8
+ (if is_shaded {
0.2 + shade_frac * 0.8
} else {
alt
} * (255.0 - b_water)) as u8,
255,
),
(None, _) | (Some(RiverKind::Lake { .. }), _) => (
0,
(((g_water + water_alt * (127.0 - 32.0)) + (-water_depth * g_water)) * 1.0)
as u8,
(((b_water + water_alt * (255.0 - b_water)) + (-water_depth * b_water))
(((g_water
+ if is_shaded {
0.2 + shade_frac * 0.8
} else {
1.0
} * water_alt
* (127.0 - g_water))
+ (-water_depth * g_water))
* 1.0) as u8,
(((b_water
+ if is_shaded {
0.2 + shade_frac * 0.8
} else {
1.0
} * water_alt
* (255.0 - b_water))
+ (-water_depth * b_water))
* 1.0) as u8,
255,
),

View File

@ -17,7 +17,7 @@ pub use self::{
map::{MapConfig, MapDebug},
settlement::Settlement,
util::{
cdf_irwin_hall, downhill, get_oceans, local_cells, map_edge_factor, neighbors,
cdf_irwin_hall, downhill, get_oceans, get_shadows, local_cells, map_edge_factor, neighbors,
uniform_idx_as_vec2, uniform_noise, uphill, vec2_as_uniform_idx, InverseCdf, ScaleBias,
NEIGHBOR_DELTA,
},
@ -1101,9 +1101,9 @@ impl WorldSim {
)
};
let flux_old = get_multi_drainage(&mstack, &mrec, &*mwrec, boundary_len);
let flux_rivers = get_drainage(&water_alt_pos, &dh, boundary_len);
// let flux_rivers = get_drainage(&water_alt_pos, &dh, boundary_len);
// TODO: Make rivers work with multi-direction flux as well.
// let flux_rivers = flux_old.clone();
let flux_rivers = flux_old.clone();
let water_height_initial = |chunk_idx| {
let indirection_idx = indirection[chunk_idx];
@ -1196,6 +1196,21 @@ impl WorldSim {
None => false,
};
/* // Build a shadow map.
let shadows = get_shadows(
Vec3::new(-0.8, -1.0, 0.3),
TerrainChunkSize::RECT_SIZE.x,
TerrainChunkSize::RECT_SIZE.x as Alt,
TerrainChunkSize::RECT_SIZE.y as Alt,
Aabr {
min: Vec2::new(0.0, 0.0),
max: WORLD_SIZE.map(|e| e as Alt) * TerrainChunkSize::RECT_SIZE.map(|e| e as Alt),
},
0.0,
maxh,
|posi| alt[posi].max(water_alt[posi]),
); */
// Check whether any tiles around this tile are not water (since Lerp will
// ensure that they are included).
let pure_water = |posi: usize| {
@ -1308,11 +1323,53 @@ impl WorldSim {
/// Draw a map of the world based on chunk information. Returns a buffer of
/// u32s.
pub fn get_map(&self) -> Vec<u32> {
let mut map_config = MapConfig::default();
map_config.lgain = 1.0;
// Build a shadow map.
let shadows = get_shadows(
Vec3::new(
map_config.light_direction.x,
map_config.light_direction.z,
map_config.light_direction.y,
),
map_config.lgain,
TerrainChunkSize::RECT_SIZE.x as Alt,
TerrainChunkSize::RECT_SIZE.y as Alt,
Aabr {
min: Vec2::new(0.0, 0.0),
max: WORLD_SIZE.map(|e| e as Alt) * TerrainChunkSize::RECT_SIZE.map(|e| e as Alt),
},
CONFIG.sea_level as Alt,
(CONFIG.sea_level + self.max_height) as Alt,
|posi| {
let chunk = &self.chunks[posi];
chunk.alt.max(chunk.water_alt) as Alt
},
)
.unwrap();
let samples_data = {
let column_sample = ColumnGen::new(self);
(0..WORLD_SIZE.product())
.into_par_iter()
.map(|posi| {
column_sample.get(
uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32),
)
})
.collect::<Vec<_>>()
.into_boxed_slice()
};
let mut v = vec![0u32; WORLD_SIZE.x * WORLD_SIZE.y];
// TODO: Parallelize again.
MapConfig {
gain: self.max_height,
..MapConfig::default()
// lgain: 1.0,
shadows: Some(&shadows),
samples: Some(&samples_data),
// is_sampled: true,
..map_config
}
.generate(&self, |pos, (r, g, b, a)| {
v[pos.y * WORLD_SIZE.x + pos.x] = u32::from_le_bytes([r, g, b, a]);

View File

@ -1,4 +1,5 @@
use super::WORLD_SIZE;
use approx::ApproxEq;
use bitvec::prelude::{bitbox, bitvec, BitBox};
use common::{terrain::TerrainChunkSize, vol::RectVolSize};
use noise::{MultiFractal, NoiseFn, Perlin, Point2, Point3, Point4, Seedable};
@ -294,6 +295,52 @@ pub fn downhill<F: Float>(
.into_boxed_slice()
}
/* /// Bilinear interpolation.
///
/// Linear interpolation in both directions (i.e. quadratic interpolation).
fn get_interpolated_bilinear<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
where
T: Copy + Default + Signed + Float + Add<Output = T> + Mul<f32, Output = T>,
F: FnMut(Vec2<i32>) -> Option<T>,
{
// (i) Find downhill for all four points.
// (ii) Compute distance from each downhill point and do linear interpolation on
// their heights. (iii) Compute distance between each neighboring point
// and do linear interpolation on their distance-interpolated
// heights.
// See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf
//
// Note that these are only guaranteed monotone in one dimension; fortunately,
// that is sufficient for our purposes.
let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
e as f64 / sz as f64
});
// Orient the chunk in the direction of the most downhill point of the four. If
// there is no "most downhill" point, then we don't care.
let x0 = pos.map2(Vec2::new(0, 0), |e, q| e.max(0.0) as i32 + q);
let y0 = f(x0)?;
let x1 = pos.map2(Vec2::new(1, 0), |e, q| e.max(0.0) as i32 + q);
let y1 = f(x1)?;
let x2 = pos.map2(Vec2::new(0, 1), |e, q| e.max(0.0) as i32 + q);
let y2 = f(x2)?;
let x3 = pos.map2(Vec2::new(1, 1), |e, q| e.max(0.0) as i32 + q);
let y3 = f(x3)?;
let z0 = y0
.mul(1.0 - pos.x.fract() as f32)
.mul(1.0 - pos.y.fract() as f32);
let z1 = y1.mul(pos.x.fract() as f32).mul(1.0 - pos.y.fract() as f32);
let z2 = y2.mul(1.0 - pos.x.fract() as f32).mul(pos.y.fract() as f32);
let z3 = y3.mul(pos.x.fract() as f32).mul(pos.y.fract() as f32);
Some(z0 + z1 + z2 + z3)
} */
/// Find all ocean tiles from a height map, using an inductive definition of
/// ocean as one of:
/// - posi is at the side of the world (map_edge_factor(posi) == 0.0)
@ -335,6 +382,301 @@ pub fn get_oceans<F: Float>(oldh: impl Fn(usize) -> F + Sync) -> BitBox {
is_ocean
}
/// Finds all shadowed chunks.
///
/// ray should be a nonzero vector (if it's not, we return an error).
/// dx and dy should both be positive.
pub fn get_shadows<F: std::iter::Sum + ApproxEq + Float + Send + Sync + std::fmt::Debug>(
ray: Vec3<F>,
lgain: F,
dx: F,
dy: F,
bounds: Aabr<F>,
minh: F,
maxh: F,
h: impl Fn(usize) -> F + Sync,
) -> Result<Box<[F]>, ()> {
// First, make sure the ray and delta aren't zero.
let ray = -ray;
let ray_squared = ray.magnitude_squared();
if ray_squared == F::zero()
|| ray_squared == F::neg_zero()
|| !(dx > F::zero())
|| !(dy > F::zero())
{
return Err(());
}
let hsize = Vec2::new(dx, dy);
/* if hstep.is_approx_zero() {
return Err(());
} */
// Find map sizes.
println!("Here?");
let wmap_size = Vec2::<F>::from(bounds.size()).map2(hsize, |e, f| e / f);
println!("Here?");
let map_size = if let Vec2 {
x: Some(x),
y: Some(y),
} = wmap_size.map(|e| F::to_usize(&e))
{
Vec2::new(x, y)
} else {
return Err(());
};
let map_len = map_size.product();
/* let distance_map = |wposf: Vec3<F>| {
// For all nodes in the height map, the minimum distance to a vertex is either
// the distance to the top of this chunk, or the distance to one of the neighbors.
let wpos = Vec2::new(i32::from(pos), i32::from(pos));
let posi = vec2_as_uniform_idx(wpos);
let neighbor_min = neighbors(posi)
.map(|posj| Vec3::new(vec2_as_uniform_idx(wpos), h(posj))
.min_by_key(|(pos, _)| pos.distance_squared(wpos))
.unwrap_or(F::infinity());
(wposf.z - ).min(neighobr_min)
}
.min_by
wposf.z.min(
}; */
// Make sure that the ray has a horizontal component at all; if not, the ray is
// vertical, so it can't cast a shadow, and we set the brightness for each
// chunk to 1.0.
if Vec2::<F>::from(ray).is_approx_zero() {
return Ok(vec![F::one(); map_len].into_boxed_slice());
}
// Conversely if the ray has no vertical component, each chunk must be entirely
// in shadow (at least for our purposes).
if ray.z == F::zero() || ray.z == F::neg_zero() {
return Ok(vec![F::zero(); map_len].into_boxed_slice());
}
// Otherwise, we can use step as the minimum length we need to raymarch in order
// to guarantee an accurate bounds check for the given dx and dy (i.e., all
// boundaries at spacings smaller than a "pixel" of size (dx,dy) should be
// taken into account).
let step_dot = if ray.x == F::zero() || ray.x == F::neg_zero() {
// Ray has no x component, so we must use y
dy * ray.y
} else if ray.y == F::zero() || ray.y == F::neg_zero() {
// Ray has no y component, so we must use x
dx * ray.x
} else {
// Ray has both an x and y component, so we must use the minimum.
if dy < dx { dy * ray.y } else { dx * ray.x }
}
.abs();
let step = ray * (step_dot / ray_squared);
let hstep = Vec2::from(step);
let zstep = step.z;
// Now, do the raymarching.
println!("Here?");
let max_steps = if let Some(max_steps) = ((maxh - minh) / zstep)
.abs()
.min(
wmap_size.reduce_partial_max(), /* / hstep.reduce_partial_min() */
)
.to_usize()
{
max_steps
} else {
return Err(());
};
println!("Here?");
let step_mag = step.magnitude();
let two = F::one() + F::one();
let three = two + F::one();
let w = F::from(0.5).unwrap();
let wstep_mag = lgain / (w * step_mag);
let wmax_steps = if let Some(wmax_steps) = F::from(max_steps) {
wmax_steps
} else {
return Err(());
};
println!("Here?");
let chunk_size = if let Vec2 {
x: Some(x),
y: Some(y),
} = TerrainChunkSize::RECT_SIZE.map(F::from)
{
Vec2::new(x, y)
} else {
return Err(());
};
println!(
"Here? map_len={:?}, map_size={:?}, hstep={:?}, zstep={:?} max_steps={:?}",
map_len, map_size, hstep, zstep, max_steps
);
Ok((0..map_len)
.into_par_iter()
.map(|posi| {
// Simple raymarch to determine whether we're in shadow.
// From https://www.iquilezles.org/www/articles/rmshadows/rmshadows.htm
// NOTE: How do we know these will succeed?
let wposf_orig = bounds.min
+ Vec2::new(
F::from(posi % map_size.x).unwrap(),
F::from(posi / map_size.x).unwrap(),
) * hsize;
let wpos_orig = wposf_orig.map2(chunk_size, |e, f| e / f);
// NOTE: How do we know these will succeed?
let wposl_orig = wpos_orig.map(|e| e.floor().to_i32().unwrap());
// NOTE: How do we know these will succeed?
// let wposr_orig = wpos_orig.map(|e| e.ceil().to_i32().unwrap());
let h_orig = if wposl_orig.reduce_partial_min() < 0 ||
// Casts are fine since we're a positive i32
/*wposr_orig*/wposl_orig.x as usize >= WORLD_SIZE.x ||
/*wposr_orig*/wposl_orig.y as usize >= WORLD_SIZE.y
{
// Out of bounds, assign minimum
minh
} else {
let hl_orig = h(vec2_as_uniform_idx(wposl_orig));
// let hr_orig = h(vec2_as_uniform_idx(wposr_orig));
// let wpos_frac = wposl_orig.map(|e| F::from(e).unwrap()).distance(wpos_orig);
hl_orig // hl_orig * wpos_frac + hr_orig * (F::one() - wpos_frac)
};
// let h_orig = h(vec2_as_uniform_idx(posi_orig.to_usize().unwrap()));
if h_orig < minh {
// Below the minimum height, always in shadow.
return F::zero();
}
let wmax_steps = wmax_steps.min(((maxh - h_orig) / zstep).abs());
// NOTE: How do we know these will succeed?
/* let wposf = bounds.min
+ Vec2::new(
F::from(posi % map_size.x).unwrap(),
F::from(posi / map_size.x).unwrap(),
) * hsize; */
let mut s = F::one();
// NOTE: How do we know these will succeed?
let mut wstep = F::zero();
let mut h_i = h_orig;
let mut wposf_i = wposf_orig;
while wstep < wmax_steps && s >= F::zero() {
wstep = wstep + F::one();
h_i = h_i + zstep;
wposf_i = wposf_i + hstep;
// Find height at this point.
// let h_i = h_orig + zstep * wstep;
// Find locations before and after h_i and use them to interpolate a height.
// let wposf_i = wposf + hstep * wstep;
let wpos_i = wposf_i.map2(chunk_size, |e, f| e / f);
// println!("h_orig={:?} h_i={:?}; wposf_orig={:?} wposf={:?}", h_orig, h_i,
// wposf, wposf_i);
// NOTE: How do we know these will succeed?
let wposl_i = wpos_i.map(|e| e.floor().to_i32().unwrap());
// NOTE: How do we know these will succeed?
// let wposr_i = wpos_i.map(|e| e.ceil().to_i32().unwrap());
if wposl_i.reduce_partial_min() < 0 ||
// Casts are fine since we're a positive i32
/*wposr_i*/wposl_i.x as usize >= WORLD_SIZE.x ||
/*wposr_i*/wposl_i.y as usize >= WORLD_SIZE.y
{
// Out of bounds, we're done!
break;
}
let hl_i = h(vec2_as_uniform_idx(wposl_i));
// let hr_i = h(vec2_as_uniform_idx(wposr_i));
// let wpos_frac = wposl_i.map(|e| F::from(e).unwrap()).distance(wpos_i);
let h_j = hl_i; //hl_i * wpos_frac + hr_i * (F::one() - wpos_frac);
//
/* let posj = wpos_i.map(|e| e.into_i32());
let h_j = h(posj); */
// If we landed in shadow, we're done.
// println!("h_orig={:?} h_i={:?} h_j={:?}; wposf_orig={:?} wposf={:?}
// wpos_frac={:?}", h_orig, h_i, h_j, wposf, wposf_i, wpos_frac);
// NOTE: Approximation to real distance metric, which is hard to compute for an
// arbitrary point in a heightmap.
// s = s.min((h_i - h_j) * lgain / (wstep * w * step_mag));
s = s.min((h_i - h_j) * wstep_mag / wstep);
/* if s < F::zero()
/* h_i < h_j */
{
// s = F::zero();
// println!("A shadow!");
break;
} */
}
/*while h_i + zstep * posj < maxh {
wposf += hstep;
let posj : Vec2<i32> = (wposf / chunk_size).into();
// Simple interpolation.
let h_j = h(posj);
let h_j = h_i + (h_j - h_i) * (hstep / ).magnitude();
h_i += zstep;
// If we landed in shadow, we're done.
if h_i > h_j {
return 0.0;
}
} */
s = s.max(F::zero());
// Smoothstep
s * s * (three - two * s)
// // Above the maximum height, definitely not in shadow.
// return F::one();
/* let nh = h(posi);
if is_ocean(posi) {
-2
} else {
let mut best = -1;
let mut besth = nh;
for nposi in neighbors(posi) {
let nbh = h(nposi);
if nbh < besth {
besth = nbh;
best = nposi as isize;
}
}
best
} */
})
.collect::<Vec<_>>()
.into_boxed_slice())
/* // Raymarching technique to quickly identify approxmate distances
// Use a shadow map to raymarch all the height entries.
// We can mark tiles as ocean candidates by scanning row by row, since the top
// edge is ocean, the sides are connected to it, and any subsequent ocean
// tiles must be connected to it.
let mut is_ocean = bitbox![0; WORLD_SIZE.x * WORLD_SIZE.y];
let mut stack = Vec::new();
let mut do_push = |pos| {
let posi = vec2_as_uniform_idx(pos);
if oldh(posi) <= F::zero() {
stack.push(posi);
}
};
for x in 0..WORLD_SIZE.x as i32 {
do_push(Vec2::new(x, 0));
do_push(Vec2::new(x, WORLD_SIZE.y as i32 - 1));
}
for y in 1..WORLD_SIZE.y as i32 - 1 {
do_push(Vec2::new(0, y));
do_push(Vec2::new(WORLD_SIZE.x as i32 - 1, y));
}
while let Some(chunk_idx) = stack.pop() {
// println!("Ocean chunk {:?}: {:?}", uniform_idx_as_vec2(chunk_idx),
// oldh(chunk_idx));
if *is_ocean.at(chunk_idx) {
continue;
}
*is_ocean.at(chunk_idx) = true;
stack.extend(neighbors(chunk_idx).filter(|&neighbor_idx| {
// println!("Ocean neighbor: {:?}: {:?}", uniform_idx_as_vec2(neighbor_idx),
// oldh(neighbor_idx));
oldh(neighbor_idx) <= F::zero()
}));
}
is_ocean */
}
/// A 2-dimensional vector, for internal use.
type Vector2<T> = [T; 2];
/// A 3-dimensional vector, for internal use.