Fix clippy warnings, part 1.

There aer still a bunch of type too complex and
function takes too many arguments warnings that I'll fix later
(or ignore, since in the one case I did fix a function takes too
many arguments warning I think it made the code *less* readable).
This commit is contained in:
Joshua Yanovski 2020-08-02 20:41:51 +02:00
parent ba54307540
commit a428a3ebba
20 changed files with 280 additions and 281 deletions

View File

@ -316,7 +316,7 @@ impl Client {
// Should not fail if the dimensions are correct.
let map =
image::ImageBuffer::from_raw(u32::from(map_size.x), u32::from(map_size.y), raw);
map.ok_or(Error::Other("Server sent a bad world map image".into()))?
map.ok_or_else(|| Error::Other("Server sent a bad world map image".into()))?
})
// Flip the image, since Voxygen uses an orientation where rotation from
// positive x axis to positive y axis is counterclockwise around the z axis.

View File

@ -142,6 +142,12 @@ pub const MAX_WORLD_BLOCKS_LG: Vec2<u32> = Vec2 { x: 19, y: 19 };
pub struct MapSizeLg(Vec2<u32>);
impl MapSizeLg {
// FIXME: We cannot use is_some() here because it is not currently marked as a
// `const fn`. Since being able to use conditionals in constant expressions has
// not technically been stabilized yet, Clippy probably doesn't check for this
// case yet. When it can, or when is_some() is stabilized as a `const fn`,
// we should deal with this.
#[allow(clippy::redundant_pattern_matching)]
/// Construct a new `MapSizeLg`, returning an error if the needed invariants
/// do not hold and the vector otherwise.
///
@ -509,23 +515,17 @@ impl<'a> MapConfig<'a> {
// accurate (though I'm not sure if it can matter for these
// purposes).
chunk_idx
.map(|chunk_idx| neighbors(map_size_lg, chunk_idx).chain(iter::once(chunk_idx)))
.into_iter()
.flatten()
.flat_map(|chunk_idx| {
neighbors(map_size_lg, chunk_idx).chain(iter::once(chunk_idx))
})
.for_each(|neighbor_posi| {
let neighbor_pos = uniform_idx_as_vec2(map_size_lg, neighbor_posi);
let neighbor_wpos = neighbor_pos.map(|e| e as f64) * chunk_size;
let MapSample { connections, .. } = sample_pos(neighbor_pos);
NEIGHBOR_DELTA
.iter()
.zip(
connections
.as_ref()
.map(|e| e.iter())
.into_iter()
.flatten()
.into_iter(),
)
.zip(connections.iter().flatten())
.for_each(|(&delta, connection)| {
let connection = if let Some(connection) = connection {
connection

View File

@ -2185,7 +2185,6 @@ impl<'a> Widget for SettingsWindow<'a> {
events.push(Event::ChangeRenderMode(RenderMode {
shadow: ShadowMode::Map(ShadowMapMode {
resolution: 2.0f32.powf(f32::from(new_val) / 4.0),
..shadow_map_mode
}),
..render_mode
}));

View File

@ -3,6 +3,77 @@ use vek::*;
type TerrainVertex = <TerrainPipeline as render::Pipeline>::Vertex;
/// `max_size`:
///
/// `draw_delta`:
///
/// `greedy_size`:
///
/// `greedy_size_cross`:
///
/// `get_light`:
///
/// `get_color`:
///
///
/// `create_shadow`:
/// Create a shadow vertex (used for both shadow and display rendering)
/// given its position, normal, and meta information. Note that the position
/// received here is relative to `draw_delta`--it still needs to be translated
/// to mesh coordinates.
///
/// `create_opaque`:
pub struct GreedyConfig<D, FL, FC, FO, FS, FP> {
pub data: D,
/// The minimum position to mesh, in the coordinate system used
/// for queries against the volume.
pub draw_delta: Vec3<i32>,
/// For each dimension i, for faces drawn in planes *parallel* to i,
/// represents the number of voxels considered along dimenson i in those
/// planes, starting from `draw_delta`.
pub greedy_size: Vec3<usize>,
/// For each dimension i, represents the number of planes considered
/// *orthogonal* to dimension i, starting from `draw_delta`. This should
/// usually be the same as greedy_size.
///
/// An important exception is during chunk rendering (where vertical faces
/// at chunk boundaries would otherwise be rendered twice, and also
/// force us to use more than 5 bits to represent x and y
/// positions--though there may be a clever way aruond the latter).
/// Thus, for chunk rendering we set the number of *vertical* planes to
/// one less than the chunk size along the x and y dimensions, but keep
/// the number of *horizontal* planes large enough to cover the whole
/// chunk.
pub greedy_size_cross: Vec3<usize>,
/// Given a position, return the lighting information for the voxel at that
/// position.
pub get_light: FL,
/// Given a position, return the color information for the voxel at that
/// position.
pub get_color: FC,
/// Given a position, return the opacity information for the voxel at that
/// position. Currently, we don't support real translucent lighting, so the
/// value should either be `false` (for opaque blocks) or `true`
/// (otherwise).
pub get_opacity: FO,
/// Given a position and a normal, should we draw the face between the
/// position and position - normal (i.e. the voxel "below" this vertex)?
/// If so, provide its orientation, together with any other meta
/// information required for the mesh that needs to split up faces. For
/// example, terrain faces currently record a bit indicating whether
/// they are exposed to water or not, so we should not merge faces where
/// one is submerged in water and the other is not, even if they
/// otherwise have the same orientation, dimensions, and are
/// next to each other.
pub should_draw: FS,
/// Create an opauqe quad (used for only display rendering) from its
/// top-left atlas position, the rectangle's dimensions in (2D) atlas
/// space, a world position, the u and v axes of the rectangle in (3D)
/// world space, the normal facing out frmo the rectangle in world
/// space, and meta information common to every voxel in this rectangle.
pub push_quad: FP,
}
/// A suspended greedy mesh, with enough information to recover color data.
///
/// The reason this exists is that greedy meshing is split into two parts.
@ -28,6 +99,20 @@ pub struct GreedyMesh<'a> {
}
impl<'a> GreedyMesh<'a> {
/// Construct a new greedy mesher.
///
/// Takes as input the maximum allowable size of the texture atlas used to
/// store the light/color data for this mesh.
///
/// NOTE: It is an error to pass any size > u16::MAX.
///
/// Even aside from the above limitation, this will not necessarily always
/// be the same as the maximum atlas size supported by the hardware.
/// For instance, since we want to reserve 4 bits for a bone index for
/// figures in their shadow vertex, the atlas parameter for figures has
/// to have at least 2 bits of the normal; thus, it can only take up at
/// most 30 bits total, meaning we are restricted to "only" at most 2^15
/// × 2^15 atlases even if the hardware supports larger ones.
pub fn new(max_size: guillotiere::Size) -> Self {
let min_max_dim = max_size.width.min(max_size.height);
assert!(
@ -55,45 +140,55 @@ impl<'a> GreedyMesh<'a> {
}
}
pub fn push</* S: render::Pipeline, *//*O: render::Pipeline, */ M: PartialEq, D: 'a>(
/// Perform greedy meshing on a model, separately producing "pure" model
/// data (the opaque mesh, ttogether with atlas positions connecting
/// each rectangle with texture information), and raw light and color
/// data ready to be used as a texture (accessible with `finalize`).
/// Texture data built up within the same greedy mesh will be inserted
/// into the same atlas, which can be used to group texture data for
/// things like figures that are the result of meshing multiple models.
///
/// Returns an estimate of the bounds of the current meshed model.
///
/// For more information on the config parameter, see [GreedyConfig].
pub fn push<
M: PartialEq,
D: 'a,
FL,
FC,
FO,
FS,
FP,
>(
&mut self,
data: D,
draw_delta: Vec3<i32>,
greedy_size: Vec3<usize>,
greedy_size_cross: Vec3<usize>,
get_light: impl for<'r> FnMut(&'r mut D, Vec3<i32>) -> f32 + 'a,
get_color: impl for<'r> FnMut(&'r mut D, Vec3<i32>) -> Rgb<u8> + 'a,
get_opacity: impl for<'r> FnMut(&'r mut D, Vec3<i32>) -> bool + 'a,
should_draw: impl for<'r> FnMut(
&'r mut D,
Vec3<i32>,
Vec3<i32>,
Vec2<Vec3<i32>>,
) -> Option<(bool, M)>,
// create_shadow: impl for<'r> Fn(Vec3<f32>, Vec3<f32>, &'r M) -> S::Vertex,
// create_opaque: impl for<'r> Fn(Vec2<u16>, Vec3<f32>, Vec3<f32>, &'r M) -> O::Vertex,
push_quad: impl FnMut(Vec2<u16>, Vec2<Vec2<u16>>, Vec3<f32>, Vec2<Vec3<f32>>, Vec3<f32>, &M),
) -> Aabb<u16> {
config: GreedyConfig<D, FL, FC, FO, FS, FP>,
) -> Aabb<u16>
where
FL: for<'r> FnMut(&'r mut D, Vec3<i32>) -> f32 + 'a,
FC: for<'r> FnMut(&'r mut D, Vec3<i32>) -> Rgb<u8> + 'a,
FO: for<'r> FnMut(&'r mut D, Vec3<i32>) -> bool + 'a,
FS: for<'r> FnMut(&'r mut D, Vec3<i32>, Vec3<i32>, Vec2<Vec3<i32>>) -> Option<(bool, M)>,
FP: FnMut(Vec2<u16>, Vec2<Vec2<u16>>, Vec3<f32>, Vec2<Vec3<f32>>, Vec3<f32>, &M),
{
let (bounds, /* opaque, *//*shadow, */ cont) = greedy_mesh(
&mut self.atlas,
&mut self.col_lights_size,
self.max_size,
data,
draw_delta,
greedy_size,
greedy_size_cross,
get_light,
get_color,
get_opacity,
should_draw,
// create_shadow,
// create_opaque,
push_quad,
config,
);
self.suspended.push(cont);
bounds
}
/// Finalize the mesh, producing texture color data for the whole model.
///
/// By delaying finalization until the contents of the whole texture atlas
/// are known, we can perform just a single allocation to construct a
/// precisely fitting atlas. This will also let us (in the future)
/// suspend meshing partway through in order to meet frame budget, and
/// potentially use a single staged upload to the GPU.
///
/// Returns the ColLightsInfo corresponding to the consstructed atlas.
pub fn finalize(self) -> ColLightInfo {
let cur_size = self.col_lights_size;
let col_lights = vec![/*Default::default()*/TerrainVertex::make_col_light(254, Rgb::broadcast(254)); usize::from(cur_size.x) * usize::from(cur_size.y)];
@ -107,122 +202,34 @@ impl<'a> GreedyMesh<'a> {
pub fn max_size(&self) -> guillotiere::Size { self.max_size }
}
/// Perform greedy meshing on a model, separately producing "pure" model data
/// (the shadow mesh), raw light and color data ready to be used as a texture
/// (the returned vector of ColLights, together with their width and height),
/// and the atlas positions (the opaque mesh) used to connect the shadow
/// information with the light and color information.
///
/// The opaque and shadow data are in the same order and it is intended that
/// they be used together as vertex buffers for display purposes. Thus, if you
/// perform further manipulation on the meshes after this function returns, such
/// as merges, please be sure that all those operations preserve this
/// relationship.
///
/// TODO: Consider supporting shared texture atlases (this might come in handy
/// for mobs or sprites, for instance).a
///
/// TODO: Add assertions to make this more robust.
///
/// Parameter description:
///
/// `max_size`:
/// The maximum allowable size of the texture atlas used to store the
/// light/color data for this mesh.
///
/// NOTE: It is an error to pass any size > u16::MAX.
///
/// Even aside from the above limitation, this will not necessarily always be
/// the same as the maximum atlas size supported by the hardware. For instance,
/// since we want to reserve 4 bits for a bone index for figures in their shadow
/// vertex, the atlas parameter for figures has to have at least 2 bits of the
/// normal; thus, it can only take up at most 30 bits total, meaning we are
/// restricted to "only" at most 2^15 × 2^15 atlases even if the hardware
/// supports larger ones.
///
/// `draw_delta`: The minimum position to mesh, in the coordinate system used
/// for queries against the volume.
///
/// `greedy_size`:
/// For each dimension i, for faces drawn in planes *parallel* to i, represents
/// the number of voxels considered along dimenson i in those planes, starting
/// from `draw_delta`.
///
/// `greedy_size_cross`:
/// For each dimension i, represents the number of planes considered
/// *orthogonal* to dimension i, starting from `draw_delta`. This should
/// usually be the same as greedy_size.
///
/// An important exception is during chunk rendering (where vertical faces at
/// chunk boundaries would otherwise be rendered twice, and also force us to use
/// more than 5 bits to represent x and y positions--though there may be a
/// clever way aruond the latter). Thus, for chunk rendering we set the number
/// of *vertical* planes to one less than the chunk size along the
/// x and y dimensions, but keep the number of *horizontal* planes large enough
/// to cover the whole chunk.
///
/// `get_light`:
/// Given a position, return the lighting information for the voxel at that
/// position.
///
/// `get_color`:
/// Given a position, return the color information for the voxel at that
/// position.
///
/// `get_opacity`:
/// Given a position, return the opacity information for the voxel at that
/// position. Currently, we don't support real translucent lighting, so the
/// value should either be `false` (for opaque blocks) or `true` (otherwise).
///
/// `should_draw`:
/// Given a position and a normal, should we draw the face between the position
/// and position - normal (i.e. the voxel "below" this vertex)? If so, provide
/// its orientation, together with any other meta information required for the
/// mesh that needs to split up faces. For example, terrain faces currently
/// record a bit indicating whether they are exposed to water or not, so we
/// should not merge faces where one is submerged in water and the other is not,
/// even if they otherwise have the same orientation, dimensions, and are
/// next to each other.
///
/// `create_shadow`:
/// Create a shadow vertex (used for both shadow and display rendering)
/// given its position, normal, and meta information. Note that the position
/// received here is relative to `draw_delta`--it still needs to be translated
/// to mesh coordinates.
///
/// `create_opaque`:
/// Create an opauqe vertex (used for only display rendering) from an atlas
/// position, normal, and meta information.
fn greedy_mesh<
'a, /* , S: render::Pipeline*//*, O: render::Pipeline */
M: PartialEq,
D: 'a,
>(
fn greedy_mesh<'a, M: PartialEq, D: 'a, FL, FC, FO, FS, FP>(
atlas: &mut guillotiere::SimpleAtlasAllocator,
col_lights_size: &mut Vec2<u16>,
max_size: guillotiere::Size,
mut data: D,
draw_delta: Vec3<i32>,
greedy_size: Vec3<usize>,
greedy_size_cross: Vec3<usize>,
get_light: impl for<'r> FnMut(&'r mut D, Vec3<i32>) -> f32 + 'a,
get_color: impl for<'r> FnMut(&'r mut D, Vec3<i32>) -> Rgb<u8> + 'a,
get_opacity: impl for<'r> FnMut(&'r mut D, Vec3<i32>) -> bool + 'a,
mut should_draw: impl for<'r> FnMut(
&'r mut D,
Vec3<i32>,
Vec3<i32>,
Vec2<Vec3<i32>>,
) -> Option<(bool, M)>,
// create_shadow: impl Fn(Vec3<f32>, Vec3<f32>, &M) -> S::Vertex,
// create_opaque: impl Fn(Vec2<u16>, Vec3<f32>, Vec3<f32>, &M) -> O::Vertex,
mut push_quad: impl FnMut(Vec2<u16>, Vec2<Vec2<u16>>, Vec3<f32>, Vec2<Vec3<f32>>, Vec3<f32>, &M),
GreedyConfig {
mut data,
draw_delta,
greedy_size,
greedy_size_cross,
get_light,
get_color,
get_opacity,
mut should_draw,
mut push_quad,
}: GreedyConfig<D, FL, FC, FO, FS, FP>,
) -> (
Aabb<u16>,
// Mesh<O>,
// Mesh<S>,
Box<SuspendedMesh<'a>>,
) {
)
where
FL: for<'r> FnMut(&'r mut D, Vec3<i32>) -> f32 + 'a,
FC: for<'r> FnMut(&'r mut D, Vec3<i32>) -> Rgb<u8> + 'a,
FO: for<'r> FnMut(&'r mut D, Vec3<i32>) -> bool + 'a,
FS: for<'r> FnMut(&'r mut D, Vec3<i32>, Vec3<i32>, Vec2<Vec3<i32>>) -> Option<(bool, M)>,
FP: FnMut(Vec2<u16>, Vec2<Vec2<u16>>, Vec3<f32>, Vec2<Vec3<f32>>, Vec3<f32>, &M),
{
// let mut opaque_mesh = Mesh::new();
// let mut shadow_mesh = Mesh::new();

View File

@ -1,6 +1,6 @@
use crate::{
mesh::{
greedy::{self, GreedyMesh},
greedy::{self, GreedyConfig, GreedyMesh},
Meshable,
},
render::{self, FigurePipeline, Mesh, ShadowPipeline, SpritePipeline, TerrainPipeline},
@ -77,13 +77,14 @@ where
vol.get(vox).map(|vox| *vox).unwrap_or(Vox::empty())
})
};
let create_opaque = |atlas_pos, pos, norm, _meta| {
let create_opaque = |atlas_pos, pos, norm| {
TerrainVertex::new_figure(atlas_pos, (pos + offs) * scale, norm, 0)
};
let mut opaque_mesh = Mesh::new();
let bounds = greedy.push(
self,
GreedyConfig {
data: self,
draw_delta,
greedy_size,
greedy_size_cross,
@ -91,7 +92,7 @@ where
get_color,
get_opacity,
should_draw,
|atlas_origin, dim, origin, draw_dim, norm, meta| {
push_quad: |atlas_origin, dim, origin, draw_dim, norm, meta: &()| {
opaque_mesh.push_quad(greedy::create_quad(
atlas_origin,
dim,
@ -99,9 +100,10 @@ where
draw_dim,
norm,
meta,
|atlas_pos, pos, norm, &meta| create_opaque(atlas_pos, pos, norm, meta),
|atlas_pos, pos, norm, &_meta| create_opaque(atlas_pos, pos, norm),
));
},
},
);
let bounds = bounds.map(f32::from);
let bounds = Aabb {
@ -194,7 +196,8 @@ where
let mut opaque_mesh = Mesh::new();
let _bounds = greedy.push(
self,
GreedyConfig {
data: self,
draw_delta,
greedy_size,
greedy_size_cross,
@ -202,7 +205,7 @@ where
get_color,
get_opacity,
should_draw,
|atlas_origin, dim, origin, draw_dim, norm, meta| {
push_quad: |atlas_origin, dim, origin, draw_dim, norm, meta: &bool| {
opaque_mesh.push_quad(greedy::create_quad(
atlas_origin,
dim,
@ -213,6 +216,7 @@ where
|atlas_pos, pos, norm, &meta| create_opaque(atlas_pos, pos, norm, meta),
));
},
},
);
(opaque_mesh, Mesh::new(), Mesh::new(), ())

View File

@ -1,6 +1,6 @@
use crate::{
mesh::{
greedy::{self, GreedyMesh},
greedy::{self, GreedyConfig, GreedyMesh},
Meshable,
},
render::{self, ColLightInfo, FluidPipeline, Mesh, ShadowPipeline, TerrainPipeline},
@ -503,8 +503,9 @@ impl<'a, V: RectRasterableVol<Vox = Block> + ReadVol + Debug>
let get_color =
|_: &mut (), pos: Vec3<i32>| flat_get(pos).get_color().unwrap_or(Rgb::zero());
let get_opacity = |_: &mut (), pos: Vec3<i32>| !flat_get(pos).is_opaque();
let flat_get = |pos| flat_get(pos);
let should_draw = |_: &mut (), pos: Vec3<i32>, delta: Vec3<i32>, _uv| {
should_draw_greedy(pos, delta, |pos| flat_get(pos))
should_draw_greedy(pos, delta, flat_get)
};
// NOTE: Conversion to f32 is fine since this i32 is actually in bounds for u16.
// let create_shadow = |pos, norm, meta| ShadowVertex::new(pos + Vec3::new(0.0,
@ -513,14 +514,14 @@ impl<'a, V: RectRasterableVol<Vox = Block> + ReadVol + Debug>
let create_opaque = |atlas_pos, pos, norm, meta| {
TerrainVertex::new(atlas_pos, pos + mesh_delta, norm, meta)
};
let create_transparent =
|_atlas_pos, pos, norm, _meta| FluidVertex::new(pos + mesh_delta, norm);
let create_transparent = |_atlas_pos, pos, norm| FluidVertex::new(pos + mesh_delta, norm);
let mut greedy = GreedyMesh::new(max_size);
let mut opaque_mesh = Mesh::new();
let mut fluid_mesh = Mesh::new();
let bounds = greedy.push(
(),
GreedyConfig {
data: (),
draw_delta,
greedy_size,
greedy_size_cross,
@ -528,7 +529,7 @@ impl<'a, V: RectRasterableVol<Vox = Block> + ReadVol + Debug>
get_color,
get_opacity,
should_draw,
|atlas_origin, dim, origin, draw_dim, norm, meta| match meta {
push_quad: |atlas_origin, dim, origin, draw_dim, norm, meta: &FaceKind| match meta {
FaceKind::Opaque(meta) => {
opaque_mesh.push_quad(greedy::create_quad(
atlas_origin,
@ -548,12 +549,11 @@ impl<'a, V: RectRasterableVol<Vox = Block> + ReadVol + Debug>
draw_dim,
norm,
&(),
|atlas_pos, pos, norm, &meta| {
create_transparent(atlas_pos, pos, norm, meta)
},
|atlas_pos, pos, norm, &_meta| create_transparent(atlas_pos, pos, norm),
));
},
},
},
);
let bounds = bounds.map(f32::from);

View File

@ -128,7 +128,7 @@ impl<P: Pipeline> Quad<P> {
let verts = [self.a, self.b, self.c, self.d];
Self {
a: verts[(0 + n) % 4].clone(),
a: verts[n % 4].clone(),
b: verts[(1 + n) % 4].clone(),
c: verts[(2 + n) % 4].clone(),
d: verts[(3 + n) % 4].clone(),

View File

@ -163,7 +163,7 @@ impl FigureModel {
// in order to store the bone index. The two bits are instead taken out
// of the atlas coordinates, which is why we "only" allow 1 << 15 per
// coordinate instead of 1 << 16.
let max_size = guillotiere::Size::new(1 << 15 - 1, 1 << 15 - 1);
let max_size = guillotiere::Size::new((1 << 15) - 1, (1 << 15) - 1);
GreedyMesh::new(max_size)
}
}

View File

@ -84,8 +84,10 @@ impl Vertex {
if norm.x < 0.0 { 0 } else { 1 }
} else if norm.y != 0.0 {
if norm.y < 0.0 { 2 } else { 3 }
} else if norm.z < 0.0 {
4
} else {
if norm.z < 0.0 { 4 } else { 5 }
5
};
// let ao = 0xFFu32;
// let light = 0xFFu32;

View File

@ -82,10 +82,7 @@ impl fmt::Display for Vertex {
.field("pos", &Vec3::<f32>::from(self.pos))
.field(
"atlas_pos",
&Vec2::new(
(self.atlas_pos >> 0) & 0xFFFF,
(self.atlas_pos >> 16) & 0xFFFF,
),
&Vec2::new(self.atlas_pos & 0xFFFF, (self.atlas_pos >> 16) & 0xFFFF),
)
.field("norm_ao", &self.norm_ao)
.finish()

View File

@ -58,8 +58,10 @@ impl Vertex {
if norm.x < 0.0 { 0 } else { 1 }
} else if norm.y != 0.0 {
if norm.y < 0.0 { 2 } else { 3 }
} else if norm.z < 0.0 {
4
} else {
if norm.z < 0.0 { 4 } else { 5 }
5
};
Self {
pos_norm: 0

View File

@ -166,7 +166,7 @@ impl Renderer {
let shadow_views = Self::create_shadow_views(
&mut factory,
(dims.0, dims.1),
&ShadowMapMode::try_from(mode.shadow).unwrap_or(ShadowMapMode::default()),
&ShadowMapMode::try_from(mode.shadow).unwrap_or_default(),
)
.map_err(|err| {
warn!("Could not create shadow map views: {:?}", err);
@ -1192,7 +1192,6 @@ impl Renderer {
_alt: &Texture<LodAltFmt>,
_horizon: &Texture<LodTextureFmt>,
) {
return;
/* let (point_shadow_maps, directed_shadow_maps) =
if let Some(shadow_map) = &mut self.shadow_map {
(
@ -2222,7 +2221,7 @@ fn create_shadow_pipeline<P: gfx::pso::PipelineInit>(
factory.create_shader_set(vs.as_bytes(), fs.as_bytes())?
};
let result = Ok(GfxPipeline {
Ok(GfxPipeline {
pso: factory.create_pipeline_state(
&shader_set,
gfx::Primitive::TriangleList,
@ -2242,7 +2241,5 @@ fn create_shadow_pipeline<P: gfx::pso::PipelineInit>(
},
pipe,
)?,
});
result
})
}

View File

@ -59,7 +59,8 @@ where
filter_method.unwrap_or(gfx::texture::FilterMethod::Scale),
wrap_mode.unwrap_or(gfx::texture::WrapMode::Clamp),
);
sampler_info.border = border.unwrap_or([0.0, 0.0, 0.0, 1.0].into());
let transparent = [0.0, 0.0, 0.0, 1.0].into();
sampler_info.border = border.unwrap_or(transparent);
Ok(Self {
tex,
srv,

View File

@ -185,7 +185,7 @@ impl FigureMgrStates {
}
}
fn retain<'a>(&'a mut self, mut f: impl FnMut(&EcsEntity, &mut FigureStateMeta) -> bool) {
fn retain(&mut self, mut f: impl FnMut(&EcsEntity, &mut FigureStateMeta) -> bool) {
self.character_states.retain(|k, v| f(k, &mut *v));
self.quadruped_small_states.retain(|k, v| f(k, &mut *v));
self.quadruped_medium_states.retain(|k, v| f(k, &mut *v));

View File

@ -53,7 +53,7 @@ pub fn mat_mul_points<T: Float + MulAdd<T, T, Output = T>>(
pts: &mut [Vec3<T>],
mut do_p: impl FnMut(Vec4<T>) -> Vec3<T>,
) {
pts.into_iter().for_each(|p| {
pts.iter_mut().for_each(|p| {
*p = do_p(mat * Vec4::from_point(*p));
});
}
@ -480,13 +480,11 @@ pub fn clip_test<T: Float + core::fmt::Debug>(p: T, q: T, (u1, u2): (T, T)) -> O
} else {
Some((if r > u1 { r } else { u1 }, u2))
}
} else {
if r < u1 {
} else if r < u1 {
None
} else {
Some((u1, if r < u2 { r } else { u2 }))
}
}
} /*;
// println!("clip_test@(p={:?}, q={:?}, (u1, u2)=({:?}. {:?})):
// res={:?}", p, q, u1, u2, res); res*/

View File

@ -1195,19 +1195,19 @@ impl Scene {
let w_p: math::Mat4<f32> = {
if /*sin_gamma > EPISLON_GAMMA*/factor > EPSILON_UPSILON {
// Projection for y
let n = directed_near;// - near_dist;
let f = directed_far;
let l = -1.0;// bounds0.min.x;//-1.0;// bounds0.min.x - light_focus_pos.x;
let r = 1.0;// bounds0.max.x;//1.0;// bounds0.max.x - light_focus_pos.x;
let b = -1.0;// bounds0.max.z;// bounds0.max.z - light_focus_pos.z;
let t = 1.0;// bounds0.min.z;// bounds0.min.z - light_focus_pos.z;
let s_x = 2.0 * n / (r - l);
let o_x = (r + l) / (r - l);
let s_z = 2.0 * n / (t - b);
let o_z = (t + b) / (t - b);
let near = directed_near;// - near_dist;
let far = directed_far;
let left = -1.0;// bounds0.min.x;//-1.0;// bounds0.min.x - light_focus_pos.x;
let right = 1.0;// bounds0.max.x;//1.0;// bounds0.max.x - light_focus_pos.x;
let bottom = -1.0;// bounds0.max.z;// bounds0.max.z - light_focus_pos.z;
let top = 1.0;// bounds0.min.z;// bounds0.min.z - light_focus_pos.z;
let s_x = 2.0 * near / (right - left);
let o_x = (right + left) / (right - left);
let s_z = 2.0 * near / (top - bottom);
let o_z = (top + bottom) / (top - bottom);
let s_y = (f + n) / (f - n);
let o_y = -2.0 * f * n / (f - n);
let s_y = (far + near) / (far - near);
let o_y = -2.0 * far * near / (far - near);
// y(y₀) = s_y y₀ + o_y
// = ((f + n)y₀ - 2fn) / (f - n)
// y(f) = s_y f + o_y
@ -1337,22 +1337,12 @@ impl Scene {
let o_x = -(xmax + xmin) / (xmax - xmin);
let o_y = -(ymax + ymin) / (ymax - ymin);
let o_z = -(zmax + zmin) / (zmax - zmin);
let directed_proj_mat = if /*sin_gamma > EPISLON_GAMMA*/factor > EPSILON_UPSILON {
// Mat4::identity()
Mat4::new(
s_x, 0.0, 0.0, o_x,
0.0, s_y, 0.0, o_y,
0.0, 0.0, /*-*/s_z, /*-*/o_z,
0.0, 0.0, 0.0, 1.0,
)/*.scaled_3d(Vec3::new(1.0, 1.0, -1.0))*/
} else {
Mat4::new(
let directed_proj_mat = Mat4::new(
s_x, 0.0, 0.0, o_x,
0.0, s_y, 0.0, o_y,
0.0, 0.0, s_z, o_z,
0.0, 0.0, 0.0, 1.0,
)/*.scaled_3d(Vec3::new(1.0, 1.0, -1.0))*/
}/*.scaled_3d(Vec3::new(1.0, 1.0, -1.0))*//* * w_p * w_v*//* * l_r*/;//Mat4::identity();
)/*.scaled_3d(Vec3::new(1.0, 1.0, -1.0))*//* * w_p * w_v*//* * l_r*/;//Mat4::identity();
// println!("proj_mat: {:?}", directed_proj_mat);
// println!("all_mat: {:?}", directed_proj_mat * view_mat);
// let _w_p_arr = directed_proj_mat.cols.iter().map(|e| (e.x, e.y, e.z, e.w)).collect::<Vec<_>>();

View File

@ -525,6 +525,7 @@ impl<V: RectRasterableVol> Terrain<V> {
let mut make_models = |(kind, variation), s, offset, lod_axes: Vec3<f32>| {
let scaled = [1.0, 0.8, 0.6, 0.4, 0.2];
let model = assets::load_expect::<DotVoxData>(s);
let zero = Vec3::zero();
let model_size = model
.models
.first()
@ -534,7 +535,7 @@ impl<V: RectRasterableVol> Terrain<V> {
..
}| Vec3::new(x, y, z),
)
.unwrap_or(Vec3::zero());
.unwrap_or(zero);
let max_model_size = Vec3::new(15.0, 15.0, 63.0);
let model_scale = max_model_size.map2(model_size, |max_sz: f32, cur_sz| {
let scale = max_sz / max_sz.max(cur_sz as f32);
@ -2663,7 +2664,7 @@ impl<V: RectRasterableVol> Terrain<V> {
// store it. Only pull out one chunk per frame to avoid an unacceptable
// amount of blocking lag due to the GPU upload. That still gives us a
// 60 chunks / second budget to play with.
if let Some(response) = self.mesh_recv.recv_timeout(Duration::new(0, 0)).ok() {
if let Ok(response) = self.mesh_recv.recv_timeout(Duration::new(0, 0)) {
match self.mesh_todo.get(&response.pos) {
// It's the mesh we want, insert the newly finished model into the terrain model
// data structure (convert the mesh to a model first of course).

View File

@ -6,7 +6,8 @@
const_if_match,
const_generics,
const_panic,
label_break_value
label_break_value,
or_patterns
)]
mod all;

View File

@ -232,7 +232,7 @@ pub fn sample_pos(
);
Rgb::new((r * 255.0) as u8, (g * 255.0) as u8, (b * 255.0) as u8)
},
(None, _) | (Some(RiverKind::Lake { .. }), _) | (Some(RiverKind::Ocean), _) => Rgb::new(
(None | Some(RiverKind::Lake { .. } | RiverKind::Ocean), _) => Rgb::new(
0,
((g_water - water_depth * g_water) * 1.0) as u8,
((b_water - water_depth * b_water) * 1.0) as u8,

View File

@ -1440,7 +1440,7 @@ impl WorldSim {
/* let z_cache = block_gen.get_z_cache(wpos);
sample.alt = alt.max(z_cache.get_z_limits(&mut block_gen).2); */
sample.alt = alt.max(BlockGen::get_cliff_height(
&mut block_gen.column_gen,
&block_gen.column_gen,
&mut block_gen.column_cache,
wpos.map(|e| e as f32),
&sample.close_cliffs,
@ -1719,12 +1719,12 @@ impl WorldSim {
}
pub fn get_base_z(&self, chunk_pos: Vec2<i32>) -> Option<f32> {
if !chunk_pos
let in_bounds = chunk_pos
.map2(self.map_size_lg().chunks(), |e, sz| {
e > 0 && e < sz as i32 - 2
})
.reduce_and()
{
.reduce_and();
if !in_bounds {
return None;
}