Don't have rain be behind an expiremental shader

This commit is contained in:
IsseW 2022-04-19 21:43:40 +02:00
parent 6274d54e56
commit b82bb5b247
6 changed files with 93 additions and 101 deletions

View File

@ -99,59 +99,57 @@ void main() {
color.rgb = apply_point_glow(cam_pos.xyz + focus_off.xyz, dir, dist, color.rgb);
#endif
#ifdef EXPERIMENTAL_RAIN
vec3 old_color = color.rgb;
vec3 old_color = color.rgb;
// If this value is changed also change it in common/src/weather.rs
float fall_rate = 70.0;
dir.xy += wind_vel * dir.z / fall_rate;
dir = normalize(dir);
// If this value is changed also change it in common/src/weather.rs
float fall_rate = 70.0;
dir.xy += wind_vel * dir.z / fall_rate;
dir = normalize(dir);
float z = (-1 / (abs(dir.z) - 1) - 1) * sign(dir.z);
vec2 dir_2d = normalize(dir.xy);
vec2 view_pos = vec2(atan2(dir_2d.x, dir_2d.y), z);
float z = (-1 / (abs(dir.z) - 1) - 1) * sign(dir.z);
vec2 dir_2d = normalize(dir.xy);
vec2 view_pos = vec2(atan2(dir_2d.x, dir_2d.y), z);
vec3 cam_wpos = cam_pos.xyz + focus_off.xyz;
float rain_dist = 250.0;
for (int i = 0; i < 7; i ++) {
float old_rain_dist = rain_dist;
rain_dist *= 0.3;
vec3 cam_wpos = cam_pos.xyz + focus_off.xyz;
float rain_dist = 250.0;
for (int i = 0; i < 7; i ++) {
float old_rain_dist = rain_dist;
rain_dist *= 0.3;
vec2 drop_density = vec2(30, 1);
vec2 drop_density = vec2(30, 1);
vec2 rain_pos = (view_pos * rain_dist);
rain_pos += vec2(0, tick.x * fall_rate + cam_wpos.z);
vec2 rain_pos = (view_pos * rain_dist);
rain_pos += vec2(0, tick.x * fall_rate + cam_wpos.z);
vec2 cell = floor(rain_pos * drop_density) / drop_density;
vec2 cell = floor(rain_pos * drop_density) / drop_density;
float drop_depth = mix(
old_rain_dist,
rain_dist,
fract(hash(fract(vec4(cell, rain_dist, 0) * 0.1)))
);
vec3 rpos = vec3(vec2(dir_2d), view_pos.y) * drop_depth;
float dist_to_rain = length(rpos);
if (dist < dist_to_rain || cam_wpos.z + rpos.z > CLOUD_AVG_ALT) {
continue;
}
if (dot(rpos * vec3(1, 1, 0.5), rpos) < 1.0) {
break;
}
float rain_density = rain_density_at(cam_wpos.xy + rpos.xy) * rain_occlusion_at(cam_pos.xyz + rpos.xyz) * 10.0;
if (rain_density < 0.001 || fract(hash(fract(vec4(cell, rain_dist, 0) * 0.01))) > rain_density) {
continue;
}
vec2 near_drop = cell + (vec2(0.5) + (vec2(hash(vec4(cell, 0, 0)), 0.5) - 0.5) * vec2(2, 0)) / drop_density;
vec2 drop_size = vec2(0.0008, 0.05);
float avg_alpha = (drop_size.x * drop_size.y) * 10 / 1;
float alpha = sign(max(1 - length((rain_pos - near_drop) / drop_size * 0.1), 0));
float light = sqrt(dot(old_color, vec3(1))) + (get_sun_brightness() + get_moon_brightness()) * 0.01;
color.rgb = mix(color.rgb, vec3(0.3, 0.4, 0.5) * light, mix(avg_alpha, alpha, min(1000 / dist_to_rain, 1)) * 0.25);
float drop_depth = mix(
old_rain_dist,
rain_dist,
fract(hash(fract(vec4(cell, rain_dist, 0) * 0.1)))
);
vec3 rpos = vec3(vec2(dir_2d), view_pos.y) * drop_depth;
float dist_to_rain = length(rpos);
if (dist < dist_to_rain || cam_wpos.z + rpos.z > CLOUD_AVG_ALT) {
continue;
}
#endif
if (dot(rpos * vec3(1, 1, 0.5), rpos) < 1.0) {
break;
}
float rain_density = rain_density_at(cam_wpos.xy + rpos.xy) * rain_occlusion_at(cam_pos.xyz + rpos.xyz) * 10.0;
if (rain_density < 0.001 || fract(hash(fract(vec4(cell, rain_dist, 0) * 0.01))) > rain_density) {
continue;
}
vec2 near_drop = cell + (vec2(0.5) + (vec2(hash(vec4(cell, 0, 0)), 0.5) - 0.5) * vec2(2, 0)) / drop_density;
vec2 drop_size = vec2(0.0008, 0.05);
float avg_alpha = (drop_size.x * drop_size.y) * 10 / 1;
float alpha = sign(max(1 - length((rain_pos - near_drop) / drop_size * 0.1), 0));
float light = sqrt(dot(old_color, vec3(1))) + (get_sun_brightness() + get_moon_brightness()) * 0.01;
color.rgb = mix(color.rgb, vec3(0.3, 0.4, 0.5) * light, mix(avg_alpha, alpha, min(1000 / dist_to_rain, 1)) * 0.25);
}
tgt_color = vec4(color.rgb, 1);
}

View File

@ -149,30 +149,28 @@ void main() {
wave_sample_dist / slope
);
#ifdef EXPERIMENTAL_RAIN
float rain_density = rain_density_at(f_pos.xy + focus_off.xy) * rain_occlusion_at(f_pos.xyz) * 50.0;
if (rain_density > 0 && surf_norm.z > 0.5) {
vec3 drop_density = vec3(2, 2, 2);
vec3 drop_pos = wave_pos + vec3(0, 0, -time_of_day.x * 0.025);
drop_pos.z += noise_2d(floor(drop_pos.xy * drop_density.xy) * 13.1) * 10;
vec2 cell2d = floor(drop_pos.xy * drop_density.xy);
drop_pos.z *= 0.5 + hash_fast(uvec3(cell2d, 0));
vec3 cell = vec3(cell2d, floor(drop_pos.z * drop_density.z));
float rain_density = rain_density_at(f_pos.xy + focus_off.xy) * rain_occlusion_at(f_pos.xyz) * 50.0;
if (rain_density > 0 && surf_norm.z > 0.5) {
vec3 drop_density = vec3(2, 2, 2);
vec3 drop_pos = wave_pos + vec3(0, 0, -time_of_day.x * 0.025);
drop_pos.z += noise_2d(floor(drop_pos.xy * drop_density.xy) * 13.1) * 10;
vec2 cell2d = floor(drop_pos.xy * drop_density.xy);
drop_pos.z *= 0.5 + hash_fast(uvec3(cell2d, 0));
vec3 cell = vec3(cell2d, floor(drop_pos.z * drop_density.z));
if (fract(hash(fract(vec4(cell, 0) * 0.01))) < rain_density) {
vec3 off = vec3(hash_fast(uvec3(cell * 13)), hash_fast(uvec3(cell * 5)), 0);
vec3 near_cell = (cell + 0.5 + (off - 0.5) * 0.5) / drop_density;
if (fract(hash(fract(vec4(cell, 0) * 0.01))) < rain_density) {
vec3 off = vec3(hash_fast(uvec3(cell * 13)), hash_fast(uvec3(cell * 5)), 0);
vec3 near_cell = (cell + 0.5 + (off - 0.5) * 0.5) / drop_density;
float dist = length((drop_pos - near_cell) / vec3(1, 1, 2));
float drop_rad = 0.125;
nmap.xy += (drop_pos - near_cell).xy
* max(1.0 - abs(dist - drop_rad) * 50, 0)
* 2500
* sign(dist - drop_rad)
* max(drop_pos.z - near_cell.z, 0);
}
float dist = length((drop_pos - near_cell) / vec3(1, 1, 2));
float drop_rad = 0.125;
nmap.xy += (drop_pos - near_cell).xy
* max(1.0 - abs(dist - drop_rad) * 50, 0)
* 2500
* sign(dist - drop_rad)
* max(drop_pos.z - near_cell.z, 0);
}
#endif
}
nmap = mix(f_norm, normalize(nmap), min(1.0 / pow(frag_dist, 0.75), 1));

View File

@ -231,39 +231,37 @@ void main() {
vec3 k_d = vec3(1.0);
vec3 k_s = vec3(R_s);
#ifdef EXPERIMENTAL_RAIN
vec3 pos = f_pos + focus_off.xyz;
float rain_density = rain_density_at(pos.xy) * rain_occlusion_at(f_pos.xyz) * 50.0;
// Toggle to see rain_occlusion
// tgt_color = vec4(rain_occlusion_at(f_pos.xyz), 0.0, 0.0, 1.0);
// return;
if (rain_density > 0 && !faces_fluid && f_norm.z > 0.5) {
vec3 drop_density = vec3(2, 2, 2);
vec3 drop_pos = pos + vec3(pos.zz, 0) + vec3(0, 0, -tick.x * 1.0);
drop_pos.z += noise_2d(floor(drop_pos.xy * drop_density.xy) * 13.1) * 10;
vec2 cell2d = floor(drop_pos.xy * drop_density.xy);
drop_pos.z *= 0.5 + hash_fast(uvec3(cell2d, 0));
vec3 cell = vec3(cell2d, floor(drop_pos.z * drop_density.z));
vec3 pos = f_pos + focus_off.xyz;
float rain_density = rain_density_at(pos.xy) * rain_occlusion_at(f_pos.xyz) * 50.0;
// Toggle to see rain_occlusion
// tgt_color = vec4(rain_occlusion_at(f_pos.xyz), 0.0, 0.0, 1.0);
// return;
if (rain_density > 0 && !faces_fluid && f_norm.z > 0.5) {
vec3 drop_density = vec3(2, 2, 2);
vec3 drop_pos = pos + vec3(pos.zz, 0) + vec3(0, 0, -tick.x * 1.0);
drop_pos.z += noise_2d(floor(drop_pos.xy * drop_density.xy) * 13.1) * 10;
vec2 cell2d = floor(drop_pos.xy * drop_density.xy);
drop_pos.z *= 0.5 + hash_fast(uvec3(cell2d, 0));
vec3 cell = vec3(cell2d, floor(drop_pos.z * drop_density.z));
if (fract(hash(fract(vec4(cell, 0) * 0.01))) < rain_density) {
vec3 off = vec3(hash_fast(uvec3(cell * 13)), hash_fast(uvec3(cell * 5)), 0);
vec3 near_cell = (cell + 0.5 + (off - 0.5) * 0.5) / drop_density;
if (fract(hash(fract(vec4(cell, 0) * 0.01))) < rain_density) {
vec3 off = vec3(hash_fast(uvec3(cell * 13)), hash_fast(uvec3(cell * 5)), 0);
vec3 near_cell = (cell + 0.5 + (off - 0.5) * 0.5) / drop_density;
float dist = length((drop_pos - near_cell) / vec3(1, 1, 2));
float drop_rad = 0.1;
float distort = max(1.0 - abs(dist - drop_rad) * 100, 0) * 1.5 * max(drop_pos.z - near_cell.z, 0);
k_a += distort;
k_d += distort;
k_s += distort;
f_norm.xy += (drop_pos - near_cell).xy
* max(1.0 - abs(dist - drop_rad) * 30, 0)
* 500.0
* max(drop_pos.z - near_cell.z, 0)
* sign(dist - drop_rad)
* max(drop_pos.z - near_cell.z, 0);
}
float dist = length((drop_pos - near_cell) / vec3(1, 1, 2));
float drop_rad = 0.1;
float distort = max(1.0 - abs(dist - drop_rad) * 100, 0) * 1.5 * max(drop_pos.z - near_cell.z, 0);
k_a += distort;
k_d += distort;
k_s += distort;
f_norm.xy += (drop_pos - near_cell).xy
* max(1.0 - abs(dist - drop_rad) * 30, 0)
* 500.0
* max(drop_pos.z - near_cell.z, 0)
* sign(dist - drop_rad)
* max(drop_pos.z - near_cell.z, 0);
}
#endif
}
// float sun_light = get_sun_brightness(sun_dir);
// float moon_light = get_moon_brightness(moon_dir);

View File

@ -6,8 +6,6 @@ use noise::{NoiseFn, SuperSimplex, Turbulence};
use vek::*;
use world::World;
/*
#[derive(Clone, Copy, Default)]
struct Cell {

View File

@ -360,7 +360,9 @@ impl AudioFrontend {
channel_tag: AmbientChannelTag,
) -> Option<&mut AmbientChannel> {
if self.audio_stream.is_some() {
self.ambient_channels.iter_mut().find(|channel| channel.get_tag() == channel_tag)
self.ambient_channels
.iter_mut()
.find(|channel| channel.get_tag() == channel_tag)
} else {
None
}

View File

@ -476,8 +476,6 @@ pub enum ExperimentalShader {
/// Display grid lines to visualize the distribution of shadow map texels
/// for the directional light from the sun.
DirectionalShadowMapTexelGrid,
/// Enable rain, unfinished and goes through blocks
Rain,
/// Enable rainbows
Rainbows,
}