Basic trading simulation

This commit is contained in:
Joshua Barretto 2020-03-28 18:16:19 +00:00
parent 46190aa634
commit cee1b1f962
4 changed files with 396 additions and 50 deletions

View File

@ -43,6 +43,10 @@ impl<T> Store<T> {
pub fn get_mut(&mut self, id: Id<T>) -> &mut T { self.items.get_mut(id.0).unwrap() } pub fn get_mut(&mut self, id: Id<T>) -> &mut T { self.items.get_mut(id.0).unwrap() }
pub fn ids(&self) -> impl Iterator<Item = Id<T>> {
(0..self.items.len()).map(|i| Id(i, PhantomData))
}
pub fn iter(&self) -> impl Iterator<Item = &T> { self.items.iter() } pub fn iter(&self) -> impl Iterator<Item = &T> { self.items.iter() }
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> { self.items.iter_mut() } pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> { self.items.iter_mut() }

View File

@ -156,8 +156,11 @@ fn main() {
println!("Block: ({}, {}), Chunk: ({}, {})", block_pos.x, block_pos.y, chunk_pos.x, chunk_pos.y); println!("Block: ({}, {}), Chunk: ({}, {})", block_pos.x, block_pos.y, chunk_pos.x, chunk_pos.y);
if let Some(chunk) = sampler.get(chunk_pos) { if let Some(chunk) = sampler.get(chunk_pos) {
//println!("Chunk info: {:#?}", chunk); //println!("Chunk info: {:#?}", chunk);
if let Some(place) = &chunk.place { if let Some(id) = &chunk.place {
println!("Place {} info: {:#?}", place.id(), world.civs().place(*place)); let place = world.civs().place(*id);
println!("Place {} info: {:#?}", id.id(), place);
println!("Site: {:#?}", world.civs().sites().find(|site| site.place == *id));
} }
} }
} }

77
world/src/civ/econ.rs Normal file
View File

@ -0,0 +1,77 @@
use rand::prelude::*;
use super::GenCtx;
pub struct SellOrder {
pub quantity: f32,
pub price: f32,
// The money returned to the seller
pub q_sold: f32,
}
pub struct BuyOrder {
quantity: f32,
max_price: f32,
}
#[derive(Clone, Debug)]
pub struct Belief {
pub price: f32,
pub confidence: f32,
}
impl Belief {
pub fn choose_price(&self, ctx: &mut GenCtx<impl Rng>) -> f32 {
self.price + ctx.rng.gen_range(-1.0, 1.0) * self.confidence
}
pub fn update_buyer(&mut self, years: f32, new_price: f32) {
if (self.price - new_price).abs() < self.confidence {
self.confidence *= 0.8;
} else {
self.price += (new_price - self.price) * 0.5; // TODO: Make this vary with `years`
self.confidence = (self.price - new_price).abs();
}
}
pub fn update_seller(&mut self, proportion: f32) {
self.price *= 1.0 + (proportion - 0.5) * 0.25;
self.confidence /= 1.0 + (proportion - 0.5) * 0.25;
}
}
pub fn buy_units<'a>(
ctx: &mut GenCtx<impl Rng>,
sellers: impl Iterator<Item=&'a mut SellOrder>,
max_quantity: f32,
max_price: f32,
max_spend: f32,
) -> (f32, f32) {
let mut sell_orders = sellers
.filter(|so| so.quantity > 0.0)
.collect::<Vec<_>>();
// Sort sell orders by price, cheapest first
sell_orders.sort_by(|a, b| a.price.partial_cmp(&b.price).unwrap_or_else(|| panic!("{} and {}", a.price, b.price)));
let mut quantity = 0.0;
let mut spent = 0.0;
for order in sell_orders {
if
quantity >= max_quantity || // We've purchased enough
spent >= max_spend || // We've spent enough
order.price > max_price // Price is too high
{
break;
} else {
let q = (max_quantity - quantity)
.min(order.quantity - order.q_sold)
.min((max_spend - spent) / order.price);
order.q_sold += q;
quantity += q;
spent += q * order.price;
}
}
(quantity, spent)
}

View File

@ -1,3 +1,5 @@
mod econ;
use std::ops::Range; use std::ops::Range;
use hashbrown::{HashMap, HashSet}; use hashbrown::{HashMap, HashSet};
use vek::*; use vek::*;
@ -33,7 +35,7 @@ fn attempt<T>(max_iters: usize, mut f: impl FnMut() -> Option<T>) -> Option<T> {
(0..max_iters).find_map(|_| f()) (0..max_iters).find_map(|_| f())
} }
const INITIAL_CIV_COUNT: usize = 20; const INITIAL_CIV_COUNT: usize = 32;
#[derive(Default)] #[derive(Default)]
pub struct Civs { pub struct Civs {
@ -46,7 +48,7 @@ pub struct Civs {
sites: Store<Site>, sites: Store<Site>,
} }
struct GenCtx<'a, R: Rng> { pub struct GenCtx<'a, R: Rng> {
sim: &'a mut WorldSim, sim: &'a mut WorldSim,
rng: &'a mut R, rng: &'a mut R,
} }
@ -65,9 +67,9 @@ impl Civs {
} }
// Tick // Tick
const SIM_YEARS: usize = 100; const SIM_YEARS: usize = 1000;
for _ in 0..SIM_YEARS { for _ in 0..SIM_YEARS {
this.tick(1.0); this.tick(&mut ctx, 1.0);
} }
// Temporary! // Temporary!
@ -84,6 +86,10 @@ impl Civs {
pub fn place(&self, id: Id<Place>) -> &Place { self.places.get(id) } pub fn place(&self, id: Id<Place>) -> &Place { self.places.get(id) }
pub fn sites(&self) -> impl Iterator<Item=&Site> + '_ {
self.sites.iter()
}
fn display_info(&self) { fn display_info(&self) {
for (id, civ) in self.civs.iter_ids() { for (id, civ) in self.civs.iter_ids() {
println!("# Civilisation {:?}", id); println!("# Civilisation {:?}", id);
@ -93,7 +99,7 @@ impl Civs {
for (id, site) in self.sites.iter_ids() { for (id, site) in self.sites.iter_ids() {
println!("# Site {:?}", id); println!("# Site {:?}", id);
println!("{:?}", site); println!("{:#?}", site);
} }
} }
@ -131,10 +137,7 @@ impl Civs {
fn birth_civ(&mut self, ctx: &mut GenCtx<impl Rng>) -> Option<Id<Civ>> { fn birth_civ(&mut self, ctx: &mut GenCtx<impl Rng>) -> Option<Id<Civ>> {
let site = attempt(5, || { let site = attempt(5, || {
let loc = find_site_loc(ctx, None)?; let loc = find_site_loc(ctx, None)?;
self.establish_site(ctx, loc, SiteKind::Settlement(Settlement { self.establish_site(ctx, loc, SiteKind::Settlement(Settlement::civ_birthplace()))
stocks: Stocks::default(),
population: 24,
}))
})?; })?;
let civ = self.civs.insert(Civ { let civ = self.civs.insert(Civ {
@ -211,7 +214,7 @@ impl Civs {
.collect::<Vec<_>>(); .collect::<Vec<_>>();
nearby.sort_by_key(|(_, dist)| *dist as i32); nearby.sort_by_key(|(_, dist)| *dist as i32);
for (nearby, _) in nearby.into_iter().take(ctx.rng.gen_range(3, 5)) { for (nearby, _) in nearby.into_iter() {
// Find a novel path // Find a novel path
if let Some((path, cost)) = find_path(ctx, loc, self.sites.get(nearby).center) { if let Some((path, cost)) = find_path(ctx, loc, self.sites.get(nearby).center) {
// Find a path using existing paths // Find a path using existing paths
@ -236,13 +239,125 @@ impl Civs {
Some(site) Some(site)
} }
pub fn tick(&mut self, years: f32) { fn tick(&mut self, ctx: &mut GenCtx<impl Rng>, years: f32) {
// Collect stocks
for site in self.sites.iter_mut() { for site in self.sites.iter_mut() {
match &mut site.kind { if let SiteKind::Settlement(s) = &mut site.kind {
SiteKind::Settlement(s) => { s.collect_stocks(years, &self.places.get(site.place).nat_res);
s.collect_stocks(years, &self.places.get(site.place).nat_res); }
s.consume_stocks(years); }
},
// Trade stocks
let mut stocks = [FOOD, WOOD, ROCK];
stocks.shuffle(ctx.rng); // Give each stock a chance to be traded first
for stock in stocks.iter().copied() {
let mut sell_orders = self.sites
.iter_ids()
.filter_map(|(id, site)| site.as_settlement().map(|s| (id, s)))
.map(|(id, settlement)| (id, econ::SellOrder {
quantity: settlement.trade_states[stock].surplus.min(settlement.stocks[stock]),
price: settlement.trade_states[stock].sell_belief.choose_price(ctx),
q_sold: 0.0,
}))
.filter(|(_, order)| order.quantity > 0.0)
.collect::<Vec<_>>();
let mut sites = self.sites
.ids()
.filter(|id| self.sites.get(*id).as_settlement().is_some())
.collect::<Vec<_>>();
sites.shuffle(ctx.rng); // Give all sites a chance to buy first
for site in sites {
let (max_spend, max_price) = {
let settlement = self.sites.get(site).as_settlement().unwrap();
(
settlement.trade_states[stock].purchase_priority * settlement.coin,
settlement.trade_states[stock].buy_belief.price,
)
};
let (quantity, spent) = econ::buy_units(ctx, sell_orders
.iter_mut()
.filter(|(id, _)| site != *id && self.track_between(site, *id).is_some())
.map(|(_, order)| order),
1000000.0, // Max quantity TODO
1000000.0, // Max price TODO
max_spend,
);
let mut settlement = self.sites.get_mut(site).as_settlement_mut().unwrap();
settlement.coin -= spent;
if quantity > 0.0 {
settlement.stocks[stock] += quantity;
settlement.trade_states[stock].buy_belief.update_buyer(years, spent / quantity);
println!("Belief: {:?}", settlement.trade_states[stock].buy_belief);
}
}
for (site, order) in sell_orders {
let mut settlement = self.sites.get_mut(site).as_settlement_mut().unwrap();
settlement.coin += order.q_sold * order.price;
if order.q_sold > 0.0 {
settlement.stocks[stock] -= order.q_sold;
settlement.trade_states[stock].sell_belief.update_seller(order.q_sold / order.quantity);
}
}
}
// Trade stocks
/*
let mut sites = self.sites.ids().collect::<Vec<_>>();
sites.shuffle(ctx.rng); // Give all sites a chance to buy first
for site in sites {
let mut stocks = [FOOD, WOOD, ROCK];
stocks.shuffle(ctx.rng); // Give each stock a chance to be traded first
for stock in stocks.iter().copied() {
if self.sites.get(site).as_settlement().is_none() {
continue;
}
let settlement = self.sites.get(site).as_settlement().unwrap();
let quantity_to_buy = settlement.trade_states[stock].buy_q;
let mut bought_quantity = 0.0;
let mut coin = settlement.coin;
drop(settlement);
let mut sell_orders = self
.neighbors(site)
.collect::<Vec<_>>()
.into_iter()
.filter_map(|n| self.sites.get(n).as_settlement().map(|s| (n, s)))
.map(|(n, neighbor)| {
// TODO: Add speculation, don't use the domestic value to rationalise price
let trade_state = &neighbor.trade_states[stock];
let sell_q = trade_state.sell_q.min(neighbor.stocks[stock]);
(n, trade_state.domestic_value, sell_q)
})
.collect::<Vec<_>>();
sell_orders.sort_by_key(|(_, price, _)| (*price * 1000.0) as i64);
for (n, price, sell_q) in sell_orders {
if bought_quantity >= quantity_to_buy {
break;
} else {
let buy_quantity = (quantity_to_buy - bought_quantity).min(sell_q).min(coin / price);
let payment = buy_quantity * price;
bought_quantity += buy_quantity;
coin -= payment;
let mut neighbor = self.sites.get_mut(n).as_settlement_mut().unwrap();
neighbor.stocks[stock] -= buy_quantity;
neighbor.coin += payment;
}
}
let mut settlement = self.sites.get_mut(site).as_settlement_mut().unwrap();
settlement.stocks[stock] += bought_quantity;
settlement.coin = coin;
}
}
*/
// Consume stocks
for site in self.sites.iter_mut() {
if let SiteKind::Settlement(s) = &mut site.kind {
s.consume_stocks(years);
} }
} }
} }
@ -379,7 +494,25 @@ pub struct Track {
pub struct Site { pub struct Site {
kind: SiteKind, kind: SiteKind,
center: Vec2<i32>, center: Vec2<i32>,
place: Id<Place>, pub place: Id<Place>,
}
impl Site {
pub fn as_settlement(&self) -> Option<&Settlement> {
if let SiteKind::Settlement(s) = &self.kind {
Some(s)
} else {
None
}
}
pub fn as_settlement_mut(&mut self) -> Option<&mut Settlement> {
if let SiteKind::Settlement(s) = &mut self.kind {
Some(s)
} else {
None
}
}
} }
#[derive(Debug)] #[derive(Debug)]
@ -387,53 +520,182 @@ pub enum SiteKind {
Settlement(Settlement), Settlement(Settlement),
} }
#[derive(Default, Debug)] #[derive(Debug)]
pub struct Settlement { pub struct Settlement {
stocks: Stocks, population: f32,
population: u32, stocks: Stocks<f32>,
trade_states: Stocks<TradeState>,
coin: f32,
} }
impl Settlement { impl Settlement {
pub fn civ_birthplace() -> Self {
Self {
population: 24.0,
stocks: Stocks::default(),
trade_states: Stocks::default(),
coin: 1000.0,
}
}
pub fn collect_stocks(&mut self, years: f32, nat_res: &NaturalResources) { pub fn collect_stocks(&mut self, years: f32, nat_res: &NaturalResources) {
// Per labourer, per year // Per labourer, per year
const LUMBER_RATE: f32 = 0.5; let collection_rate = Stocks::from_list(&[
const MINE_RATE: f32 = 0.3; (FOOD, 2.0),
const FARM_RATE: f32 = 0.4; (ROCK, 0.6),
(WOOD, 1.5),
]);
// No more that 1.0 in total // Proportion of the population dedicated to each task
let lumberjacks = 0.2 * self.population as f32; let workforce_ratios = Stocks::from_list(&[
let miners = 0.15 * self.population as f32; (FOOD, self.trade_states[FOOD].domestic_value),
let farmers = 0.4 * self.population as f32; (ROCK, self.trade_states[ROCK].domestic_value),
(WOOD, self.trade_states[WOOD].domestic_value),
]);
// Normalise workforce proportions
let wf_total = workforce_ratios.iter().map(|(_, r)| *r).sum::<f32>();
let workforce = workforce_ratios.map(|stock, r| r / wf_total * self.population);
self.stocks.logs += years * nat_res.wood.min(lumberjacks * LUMBER_RATE); self.stocks[FOOD] += years * (workforce[FOOD] * collection_rate[FOOD] + nat_res.farmland * 0.01).min(nat_res.farmland);
self.stocks.rocks += years * nat_res.stone.min(miners * MINE_RATE); self.stocks[ROCK] += years * (workforce[ROCK] * collection_rate[ROCK] + nat_res.stone * 0.01).min(nat_res.stone);
self.stocks.food += years * nat_res.farmland.min(farmers * FARM_RATE); self.stocks[WOOD] += years * (workforce[WOOD] * collection_rate[WOOD] + nat_res.wood * 0.01).min(nat_res.wood);
println!("{:?}", nat_res);
println!("{:?}", self.stocks);
} }
pub fn consume_stocks(&mut self, years: f32) { pub fn consume_stocks(&mut self, years: f32) {
const EAT_RATE: f32 = 0.15; const EAT_RATE: f32 = 0.5;
// Food required to give birth const USE_WOOD_RATE: f32 = 0.75;
const BIRTH_FOOD: f32 = 0.25; const BIRTH_RATE: f32 = 0.1;
const MAX_ANNUAL_BABIES: f32 = 0.15;
let needed_food = self.population as f32 * EAT_RATE; self.population += years * BIRTH_RATE;
let food_surplus = (self.stocks.food - needed_food).max(0.0);
let food_deficit = -(self.stocks.food - needed_food).min(0.0);
self.stocks.food = (self.stocks.food - needed_food).max(0.0); let required = Stocks::from_list(&[
(FOOD, self.population as f32 * years * EAT_RATE),
(WOOD, self.population as f32 * years * USE_WOOD_RATE),
]);
self.population -= (food_deficit * EAT_RATE).round() as u32; // Calculate surplus and deficit of each stock
self.population += (food_surplus / BIRTH_FOOD).round().min(self.population as f32 * MAX_ANNUAL_BABIES) as u32; let surplus = required.clone().map(|stock, required| (self.stocks[stock] - required).max(0.0));
} let deficit = required.clone().map(|stock, required| (required - self.stocks[stock]).max(0.0));
pub fn happiness(&self) -> f32 { // Deplete stocks
self.stocks.food / self.population as f32 self.stocks.iter_mut().for_each(|(stock, v)| *v = (*v - required[stock]).max(0.0));
// Kill people
self.population = (self.population - deficit[FOOD] * years * EAT_RATE).max(0.0);
// If in deficit, value the stock more
deficit.iter().for_each(|(stock, deficit)| {
if *deficit > 0.0 {
let mut trade_state = &mut self.trade_states[stock];
trade_state.domestic_value += *deficit * 0.01;
trade_state.surplus = -*deficit;
trade_state.purchase_priority *= 1.1;
}
});
// If in surplus, value the stock less
surplus.iter().for_each(|(stock, surplus)| {
if *surplus > 0.0 {
let mut trade_state = &mut self.trade_states[stock];
trade_state.domestic_value /= 1.0 + *surplus * 0.01;
trade_state.surplus = *surplus;
}
});
// Normalise purchasing priorities
let pp_avg = self.trade_states.iter().map(|(_, ts)| ts.purchase_priority).sum::<f32>() / self.trade_states.iter().count() as f32;
self.trade_states.iter_mut().for_each(|(_, ts)| ts.purchase_priority /= pp_avg);
} }
} }
#[derive(Default, Debug)] type Stock = &'static str;
pub struct Stocks { const FOOD: Stock = "food";
logs: f32, const WOOD: Stock = "wood";
rocks: f32, const ROCK: Stock = "rock";
food: f32,
#[derive(Debug, Clone)]
struct TradeState {
buy_belief: econ::Belief,
sell_belief: econ::Belief,
/// The price/value assigned to the stock by the host settlement
domestic_value: f32,
surplus: f32,
purchase_priority: f32,
} }
impl Default for TradeState {
fn default() -> Self {
Self {
buy_belief: econ::Belief {
price: 1.0,
confidence: 0.25,
},
sell_belief: econ::Belief {
price: 1.0,
confidence: 0.25,
},
domestic_value: 1.0,
surplus: 0.0,
purchase_priority: 1.0,
}
}
}
#[derive(Default, Clone, Debug)]
pub struct Stocks<T> {
stocks: HashMap<Stock, T>,
zero: T,
}
impl<T: Default + Clone> Stocks<T> {
pub fn from_list<'a>(i: impl IntoIterator<Item=&'a (Stock, T)>) -> Self
where T: 'a
{
Self {
stocks: i.into_iter().cloned().collect(),
zero: T::default(),
}
}
pub fn get_mut(&mut self, stock: Stock) -> &mut T {
self
.stocks
.entry(stock)
.or_default()
}
pub fn get(&self, stock: Stock) -> &T {
self.stocks.get(&stock).unwrap_or(&self.zero)
}
pub fn map(mut self, mut f: impl FnMut(Stock, T) -> T) -> Self {
self.stocks.iter_mut().for_each(|(s, v)| *v = f(*s, std::mem::take(v)));
self
}
pub fn iter(&self) -> impl Iterator<Item=(Stock, &T)> + '_ {
self.stocks.iter().map(|(s, v)| (*s, v))
}
pub fn iter_mut(&mut self) -> impl Iterator<Item=(Stock, &mut T)> + '_ {
self.stocks.iter_mut().map(|(s, v)| (*s, v))
}
}
impl<T: Default + Clone> std::ops::Index<Stock> for Stocks<T> {
type Output = T;
fn index(&self, stock: Stock) -> &Self::Output { self.get(stock) }
}
impl<T: Default + Clone> std::ops::IndexMut<Stock> for Stocks<T> {
fn index_mut(&mut self, stock: Stock) -> &mut Self::Output { self.get_mut(stock) }
}