Added minimap compass

This commit is contained in:
Joshua Barretto
2020-07-10 15:00:20 +01:00
parent 951a977b2f
commit cf69d0c5d8
6 changed files with 182 additions and 58 deletions

View File

@ -4,6 +4,7 @@ use crate::{
vol::{BaseVol, ReadVol},
};
use hashbrown::hash_map::DefaultHashBuilder;
use rand::prelude::*;
use std::iter::FromIterator;
use vek::*;
@ -71,11 +72,12 @@ impl Route {
vel: Vec3<f32>,
on_ground: bool,
traversal_tolerance: f32,
slow_factor: f32,
) -> Option<(Vec3<f32>, f32)>
where
V: BaseVol<Vox = Block> + ReadVol,
{
let (next0, next1, next_tgt) = loop {
let (next0, next1, next_tgt, be_precise) = loop {
let next0 = self
.next(0)
.unwrap_or_else(|| pos.map(|e| e.floor() as i32));
@ -85,28 +87,57 @@ impl Route {
return None;
}
let diagonals = [
Vec2::new(1, 0),
Vec2::new(1, 1),
Vec2::new(0, 1),
Vec2::new(-1, 1),
Vec2::new(-1, 0),
Vec2::new(-1, -1),
Vec2::new(0, -1),
Vec2::new(1, -1),
];
let next1 = self.next(1).unwrap_or(next0);
let next_tgt = next0.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0);
let be_precise = diagonals.iter().any(|pos| {
!walkable(vol, next0 + Vec3::new(pos.x, pos.y, 0))
&& !walkable(vol, next0 + Vec3::new(pos.x, pos.y, -1))
&& !walkable(vol, next0 + Vec3::new(pos.x, pos.y, -2))
&& !walkable(vol, next0 + Vec3::new(pos.x, pos.y, 1))
});
let next0_tgt = next0.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0);
let next1_tgt = next1.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0);
let next_tgt = next0_tgt;
// Maybe skip a node (useful with traversing downhill)
let closest_tgt = if next0_tgt.distance_squared(pos) < next1_tgt.distance_squared(pos) {
next0_tgt
} else {
next1_tgt
};
// Determine whether we're close enough to the next to to consider it completed
if pos.xy().distance_squared(next_tgt.xy()) < traversal_tolerance.powf(2.0)
&& (pos.z - next_tgt.z > 1.2 || (pos.z - next_tgt.z > -0.2 && on_ground))
&& pos.z - next_tgt.z < 2.2
let dist_sqrd = pos.xy().distance_squared(closest_tgt.xy());
if dist_sqrd < traversal_tolerance.powf(2.0) * if be_precise { 0.25 } else { 1.0 }
&& (pos.z - closest_tgt.z > 1.2 || (pos.z - closest_tgt.z > -0.2 && on_ground))
&& (pos.z - closest_tgt.z < 1.2 || (pos.z - closest_tgt.z < 2.9 && vel.z < -0.05))
&& vel.z <= 0.0
// Only consider the node reached if there's nothing solid between us and it
&& vol
.ray(pos + Vec3::unit_z() * 1.5, next_tgt + Vec3::unit_z() * 1.5)
.ray(pos + Vec3::unit_z() * 1.5, closest_tgt + Vec3::unit_z() * 1.5)
.until(|block| block.is_solid())
.cast()
.0
> pos.distance(next_tgt) * 0.9
> pos.distance(closest_tgt) * 0.9
&& self.next_idx < self.path.len()
{
// Node completed, move on to the next one
self.next_idx += 1;
} else {
// The next node hasn't been reached yet, use it as a target
break (next0, next1, next_tgt);
break (next0, next1, next_tgt, be_precise);
}
};
@ -157,38 +188,56 @@ impl Route {
};
let align = |block_pos: Vec3<i32>, precision: f32| {
let lerp_block = |x, precision| Lerp::lerp(x, block_pos.xy().map(|e| e as f32), precision);
let lerp_block =
|x, precision| Lerp::lerp(x, block_pos.xy().map(|e| e as f32), precision);
(0..4)
.filter_map(|i| {
let edge_line = LineSegment2 {
start: lerp_block((block_pos.xy() + corners[i]).map(|e| e as f32), precision),
end: lerp_block((block_pos.xy() + corners[i + 1]).map(|e| e as f32), precision),
start: lerp_block(
(block_pos.xy() + corners[i]).map(|e| e as f32),
precision,
),
end: lerp_block(
(block_pos.xy() + corners[i + 1]).map(|e| e as f32),
precision,
),
};
intersect(vel_line, edge_line)
.filter(|intersect| intersect.clamped(
block_pos.xy().map(|e| e as f32),
block_pos.xy().map(|e| e as f32 + 1.0),
).distance_squared(*intersect) < 0.001)
intersect(vel_line, edge_line).filter(|intersect| {
intersect
.clamped(
block_pos.xy().map(|e| e as f32),
block_pos.xy().map(|e| e as f32 + 1.0),
)
.distance_squared(*intersect)
< 0.001
})
})
.min_by_key(|intersect: &Vec2<f32>| (intersect.distance_squared(vel_line.end) * 1000.0) as i32)
.unwrap_or_else(|| (0..2)
.map(|i| (0..2).map(move |j| Vec2::new(i, j)))
.min_by_key(|intersect: &Vec2<f32>| {
(intersect.distance_squared(vel_line.end) * 1000.0) as i32
})
.unwrap_or_else(|| {
(0..2)
.map(|i| (0..2).map(move |j| Vec2::new(i, j)))
.flatten()
.map(|rpos| block_pos + rpos)
.map(|block_pos| {
let block_posf = block_pos.xy().map(|e| e as f32);
let proj = vel_line.projected_point(block_posf);
let clamped = lerp_block(proj.clamped(
block_pos.xy().map(|e| e as f32),
block_pos.xy().map(|e| e as f32),
), precision);
let clamped = lerp_block(
proj.clamped(
block_pos.xy().map(|e| e as f32),
block_pos.xy().map(|e| e as f32),
),
precision,
);
(proj.distance_squared(clamped), clamped)
})
.min_by_key(|(d2, _)| (d2 * 1000.0) as i32)
.unwrap()
.1)
.1
})
};
let bez = CubicBezier2 {
@ -214,21 +263,38 @@ impl Route {
let bez = CubicBezier2 {
start: pos.xy(),
ctrl0: pos.xy() + vel.xy().try_normalized().unwrap_or(Vec2::zero()) * 1.0,
ctrl1: align(next0, (1.0 - straight_factor * if (next0.z as f32 - pos.z).abs() < 0.25 { 1.0 } else { 0.0 }).max(0.1)),
ctrl1: align(
next0,
(1.0 - straight_factor
* if (next0.z as f32 - pos.z).abs() < 0.25 && !be_precise {
1.0
} else {
0.0
})
.max(0.1),
),
end: align(next1, 1.0),
};
let tgt2d = bez.evaluate(if (next0.z as f32 - pos.z).abs() < 0.25 { 0.25 } else { 0.5 });
let tgt = Vec3::from(tgt2d) + Vec3::unit_z() * next_tgt.z;
let tgt2d = bez.evaluate(if (next0.z as f32 - pos.z).abs() < 0.25 {
0.25
} else {
0.5
});
let tgt = if be_precise {
next_tgt
} else {
Vec3::from(tgt2d) + Vec3::unit_z() * next_tgt.z
};
Some((
tgt - pos,
// Control the entity's speed to hopefully stop us falling off walls on sharp corners.
// This code is very imperfect: it does its best but it can still fail for particularly
// fast entities.
straight_factor * 0.75 + 0.25,
straight_factor * slow_factor + (1.0 - slow_factor),
))
.filter(|(bearing, _)| bearing.z < 2.1)
.filter(|(bearing, _)| bearing.z < 2.1)
}
}
@ -255,6 +321,7 @@ impl Chaser {
tgt: Vec3<f32>,
min_dist: f32,
traversal_tolerance: f32,
slow_factor: f32,
) -> Option<(Vec3<f32>, f32)>
where
V: BaseVol<Vox = Block> + ReadVol,
@ -282,13 +349,14 @@ impl Chaser {
} else {
self.route
.as_mut()
.and_then(|r| r.traverse(vol, pos, vel, on_ground, traversal_tolerance))
.and_then(|r| r.traverse(vol, pos, vel, on_ground, traversal_tolerance, slow_factor))
// In theory this filter isn't needed, but in practice agents often try to take
// stale paths that start elsewhere. This code makes sure that we're only using
// paths that start near us, avoiding the agent doubling back to chase a stale
// path.
.filter(|(bearing, _)| bearing.xy()
.magnitude_squared() < (traversal_tolerance * 3.0).powf(2.0))
.magnitude_squared() < 1.75f32.powf(2.0)
&& thread_rng().gen::<f32>() > 0.025)
}
} else {
None
@ -321,6 +389,24 @@ impl Chaser {
}
}
#[allow(clippy::float_cmp)] // TODO: Pending review in #587
fn walkable<V>(vol: &V, pos: Vec3<i32>) -> bool
where
V: BaseVol<Vox = Block> + ReadVol,
{
vol.get(pos - Vec3::new(0, 0, 1))
.map(|b| b.is_solid() && b.get_height() == 1.0)
.unwrap_or(false)
&& vol
.get(pos + Vec3::new(0, 0, 0))
.map(|b| !b.is_solid())
.unwrap_or(true)
&& vol
.get(pos + Vec3::new(0, 0, 1))
.map(|b| !b.is_solid())
.unwrap_or(true)
}
#[allow(clippy::float_cmp)] // TODO: Pending review in #587
fn find_path<V>(
astar: &mut Option<Astar<Vec3<i32>, DefaultHashBuilder>>,
@ -331,19 +417,7 @@ fn find_path<V>(
where
V: BaseVol<Vox = Block> + ReadVol,
{
let is_walkable = |pos: &Vec3<i32>| {
vol.get(*pos - Vec3::new(0, 0, 1))
.map(|b| b.is_solid() && b.get_height() == 1.0)
.unwrap_or(false)
&& vol
.get(*pos + Vec3::new(0, 0, 0))
.map(|b| !b.is_solid())
.unwrap_or(true)
&& vol
.get(*pos + Vec3::new(0, 0, 1))
.map(|b| !b.is_solid())
.unwrap_or(true)
};
let is_walkable = |pos: &Vec3<i32>| walkable(vol, *pos);
let get_walkable_z = |pos| {
let mut z_incr = 0;
for _ in 0..32 {
@ -437,12 +511,12 @@ where
// )
};
let crow_line = LineSegment2 {
start: startf.xy(),
end: endf.xy(),
};
let transition = |a: &Vec3<i32>, b: &Vec3<i32>| {
let crow_line = LineSegment2 {
start: startf.xy(),
end: endf.xy(),
};
// Modify the heuristic a little in order to prefer paths that take us on a
// straight line toward our target. This means we get smoother movement.
1.0 + crow_line.distance_to_point(b.xy().map(|e| e as f32)) * 0.025