mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
Implement lift and adapt things to work with it
This reverts commit 823d38a058e757542ac423af5da457ca02cce674.
This commit is contained in:
parent
b198109110
commit
dcec45075d
2
Cargo.lock
generated
2
Cargo.lock
generated
@ -5463,6 +5463,7 @@ dependencies = [
|
||||
"hashbrown",
|
||||
"image",
|
||||
"indexmap",
|
||||
"inline_tweak",
|
||||
"lazy_static",
|
||||
"num-derive",
|
||||
"num-traits",
|
||||
@ -5541,6 +5542,7 @@ dependencies = [
|
||||
"bincode",
|
||||
"hashbrown",
|
||||
"indexmap",
|
||||
"inline_tweak",
|
||||
"ordered-float 2.1.1",
|
||||
"rand 0.8.3",
|
||||
"rayon",
|
||||
|
@ -1192,7 +1192,7 @@ impl Client {
|
||||
.map(|cs| {
|
||||
matches!(
|
||||
cs,
|
||||
comp::CharacterState::GlideWield | comp::CharacterState::Glide
|
||||
comp::CharacterState::GlideWield | comp::CharacterState::Glide(_)
|
||||
)
|
||||
});
|
||||
|
||||
|
@ -15,7 +15,7 @@ default = ["simd"]
|
||||
[dependencies]
|
||||
|
||||
common-base = { package = "veloren-common-base", path = "base" }
|
||||
# inline_tweak = "1.0.8"
|
||||
inline_tweak = "1.0.8"
|
||||
|
||||
# Serde
|
||||
serde = { version = "1.0.110", features = ["derive", "rc"] }
|
||||
|
@ -595,6 +595,21 @@ impl Body {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn wings(&self) -> Option<RigidWings> {
|
||||
matches!(
|
||||
self,
|
||||
Body::BirdMedium(_)
|
||||
| Body::BirdSmall(_)
|
||||
| Body::Dragon(_)
|
||||
| Body::FishMedium(_)
|
||||
| Body::FishSmall(_)
|
||||
)
|
||||
.then_some({
|
||||
let dim = self.dimensions().xy();
|
||||
RigidWings::new(dim.x, dim.y * 0.2)
|
||||
})
|
||||
}
|
||||
|
||||
pub fn immune_to(&self, buff: BuffKind) -> bool {
|
||||
match buff {
|
||||
BuffKind::Bleeding => matches!(self, Body::Object(_) | Body::Golem(_) | Body::Ship(_)),
|
||||
@ -651,3 +666,30 @@ impl Body {
|
||||
impl Component for Body {
|
||||
type Storage = DerefFlaggedStorage<Self, IdvStorage<Self>>;
|
||||
}
|
||||
|
||||
/// Rigid, elliptical wings
|
||||
// Not exactly great for birds and such, but for now it'll have to do.
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct RigidWings {
|
||||
aspect_ratio: f32,
|
||||
planform_area: f32,
|
||||
// sweep_angle: Option<f32>,
|
||||
}
|
||||
|
||||
impl RigidWings {
|
||||
/// Wings from total span (wing-tip to wing-tip) and
|
||||
/// chord length (leading edge to trailing edge)
|
||||
pub fn new(span_length: f32, chord_length: f32) -> Self {
|
||||
let planform_area = std::f32::consts::PI * chord_length * span_length * 0.25;
|
||||
Self {
|
||||
aspect_ratio: span_length.powi(2) / planform_area,
|
||||
planform_area,
|
||||
}
|
||||
}
|
||||
|
||||
/// The aspect ratio is the ratio of the span squared to actual planform
|
||||
/// area
|
||||
pub fn aspect_ratio(&self) -> f32 { self.aspect_ratio }
|
||||
|
||||
pub fn planform_area(&self) -> f32 { self.planform_area }
|
||||
}
|
||||
|
@ -50,7 +50,7 @@ pub enum CharacterState {
|
||||
Dance,
|
||||
Talk,
|
||||
Sneak,
|
||||
Glide,
|
||||
Glide(glide::Data),
|
||||
GlideWield,
|
||||
/// A stunned state
|
||||
Stunned(stunned::Data),
|
||||
|
@ -1,6 +1,6 @@
|
||||
use super::{
|
||||
body::{object, Body},
|
||||
Density, Vel,
|
||||
body::{object, Body, RigidWings},
|
||||
Density, Ori, Vel,
|
||||
};
|
||||
use crate::{
|
||||
consts::{AIR_DENSITY, WATER_DENSITY},
|
||||
@ -88,7 +88,13 @@ impl Default for Fluid {
|
||||
}
|
||||
|
||||
impl Body {
|
||||
pub fn aerodynamic_forces(&self, rel_flow: &Vel, fluid_density: f32) -> Vec3<f32> {
|
||||
pub fn aerodynamic_forces(
|
||||
&self,
|
||||
ori: &Ori,
|
||||
rel_flow: &Vel,
|
||||
fluid_density: f32,
|
||||
wings: Option<&RigidWings>,
|
||||
) -> Vec3<f32> {
|
||||
let v_sq = rel_flow.0.magnitude_squared();
|
||||
if v_sq < 0.25 {
|
||||
// don't bother with miniscule forces
|
||||
@ -96,7 +102,69 @@ impl Body {
|
||||
} else {
|
||||
let rel_flow_dir = Dir::new(rel_flow.0 / v_sq.sqrt());
|
||||
// All the coefficients come pre-multiplied by their reference area
|
||||
0.5 * fluid_density * v_sq * self.parasite_drag_coefficient() * *rel_flow_dir
|
||||
0.5 * fluid_density
|
||||
* v_sq
|
||||
* wings
|
||||
.filter(|_| crate::lift_enabled())
|
||||
.map(|wings| {
|
||||
// Since we have wings, we proceed to calculate the lift and drag
|
||||
|
||||
let ar = wings.aspect_ratio();
|
||||
// aoa will be positive when we're pitched up and negative otherwise
|
||||
let aoa = angle_of_attack(ori, &rel_flow_dir);
|
||||
// c_l will be positive when aoa is positive (we have positive lift,
|
||||
// producing an upward force) and negative otherwise
|
||||
let c_l = wings.lift_coefficient(aoa);
|
||||
|
||||
// lift dir will be orthogonal to the local relative flow vector.
|
||||
// Local relative flow is the resulting vector of (relative) freestream flow
|
||||
// + downwash (created by the vortices of the wing tips)
|
||||
let lift_dir: Dir = {
|
||||
// induced angle of attack
|
||||
let aoa_i = c_l / (PI * ar);
|
||||
// effective angle of attack; the aoa as seen by aerofoil after downwash
|
||||
let aoa_eff = aoa - aoa_i;
|
||||
/*println!(
|
||||
"CL={:.1}, α={:.1}°, αᵢ={:.1}°, αₑ={:.1}°, AR={:.1}",
|
||||
c_l,
|
||||
aoa.to_degrees(),
|
||||
aoa_i.to_degrees(),
|
||||
aoa_eff.to_degrees(),
|
||||
ar
|
||||
);*/
|
||||
// Angle between chord line and local relative wind is aoa_eff radians.
|
||||
// Direction of lift is perpendicular to local relative wind.
|
||||
// At positive lift, local relative wind will be below our cord line at
|
||||
// an angle of aoa_eff. Thus if we pitch down by aoa_eff radians then
|
||||
// our chord line will be colinear with local relative wind vector and
|
||||
// our up will be the direction of lift.
|
||||
ori.pitched_down(aoa_eff).up()
|
||||
};
|
||||
|
||||
// drag coefficient due to lift
|
||||
let c_d = {
|
||||
// Oswald's efficiency factor (empirically derived--very magical)
|
||||
// (this definition should not be used for aspect ratios > 25)
|
||||
let e = 1.78 * (1.0 - 0.045 * ar.powf(0.68)) - 0.64;
|
||||
|
||||
wings.zero_lift_drag_coefficient()
|
||||
+ self.parasite_drag_coefficient()
|
||||
+ c_l.powi(2) / (PI * e * ar)
|
||||
};
|
||||
debug_assert!(c_d.is_sign_positive());
|
||||
debug_assert!(c_l.is_sign_positive() || aoa.is_sign_negative());
|
||||
/*println!(
|
||||
"L/D (at α={:.1}, AR={:.1}) = {:.1}/{:.1} = {:.1}",
|
||||
aoa.to_degrees(),
|
||||
ar,
|
||||
0.5 * fluid_density * v_sq * c_l,
|
||||
0.5 * fluid_density * v_sq * c_d,
|
||||
c_l / c_d
|
||||
);*/
|
||||
|
||||
c_l * *lift_dir + c_d * *rel_flow_dir
|
||||
})
|
||||
.unwrap_or_else(|| self.parasite_drag_coefficient() * *rel_flow_dir)
|
||||
}
|
||||
}
|
||||
|
||||
@ -194,6 +262,88 @@ impl Body {
|
||||
}
|
||||
}
|
||||
|
||||
/// Geometric angle of attack
|
||||
fn angle_of_attack(ori: &Ori, rel_flow_dir: &Dir) -> f32 {
|
||||
PI / 2.0 - ori.up().angle_between(rel_flow_dir.to_vec())
|
||||
}
|
||||
|
||||
impl RigidWings {
|
||||
/// Total lift coefficient for a finite wing of symmetric aerofoil shape and
|
||||
/// elliptical pressure distribution.
|
||||
pub fn lift_coefficient(&self, aoa: f32) -> f32 {
|
||||
let aoa_abs = aoa.abs();
|
||||
let stall_angle = PI * 0.1;
|
||||
inline_tweak::tweak!(1.0)
|
||||
* self.planform_area()
|
||||
* if aoa_abs < stall_angle {
|
||||
self.lift_slope(None) * aoa
|
||||
} else if inline_tweak::tweak!(true) {
|
||||
// This is when flow separation and turbulence starts to kick in.
|
||||
// Going to just make something up (based on some data), as the alternative is
|
||||
// to just throw your hands up and return 0
|
||||
let aoa_s = aoa.signum();
|
||||
let c_l_max = self.lift_slope(None) * stall_angle;
|
||||
let deg_45 = PI / 4.0;
|
||||
if aoa_abs < deg_45 {
|
||||
// drop directly to 0.6 * max lift at stall angle
|
||||
// then climb back to max at 45°
|
||||
Lerp::lerp(0.6 * c_l_max, c_l_max, aoa_abs / deg_45) * aoa_s
|
||||
} else {
|
||||
// let's just say lift goes down linearly again until we're at 90°
|
||||
Lerp::lerp(c_l_max, 0.0, (aoa_abs - deg_45) / deg_45) * aoa_s
|
||||
}
|
||||
} else {
|
||||
0.0
|
||||
}
|
||||
}
|
||||
|
||||
/// The zero-lift profile drag coefficient is the parasite drag on the wings
|
||||
/// at the angle of attack which generates no lift
|
||||
pub fn zero_lift_drag_coefficient(&self) -> f32 {
|
||||
// avg value for Harris' hawk (Parabuteo unicinctus) [1]
|
||||
self.planform_area() * 0.02
|
||||
}
|
||||
|
||||
/// The change in lift over change in angle of attack¹. Multiplying by angle
|
||||
/// of attack gives the lift coefficient (for a finite wing, not aerofoil).
|
||||
///
|
||||
/// Aspect ratio is the ratio of total wing span squared over planform area.
|
||||
///
|
||||
/// # Notes
|
||||
///
|
||||
/// Only valid for symmetric, elliptical wings at small² angles of attack³.
|
||||
/// Does not apply to twisted, cambered or delta wings. (It still gives a
|
||||
/// reasonably accurate approximation if the wing shape is not truly
|
||||
/// elliptical.)
|
||||
///
|
||||
/// 1. geometric angle of attack, i.e. the pitch angle relative to
|
||||
/// freestream flow
|
||||
/// 2. up to around ~18°, at which point maximum lift has been achieved and
|
||||
/// thereafter falls precipitously, causing a stall (this is the stall
|
||||
/// angle) 3. effective aoa, i.e. geometric aoa - induced aoa; assumes
|
||||
/// no sideslip
|
||||
fn lift_slope(&self, sweep_angle: Option<f32>) -> f32 {
|
||||
// lift slope for a thin aerofoil, given by Thin Aerofoil Theory
|
||||
let ar = self.aspect_ratio();
|
||||
let a0 = 2.0 * PI;
|
||||
if let Some(sweep) = sweep_angle {
|
||||
// for swept wings we use Kuchemann's modification to Helmbold's
|
||||
// equation
|
||||
let a0_cos_sweep = a0 * sweep.cos();
|
||||
let x = a0_cos_sweep / (PI * ar);
|
||||
a0_cos_sweep / ((1.0 + x.powi(2)).sqrt() + x)
|
||||
} else if ar < 4.0 {
|
||||
// for low aspect ratio wings (AR < 4) we use Helmbold's equation
|
||||
let x = a0 / (PI * ar);
|
||||
a0 / ((1.0 + x.powi(2)).sqrt() + x)
|
||||
} else {
|
||||
// for high aspect ratio wings (AR > 4) we use the equation given by
|
||||
// Prandtl's lifting-line theory
|
||||
a0 / (1.0 + (a0 / (PI * ar)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
## References:
|
||||
|
||||
|
@ -52,7 +52,7 @@ pub use self::{
|
||||
body::{
|
||||
biped_large, biped_small, bird_medium, bird_small, dragon, fish_medium, fish_small, golem,
|
||||
humanoid, object, quadruped_low, quadruped_medium, quadruped_small, ship, theropod,
|
||||
AllBodies, Body, BodyData,
|
||||
AllBodies, Body, BodyData, RigidWings,
|
||||
},
|
||||
buff::{
|
||||
Buff, BuffCategory, BuffChange, BuffData, BuffEffect, BuffId, BuffKind, BuffSource, Buffs,
|
||||
|
@ -87,3 +87,5 @@ pub use comp::inventory::loadout_builder::LoadoutBuilder;
|
||||
pub use explosion::{Explosion, RadiusEffect};
|
||||
#[cfg(not(target_arch = "wasm32"))]
|
||||
pub use skillset_builder::SkillSetBuilder;
|
||||
|
||||
pub fn lift_enabled() -> bool { inline_tweak::tweak!(true) }
|
||||
|
@ -1,7 +1,10 @@
|
||||
use super::utils::handle_climb;
|
||||
use crate::{
|
||||
comp::{inventory::slot::EquipSlot, CharacterState, Ori, StateUpdate},
|
||||
states::behavior::{CharacterBehavior, JoinData},
|
||||
comp::{inventory::slot::EquipSlot, CharacterState, Ori, RigidWings, StateUpdate},
|
||||
states::{
|
||||
behavior::{CharacterBehavior, JoinData},
|
||||
utils::fly_move,
|
||||
},
|
||||
util::Dir,
|
||||
};
|
||||
use serde::{Deserialize, Serialize};
|
||||
@ -12,7 +15,19 @@ const GLIDE_ACCEL: f32 = 5.0;
|
||||
const GLIDE_MAX_SPEED: f32 = 30.0;
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct Data;
|
||||
pub struct Data {
|
||||
pub wings: RigidWings,
|
||||
pub ori: Ori,
|
||||
}
|
||||
|
||||
impl Data {
|
||||
pub fn new(span_length: f32, chord_length: f32, ori: Ori) -> Self {
|
||||
Self {
|
||||
wings: RigidWings::new(span_length, chord_length),
|
||||
ori,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl CharacterBehavior for Data {
|
||||
fn behavior(&self, data: &JoinData) -> StateUpdate {
|
||||
@ -35,6 +50,9 @@ impl CharacterBehavior for Data {
|
||||
update.character = CharacterState::Idle
|
||||
};
|
||||
|
||||
if crate::lift_enabled() {
|
||||
fly_move(data, &mut update, inline_tweak::tweak!(0.1));
|
||||
} else {
|
||||
let horiz_vel = Vec2::<f32>::from(update.vel.0);
|
||||
let horiz_speed_sq = horiz_vel.magnitude_squared();
|
||||
|
||||
@ -55,6 +73,7 @@ impl CharacterBehavior for Data {
|
||||
|
||||
update.vel.0.z += lift * data.dt.0;
|
||||
}
|
||||
}
|
||||
|
||||
// If there is a wall in front of character and they are trying to climb go to
|
||||
// climb
|
||||
|
@ -1,7 +1,10 @@
|
||||
use super::utils::*;
|
||||
use crate::{
|
||||
comp::{slot::EquipSlot, CharacterState, EnergySource, InventoryAction, StateUpdate},
|
||||
states::behavior::{CharacterBehavior, JoinData},
|
||||
states::{
|
||||
behavior::{CharacterBehavior, JoinData},
|
||||
glide,
|
||||
},
|
||||
};
|
||||
|
||||
pub struct Data;
|
||||
@ -24,7 +27,11 @@ impl CharacterBehavior for Data {
|
||||
.try_change_by(-energy_cost, EnergySource::Glide)
|
||||
.is_ok()
|
||||
{
|
||||
update.character = CharacterState::Glide;
|
||||
update.character = CharacterState::Glide(glide::Data::new(
|
||||
inline_tweak::tweak!(10.0),
|
||||
inline_tweak::tweak!(1.0),
|
||||
*data.ori,
|
||||
));
|
||||
} else {
|
||||
update.energy.set_to(0, EnergySource::Glide);
|
||||
update.character = CharacterState::Idle;
|
||||
|
@ -6,7 +6,7 @@ use crate::{
|
||||
quadruped_low, quadruped_medium, quadruped_small, ship,
|
||||
skills::{Skill, SwimSkill},
|
||||
theropod, Body, CharacterAbility, CharacterState, Density, InputAttr, InputKind,
|
||||
InventoryAction, StateUpdate,
|
||||
InventoryAction, Ori, StateUpdate,
|
||||
},
|
||||
consts::{FRIC_GROUND, GRAVITY},
|
||||
event::{LocalEvent, ServerEvent},
|
||||
@ -367,18 +367,78 @@ fn swim_move(data: &JoinData, update: &mut StateUpdate, efficiency: f32, submers
|
||||
|
||||
/// Updates components to move entity as if it's flying
|
||||
pub fn fly_move(data: &JoinData, update: &mut StateUpdate, efficiency: f32) -> bool {
|
||||
if let Some(force) = data.body.can_fly() {
|
||||
let glider = match data.character {
|
||||
CharacterState::Glide(data) => Some(data),
|
||||
_ => None,
|
||||
};
|
||||
if let Some(force) = data
|
||||
.body
|
||||
.can_fly()
|
||||
.or_else(|| glider.is_some().then_some(0.0))
|
||||
{
|
||||
let thrust = efficiency * force;
|
||||
|
||||
let accel = thrust / data.mass.0;
|
||||
|
||||
// if lift is enabled we do some more advanced stuff with pitch and roll
|
||||
if crate::lift_enabled() && !matches!(data.body, Body::Ship(_)) {
|
||||
let mut ori = glider.map(|g| g.ori).unwrap_or(update.ori);
|
||||
let fw_dir = ori.look_dir().to_horizontal();
|
||||
let tgt_ori = Some(data.inputs.move_dir)
|
||||
.filter(|mv_dir| !mv_dir.is_approx_zero())
|
||||
.map(|mv_dir| {
|
||||
Vec3::new(
|
||||
mv_dir.x,
|
||||
mv_dir.y,
|
||||
Lerp::lerp_unclamped(
|
||||
0.0,
|
||||
data.inputs.look_dir.z + inline_tweak::tweak!(0.3),
|
||||
mv_dir.magnitude_squared() * inline_tweak::tweak!(2.0),
|
||||
),
|
||||
)
|
||||
})
|
||||
.and_then(Dir::from_unnormalized)
|
||||
.and_then(|tgt_dir| {
|
||||
Dir::from_unnormalized(data.vel.0)
|
||||
.and_then(|moving_dir| moving_dir.to_horizontal())
|
||||
.map(|moving_dir| {
|
||||
Ori::from(tgt_dir).rolled_right(
|
||||
(1.0 - moving_dir.dot(*tgt_dir).max(0.0))
|
||||
* ori.right().dot(*tgt_dir).signum()
|
||||
* std::f32::consts::PI
|
||||
/ 3.0,
|
||||
)
|
||||
})
|
||||
})
|
||||
.or_else(|| fw_dir.map(Ori::from))
|
||||
.unwrap_or_default();
|
||||
let rate = {
|
||||
let angle = ori.look_dir().angle_between(*data.inputs.look_dir);
|
||||
data.body.base_ori_rate() * efficiency * std::f32::consts::PI / angle
|
||||
};
|
||||
|
||||
ori = ori.slerped_towards(tgt_ori, (data.dt.0 * rate).min(0.1));
|
||||
if let Some(data) = glider {
|
||||
update.character = CharacterState::Glide(glide::Data { ori, ..*data });
|
||||
if let Some(char_ori) = ori.to_horizontal() {
|
||||
update.ori = char_ori;
|
||||
}
|
||||
} else {
|
||||
update.ori = ori;
|
||||
}
|
||||
} else {
|
||||
handle_orientation(data, update, efficiency);
|
||||
}
|
||||
|
||||
// Elevation control
|
||||
match data.body {
|
||||
// flappy flappy
|
||||
Body::Dragon(_) | Body::BirdMedium(_) | Body::BirdSmall(_) => {
|
||||
let anti_grav = GRAVITY * (1.0 + data.inputs.move_z.min(0.0));
|
||||
let anti_grav = if crate::lift_enabled() {
|
||||
0.0
|
||||
} else {
|
||||
GRAVITY * (1.0 + data.inputs.move_z.min(0.0))
|
||||
};
|
||||
update.vel.0.z += data.dt.0 * (anti_grav + accel * data.inputs.move_z.max(0.0));
|
||||
},
|
||||
// floaty floaty
|
||||
|
@ -43,4 +43,4 @@ bincode = { version = "1.3.1", optional = true }
|
||||
plugin-api = { package = "veloren-plugin-api", path = "../../plugin/api", optional = true }
|
||||
|
||||
# Tweak running code
|
||||
# inline_tweak = { version = "1.0.8", features = ["release_tweak"] }
|
||||
inline_tweak = { version = "1.0.8", features = ["release_tweak"] }
|
||||
|
@ -287,7 +287,7 @@ impl<'a> System<'a> for Sys {
|
||||
CharacterState::Idle => states::idle::Data.handle_event(&j, action),
|
||||
CharacterState::Talk => states::talk::Data.handle_event(&j, action),
|
||||
CharacterState::Climb(data) => data.handle_event(&j, action),
|
||||
CharacterState::Glide => states::glide::Data.handle_event(&j, action),
|
||||
CharacterState::Glide(data) => data.handle_event(&j, action),
|
||||
CharacterState::GlideWield => {
|
||||
states::glide_wield::Data.handle_event(&j, action)
|
||||
},
|
||||
@ -351,7 +351,7 @@ impl<'a> System<'a> for Sys {
|
||||
CharacterState::Idle => states::idle::Data.behavior(&j),
|
||||
CharacterState::Talk => states::talk::Data.behavior(&j),
|
||||
CharacterState::Climb(data) => data.behavior(&j),
|
||||
CharacterState::Glide => states::glide::Data.behavior(&j),
|
||||
CharacterState::Glide(data) => data.behavior(&j),
|
||||
CharacterState::GlideWield => states::glide_wield::Data.behavior(&j),
|
||||
CharacterState::Stunned(data) => data.behavior(&j),
|
||||
CharacterState::Sit => states::sit::Data::behavior(&states::sit::Data, &j),
|
||||
|
@ -13,6 +13,7 @@ use common::{
|
||||
event::{EventBus, ServerEvent},
|
||||
outcome::Outcome,
|
||||
resources::DeltaTime,
|
||||
states,
|
||||
terrain::{Block, TerrainGrid},
|
||||
uid::Uid,
|
||||
util::Projection,
|
||||
@ -64,9 +65,11 @@ fn fluid_density(height: f32, fluid: &Fluid) -> Density {
|
||||
fn integrate_forces(
|
||||
dt: &DeltaTime,
|
||||
mut vel: Vel,
|
||||
ori: &Ori,
|
||||
body: &Body,
|
||||
density: &Density,
|
||||
mass: &Mass,
|
||||
character_state: Option<&CharacterState>,
|
||||
fluid: &Fluid,
|
||||
gravity: f32,
|
||||
) -> Vel {
|
||||
@ -80,7 +83,24 @@ fn integrate_forces(
|
||||
// Aerodynamic/hydrodynamic forces
|
||||
if !rel_flow.0.is_approx_zero() {
|
||||
debug_assert!(!rel_flow.0.map(|a| a.is_nan()).reduce_or());
|
||||
let impulse = dt.0 * body.aerodynamic_forces(&rel_flow, fluid_density.0);
|
||||
let glider: Option<&states::glide::Data> = character_state.and_then(|cs| match cs {
|
||||
CharacterState::Glide(data) => Some(data),
|
||||
_ => None,
|
||||
});
|
||||
// let wings: Option<(RigidWings, Ori)> =
|
||||
// body.wings().map(|w| (w, ori)).or(character_state.and_then(|cs| {
|
||||
// match cs {
|
||||
// CharacterState::Glide(states::glide::Data{wings, ori}) =>
|
||||
// Some((*wings, *ori)), _ => None,
|
||||
// }
|
||||
// }));
|
||||
let impulse = dt.0
|
||||
* body.aerodynamic_forces(
|
||||
glider.map(|g| &g.ori).unwrap_or(ori),
|
||||
&rel_flow,
|
||||
fluid_density.0,
|
||||
glider.map(|g| g.wings).or_else(|| body.wings()).as_ref(),
|
||||
);
|
||||
debug_assert!(!impulse.map(|a| a.is_nan()).reduce_or());
|
||||
if !impulse.is_approx_zero() {
|
||||
let v_sq = rel_flow.0.magnitude_squared();
|
||||
@ -97,7 +117,8 @@ fn integrate_forces(
|
||||
|
||||
// Hydrostatic/aerostatic forces
|
||||
// modify gravity to account for the effective density as a result of buoyancy
|
||||
let down_force = dt.0 * gravity * (density.0 - fluid_density.0) / density.0;
|
||||
let down_force =
|
||||
dt.0 * inline_tweak::tweak!(1.0) * gravity * (density.0 - fluid_density.0) / density.0;
|
||||
vel.0.z -= down_force;
|
||||
|
||||
vel
|
||||
@ -578,7 +599,9 @@ impl<'a> PhysicsData<'a> {
|
||||
(
|
||||
positions,
|
||||
velocities,
|
||||
&write.orientations,
|
||||
&read.bodies,
|
||||
read.character_states.maybe(),
|
||||
&write.physics_states,
|
||||
&read.masses,
|
||||
&read.densities,
|
||||
@ -590,7 +613,7 @@ impl<'a> PhysicsData<'a> {
|
||||
prof_span!(guard, "velocity update rayon job");
|
||||
guard
|
||||
},
|
||||
|_guard, (pos, vel, body, physics_state, mass, density, _)| {
|
||||
|_guard, (pos, vel, ori, body, character_state, physics_state, mass, density, _)| {
|
||||
let in_loaded_chunk = read
|
||||
.terrain
|
||||
.get_key(read.terrain.pos_key(pos.0.map(|e| e.floor() as i32)))
|
||||
@ -609,7 +632,7 @@ impl<'a> PhysicsData<'a> {
|
||||
},
|
||||
Some(fluid) => {
|
||||
vel.0 = integrate_forces(
|
||||
&dt, *vel, body, density, mass, &fluid, GRAVITY,
|
||||
&dt, *vel, ori, body, density, mass, character_state, &fluid, GRAVITY,
|
||||
)
|
||||
.0
|
||||
},
|
||||
|
@ -221,7 +221,7 @@ impl<'a> System<'a> for Sys {
|
||||
});
|
||||
let is_gliding = matches!(
|
||||
read_data.char_states.get(entity),
|
||||
Some(CharacterState::GlideWield) | Some(CharacterState::Glide)
|
||||
Some(CharacterState::GlideWield) | Some(CharacterState::Glide(_))
|
||||
) && !physics_state.on_ground;
|
||||
|
||||
// This controls how picky NPCs are about their pathfinding. Giants are larger
|
||||
|
@ -11,8 +11,10 @@ type GlidingAnimationDependency = (
|
||||
Option<ToolKind>,
|
||||
Option<ToolKind>,
|
||||
Vec3<f32>,
|
||||
Vec3<f32>,
|
||||
Vec3<f32>,
|
||||
Quaternion<f32>,
|
||||
Quaternion<f32>,
|
||||
Quaternion<f32>,
|
||||
f32,
|
||||
f32,
|
||||
);
|
||||
|
||||
@ -27,90 +29,105 @@ impl Animation for GlidingAnimation {
|
||||
|
||||
fn update_skeleton_inner(
|
||||
skeleton: &Self::Skeleton,
|
||||
(_active_tool_kind, _second_tool_kind, velocity, orientation, last_ori, global_time): Self::Dependency,
|
||||
(
|
||||
_active_tool_kind,
|
||||
_second_tool_kind,
|
||||
velocity,
|
||||
orientation,
|
||||
last_ori,
|
||||
glider_orientation,
|
||||
global_time,
|
||||
acc_vel,
|
||||
): Self::Dependency,
|
||||
anim_time: f32,
|
||||
_rate: &mut f32,
|
||||
s_a: &SkeletonAttr,
|
||||
) -> Self::Skeleton {
|
||||
let mut next = (*skeleton).clone();
|
||||
|
||||
let speed = Vec2::<f32>::from(velocity).magnitude();
|
||||
let speednorm = velocity.xy().magnitude().min(30.0) / 30.0;
|
||||
let speedxyznorm = velocity.magnitude().min(30.0) / 30.0;
|
||||
|
||||
let quick = (anim_time * 7.0).sin();
|
||||
let quicka = (anim_time * 7.0 + PI / 2.0).sin();
|
||||
let wave_stop = (anim_time * 1.5).min(PI / 2.0).sin();
|
||||
let slow = (anim_time * 3.0).sin();
|
||||
let slowb = (anim_time * 3.0 + PI).sin();
|
||||
let slowa = (anim_time * 3.0 + PI / 2.0).sin();
|
||||
let slow = (acc_vel * 0.5).sin();
|
||||
let slowa = (acc_vel * 0.5 + PI / 2.0).sin();
|
||||
|
||||
let head_look = Vec2::new(
|
||||
((global_time + anim_time) / 5.0).floor().mul(7331.0).sin() * 0.5,
|
||||
((global_time + anim_time) / 5.0).floor().mul(1337.0).sin() * 0.25,
|
||||
((global_time + anim_time) as f32 / 4.0)
|
||||
.floor()
|
||||
.mul(7331.0)
|
||||
.sin()
|
||||
* 0.5,
|
||||
((global_time + anim_time) as f32 / 4.0)
|
||||
.floor()
|
||||
.mul(1337.0)
|
||||
.sin()
|
||||
* 0.25,
|
||||
);
|
||||
|
||||
let ori: Vec2<f32> = Vec2::from(orientation);
|
||||
let last_ori = Vec2::from(last_ori);
|
||||
let tilt = if ::vek::Vec2::new(ori, last_ori)
|
||||
let tilt = {
|
||||
let ori: Vec2<f32> = Vec2::from(orientation * Vec3::unit_y());
|
||||
let last_ori: Vec2<f32> = Vec2::from(last_ori * Vec3::unit_y());
|
||||
if ::vek::Vec2::new(ori, last_ori)
|
||||
.map(|o| o.magnitude_squared())
|
||||
.map(|m| m > 0.0001 && m.is_finite())
|
||||
.map(|m| m > 0.001 && m.is_finite())
|
||||
.reduce_and()
|
||||
&& ori.angle_between(last_ori).is_finite()
|
||||
{
|
||||
ori.angle_between(last_ori).min(0.05)
|
||||
ori.angle_between(last_ori).min(0.2)
|
||||
* last_ori.determine_side(Vec2::zero(), ori).signum()
|
||||
* 1.3
|
||||
} else {
|
||||
0.0
|
||||
}
|
||||
};
|
||||
|
||||
let tiltcancel = if anim_time > 1.0 { 1.0 } else { anim_time };
|
||||
|
||||
next.head.position = Vec3::new(0.0, s_a.head.0 + 1.0, s_a.head.1);
|
||||
next.head.orientation = Quaternion::rotation_x(0.35 - slow * 0.10 + head_look.y)
|
||||
* Quaternion::rotation_z(head_look.x + slowa * 0.15);
|
||||
|
||||
next.chest.orientation = Quaternion::rotation_z(slowa * 0.02);
|
||||
|
||||
next.belt.orientation = Quaternion::rotation_z(slowa * 0.1 + tilt * tiltcancel * 12.0);
|
||||
next.belt.position = Vec3::new(0.0, s_a.belt.0, s_a.belt.1);
|
||||
|
||||
next.shorts.orientation = Quaternion::rotation_z(slowa * 0.12 + tilt * tiltcancel * 16.0);
|
||||
next.shorts.position = Vec3::new(0.0, s_a.shorts.0, s_a.shorts.1);
|
||||
|
||||
next.hand_l.position = Vec3::new(-9.5, -3.0, 10.0);
|
||||
next.hand_l.orientation =
|
||||
Quaternion::rotation_x(-2.7 + slowa * -0.1) * Quaternion::rotation_y(0.2);
|
||||
|
||||
next.hand_r.position = Vec3::new(9.5, -3.0, 10.0);
|
||||
next.hand_r.orientation =
|
||||
Quaternion::rotation_x(-2.7 + slowa * -0.10) * Quaternion::rotation_y(-0.2);
|
||||
|
||||
next.foot_l.position = Vec3::new(
|
||||
-s_a.foot.0,
|
||||
s_a.foot.1 + slowa * -1.0 + tilt * tiltcancel * -35.0,
|
||||
-1.0 + s_a.foot.2,
|
||||
let torso_ori = Quaternion::slerp(
|
||||
Quaternion::rotation_x(-0.06 * speednorm.max(5.0) + slow * 0.04)
|
||||
* Quaternion::rotation_y(speednorm * tilt * 2.0 / speednorm.max(0.2))
|
||||
* Quaternion::rotation_z(speednorm * tilt * 3.0 * speednorm),
|
||||
orientation.inverse() * glider_orientation,
|
||||
0.3,
|
||||
);
|
||||
next.foot_l.orientation = Quaternion::rotation_x(
|
||||
(wave_stop * -0.7 - quicka * -0.21 + slow * 0.19) * speed * 0.04,
|
||||
) * Quaternion::rotation_z(tilt * tiltcancel * 20.0);
|
||||
let chest_ori = Quaternion::rotation_z(slowa * 0.01);
|
||||
let chest_global_inv = (orientation * torso_ori * chest_ori).inverse();
|
||||
let glider_pos = Vec3::new(0.0, -5.0, 18.0);
|
||||
let glider_ori = chest_global_inv * glider_orientation;
|
||||
let center_of_rot = glider_pos * 0.8;
|
||||
|
||||
next.foot_r.position = Vec3::new(
|
||||
s_a.foot.0,
|
||||
s_a.foot.1 + slowa * 1.0 + tilt * tiltcancel * 35.0,
|
||||
-1.0 + s_a.foot.2,
|
||||
);
|
||||
next.foot_r.orientation = Quaternion::rotation_x(
|
||||
(wave_stop * -0.8 + quick * -0.25 + slowb * 0.13) * speed * 0.04,
|
||||
) * Quaternion::rotation_z(tilt * tiltcancel * 20.0);
|
||||
next.head.orientation = Quaternion::rotation_x(head_look.y + speednorm.min(28.0) * 0.03)
|
||||
* Quaternion::rotation_z(head_look.x);
|
||||
|
||||
next.glider.position = Vec3::new(0.0, -13.0 + slow * 0.10, 8.0);
|
||||
next.glider.orientation =
|
||||
Quaternion::rotation_x(0.8) * Quaternion::rotation_y(slowa * 0.04);
|
||||
next.torso.position =
|
||||
(center_of_rot - orientation.inverse() * glider_orientation * center_of_rot) / 11.0
|
||||
* s_a.scaler;
|
||||
next.torso.orientation = torso_ori;
|
||||
|
||||
next.chest.orientation = chest_ori;
|
||||
|
||||
next.belt.orientation = Quaternion::rotation_z(slowa * 0.1);
|
||||
|
||||
next.shorts.position = Vec3::new(s_a.shorts.0, 0.0, s_a.shorts.1);
|
||||
next.shorts.orientation = chest_ori.inverse() * Quaternion::rotation_z(slowa * 0.12);
|
||||
|
||||
next.hand_l.position = glider_pos
|
||||
+ glider_ori * Vec3::new(-s_a.hand.0 + -2.0, s_a.hand.1 + 8.0, s_a.hand.2 + -5.0);
|
||||
next.hand_l.orientation = Quaternion::rotation_x(3.35) * Quaternion::rotation_y(0.2);
|
||||
|
||||
next.hand_r.position = glider_pos
|
||||
+ glider_ori * Vec3::new(s_a.hand.0 + 2.0, s_a.hand.1 + 8.0, s_a.hand.2 + -5.0);
|
||||
next.hand_r.orientation = Quaternion::rotation_x(3.35) * Quaternion::rotation_y(-0.2);
|
||||
|
||||
next.foot_l.position = Vec3::new(-s_a.foot.0, s_a.foot.1, s_a.foot.2);
|
||||
next.foot_l.orientation =
|
||||
Quaternion::rotation_x(-0.8 * speedxyznorm + slow * -0.5 * speedxyznorm);
|
||||
|
||||
next.foot_r.position = Vec3::new(s_a.foot.0, s_a.foot.1, s_a.foot.2);
|
||||
next.foot_r.orientation =
|
||||
Quaternion::rotation_x(-0.8 * speedxyznorm + slow * 0.5 * speedxyznorm);
|
||||
|
||||
next.glider.position = glider_pos;
|
||||
next.glider.orientation = glider_ori;
|
||||
next.glider.scale = Vec3::one();
|
||||
|
||||
next.torso.position = Vec3::new(0.0, -1.0, 0.0) / 11.0 * s_a.scaler;
|
||||
next.torso.orientation = Quaternion::rotation_x(-0.03 * speed.max(12.0) + slow * 0.04)
|
||||
* Quaternion::rotation_y(tilt * tiltcancel * 32.0);
|
||||
|
||||
next
|
||||
}
|
||||
}
|
||||
|
@ -1445,17 +1445,18 @@ impl FigureMgr {
|
||||
)
|
||||
}
|
||||
},
|
||||
CharacterState::Glide { .. } => {
|
||||
CharacterState::Glide(data) => {
|
||||
anim::character::GlidingAnimation::update_skeleton(
|
||||
&target_base,
|
||||
(
|
||||
active_tool_kind,
|
||||
second_tool_kind,
|
||||
rel_vel,
|
||||
// TODO: Update to use the quaternion.
|
||||
ori * anim::vek::Vec3::<f32>::unit_y(),
|
||||
state.last_ori * anim::vek::Vec3::<f32>::unit_y(),
|
||||
ori,
|
||||
state.last_ori,
|
||||
data.ori.into(),
|
||||
time,
|
||||
state.acc_vel,
|
||||
),
|
||||
state.state_time,
|
||||
&mut state_animation_rate,
|
||||
|
Loading…
Reference in New Issue
Block a user