redo slowjobs in order to have a try_run fn

This commit is contained in:
Marcel Märtens 2021-04-12 12:24:24 +02:00
parent 5f2b44002e
commit e2a9128976

View File

@ -1,9 +1,14 @@
use hashbrown::HashMap;
use rayon::ThreadPool;
use std::sync::{
atomic::{AtomicI64, AtomicU64, Ordering},
Arc, RwLock,
use std::{
collections::VecDeque,
sync::{Arc, Mutex},
time::{Duration, Instant}
};
use tracing::{error, warn};
const LAST_JOBS_METRICS: usize = 32;
const FAIR_TIME_INTERVAL: Duration = Duration::from_millis(1000);
/// Provides a Wrapper around rayon threadpool to execute slow-jobs.
/// slow means, the job doesn't need to not complete within the same tick.
@ -11,11 +16,26 @@ use std::sync::{
/// Jobs run here, will reduce the ammount of threads rayon can use during the
/// main tick.
///
/// ## Configuration
/// This Pool allows you to configure certain names of jobs and assign them a
/// maximum number of threads # Example
/// Your system has 16 cores, you assign 12 cores for slow-jobs.
/// Then you can configure all jobs with the name `CHUNK_GENERATOR` to spawn on
/// max 50% (6 = cores) ```rust
/// max 50% (6 = cores)
///
/// ## Spawn Order
/// - At least 1 job of a configuration is allowed to run if global limit isn't
/// hit.
/// - remaining capacities are spread in relation to their limit. e.g. a
/// configuration with double the limit will be sheduled to spawn double the
/// tasks.
///
/// ## States
/// - queued
/// - spawned
/// - started
/// - finished
/// ```
/// # use veloren_common::slowjob::SlowJobPool;
/// # use std::sync::Arc;
///
@ -25,126 +45,248 @@ use std::sync::{
/// .unwrap();
/// let pool = SlowJobPool::new(3, Arc::new(threadpool));
/// pool.configure("CHUNK_GENERATOR", |n| n / 2);
/// pool.spawn("CHUNK_GENERATOR", move || println("this is a job"));
/// pool.spawn("CHUNK_GENERATOR", move || println!("this is a job"));
/// ```
#[derive(Clone)]
pub struct SlowJobPool {
internal: Arc<InternalSlowJobPool>,
internal: Arc<Mutex<InternalSlowJobPool>>,
}
#[derive(Debug)]
pub struct SlowJob {
name: String,
id: u64,
}
struct InternalSlowJobPool {
next_id: Arc<AtomicU64>,
queue: RwLock<HashMap<String, HashMap<u64, Queue>>>,
running_jobs: RwLock<HashMap<String, Arc<AtomicI64>>>,
configs: RwLock<HashMap<String, Config>>,
global_running_jobs: Arc<AtomicI64>,
next_id: u64,
queue: HashMap<String, VecDeque<Queue>>,
configs: HashMap<String, Config>,
global_spawned_and_running: u64,
global_limit: u64,
threadpool: Arc<ThreadPool>,
internal: Option<Arc<Mutex<Self>>>,
}
#[derive(Debug)]
struct Config {
max_local: u64,
spawned_total: Arc<AtomicU64>,
local_limit: u64,
local_spawned_and_running: u64,
/// hold the start and time of the last LAST_JOBS_METRICS jobs
last_jobs: VecDeque<(std::time::Instant, Option<std::time::Duration>)>,
}
struct Queue {
id: u64,
name: String,
task: Box<dyn FnOnce() + Send + Sync + 'static>,
spawned_total: Arc<AtomicU64>,
local_running_jobs: Arc<AtomicI64>,
}
impl Queue {
fn new<F>(name: &str, id: u64, internal: &Arc<Mutex<InternalSlowJobPool>>, f: F) -> Self
where
F: FnOnce() + Send + Sync + 'static,
{
let internal = Arc::clone(&internal);
let name_cloned = name.to_owned();
Self {
id,
name: name.to_owned(),
task: Box::new(move || {
common_base::prof_span!(_guard, &name_cloned);
f();
// directly maintain the next task afterwards
{
let mut lock = internal.lock().expect("slowjob lock poisoned");
lock.finish(&name_cloned);
lock.spawn_queued();
}
}),
}
}
}
impl InternalSlowJobPool {
pub fn new(global_limit: u64, threadpool: Arc<ThreadPool>) -> Self {
Self {
next_id: Arc::new(AtomicU64::new(0)),
queue: RwLock::new(HashMap::new()),
running_jobs: RwLock::new(HashMap::new()),
configs: RwLock::new(HashMap::new()),
global_running_jobs: Arc::new(AtomicI64::new(0)),
pub fn new(global_limit: u64, threadpool: Arc<ThreadPool>) -> Arc<Mutex<Self>> {
let link = Arc::new(Mutex::new(Self {
next_id: 0,
queue: HashMap::new(),
configs: HashMap::new(),
global_spawned_and_running: 0,
global_limit: global_limit.max(1),
threadpool,
}
internal: None,
}));
let link_clone = Arc::clone(&link);
link.lock()
.expect("poisoned on InternalSlowJobPool::new")
.internal = Some(link_clone);
link
}
fn maintain(&self) {
let jobs_available =
self.global_limit as i64 - self.global_running_jobs.load(Ordering::SeqCst);
if jobs_available < 0 {
tracing::warn!(?jobs_available, "Some math is wrong in slowjob code");
}
if jobs_available <= 0 {
// we run at limit, can't spawn
return;
}
let possible = {
let lock = self.queue.read().unwrap();
lock.iter()
.map(|(name, queues)| {
if !queues.is_empty() {
Some(name.clone())
} else {
None
}
})
.flatten()
.collect::<Vec<_>>()
};
let mut possible_total = {
let mut possible = possible;
let lock = self.configs.read().unwrap();
possible
.drain(..)
.map(|name| {
let c = lock.get(&name).unwrap();
/// returns order of configuration which are queued next
fn calc_queued_order(
&self,
mut queued: HashMap<&String, u64>,
mut limit: usize,
) -> Vec<String> {
let mut result = vec![];
let spawned = self
.configs
.iter()
.map(|(n, c)| (n, c.local_spawned_and_running))
.collect::<HashMap<_, u64>>();
let mut queried_caped = self
.configs
.iter()
.map(|(n, c)| {
(
name,
c.spawned_total.load(Ordering::SeqCst) / c.max_local,
c.max_local,
n,
queued
.get(&n)
.cloned()
.unwrap_or(0)
.min(c.local_limit - c.local_spawned_and_running),
)
})
.collect::<Vec<_>>()
};
possible_total.sort_by_key(|(_, i, _)| *i);
let mut lock = self.queue.write().unwrap();
for i in 0..jobs_available as usize {
if let Some((name, _, max)) = possible_total.get(i) {
if let Some(map) = lock.get_mut(name) {
let firstkey = match map.keys().next() {
Some(k) => *k,
None => continue,
};
if let Some(queue) = map.remove(&firstkey) {
if queue.local_running_jobs.load(Ordering::SeqCst) < *max as i64 {
self.fire(queue);
.collect::<HashMap<_, _>>();
// grab all configs that are queued and not running
for (&n, c) in queued.iter_mut() {
if *c > 0 && spawned.get(n).cloned().unwrap_or(0) == 0 {
result.push(n.clone());
*c -= 1;
limit -= 1;
queried_caped.get_mut(&n).map(|v| *v -= 1);
if limit == 0 {
return result;
}
}
}
//schedule rest
let total_limit = queried_caped.values().sum::<u64>() as f32;
if total_limit < f32::EPSILON {
return result;
}
let mut spawn_rates = queried_caped
.iter()
.map(|(&n, l)| (n, ((*l as f32 * limit as f32) / total_limit).min(*l as f32)))
.collect::<Vec<_>>();
while limit > 0 {
spawn_rates.sort_by(|(_, a), (_, b)| {
if b < a {
core::cmp::Ordering::Less
} else if (b - a).abs() < f32::EPSILON {
core::cmp::Ordering::Equal
} else {
map.insert(firstkey, queue);
core::cmp::Ordering::Greater
}
});
match spawn_rates.first_mut() {
Some((n, r)) => {
if *r > f32::EPSILON {
result.push(n.clone());
limit -= 1;
*r -= 1.0;
} else {
break;
}
},
None => break,
}
}
result
}
fn can_spawn(&self, name: &str) -> bool {
let queued = self
.queue
.iter()
.map(|(n, m)| (n, m.len() as u64))
.collect::<HashMap<_, u64>>();
let mut to_be_queued = queued.clone();
let name = name.to_owned();
*to_be_queued.entry(&name).or_default() += 1;
let limit = (self.global_limit - self.global_spawned_and_running) as usize;
// calculate to_be_queued first
let to_be_queued_order = self.calc_queued_order(to_be_queued, limit);
let queued_order = self.calc_queued_order(queued, limit);
// if its queued one time more then its okay to spawn
let to_be_queued_cnt = to_be_queued_order
.into_iter()
.filter(|n| n == &name)
.count();
let queued_cnt = queued_order.into_iter().filter(|n| n == &name).count();
to_be_queued_cnt > queued_cnt
}
pub fn spawn<F>(&mut self, name: &str, f: F) -> SlowJob
where
F: FnOnce() + Send + Sync + 'static,
{
let id = self.next_id;
self.next_id += 1;
let queue = Queue::new(name, id, self.internal.as_ref().expect("internal empty"), f);
self.queue
.entry(name.to_string())
.or_default()
.push_back(queue);
//spawn already queued
self.spawn_queued();
SlowJob {
name: name.to_string(),
id,
}
}
fn fire(&self, queue: Queue) {
queue.spawned_total.fetch_add(1, Ordering::SeqCst);
queue.local_running_jobs.fetch_add(1, Ordering::SeqCst);
self.global_running_jobs.fetch_add(1, Ordering::SeqCst);
fn finish(&mut self, name: &str) {
self.global_spawned_and_running -= 1;
if let Some(c) = self.configs.get_mut(name) {
c.local_spawned_and_running -= 1;
c.last_jobs.
} else {
warn!(?name, "sync_maintain on a no longer existing config");
}
}
fn spawn_queued(&mut self) {
let queued = self
.queue
.iter()
.map(|(n, m)| (n, m.len() as u64))
.collect::<HashMap<_, u64>>();
let limit = self.global_limit as usize;
let queued_order = self.calc_queued_order(queued, limit);
for name in queued_order.into_iter() {
match self.queue.get_mut(&name) {
Some(deque) => match deque.pop_front() {
Some(queue) => {
//fire
self.global_spawned_and_running += 1;
self.configs
.get_mut(&queue.name)
.expect("cannot fire a unconfigured job")
.local_spawned_and_running += 1;
self.threadpool.spawn(queue.task);
},
None => error!(
"internal calculation is wrong, we extected a schedulable job to be \
present in the queue"
),
},
None => error!(
"internal calculation is wrong, we marked a queue as schedulable which \
doesn't exist"
),
}
}
}
}
impl SlowJobPool {
pub fn new(global_limit: u64, threadpool: Arc<ThreadPool>) -> Self {
Self {
internal: Arc::new(InternalSlowJobPool::new(global_limit, threadpool)),
internal: InternalSlowJobPool::new(global_limit, threadpool),
}
}
@ -154,256 +296,331 @@ impl SlowJobPool {
where
F: Fn(u64) -> u64,
{
let mut lock = self.internal.lock().expect("lock poisoned while configure");
let cnf = Config {
max_local: f(self.internal.global_limit).max(1),
spawned_total: Arc::new(AtomicU64::new(0)),
local_limit: f(lock.global_limit).max(1),
local_spawned_and_running: 0,
last_jobs: VecDeque::with_capacity(LAST_JOBS_METRICS),
};
let mut lock = self.internal.configs.write().unwrap();
lock.insert(name.to_string(), cnf);
lock.configs.insert(name.to_owned(), cnf);
}
/// spawn a new slow job on a certain NAME IF it can run immediately
#[allow(clippy::result_unit_err)]
pub fn try_run<F>(&self, name: &str, f: F) -> Result<SlowJob, ()>
where
F: FnOnce() + Send + Sync + 'static,
{
let mut lock = self.internal.lock().expect("lock poisoned while try_run");
//spawn already queued
lock.spawn_queued();
if lock.can_spawn(name) {
Ok(lock.spawn(name, f))
} else {
Err(())
}
}
/// spawn a new slow job on a certain NAME
pub fn spawn<F>(&self, name: &str, f: F) -> SlowJob
where
F: FnOnce() + Send + Sync + 'static,
{
let id = self.internal.next_id.fetch_add(1, Ordering::SeqCst);
self.internal
.queue
.write()
.unwrap()
.entry(name.to_string())
.or_default()
.insert(id, self.queue(name, f));
self.maintain();
SlowJob {
name: name.to_string(),
id,
}
.lock()
.expect("lock poisoned while spawn")
.spawn(name, f)
}
fn queue<F>(&self, name: &str, f: F) -> Queue
where
F: FnOnce() + Send + Sync + 'static,
{
let internal = Arc::clone(&self.internal);
let spawned_total = Arc::clone(
&self
.internal
.configs
.read()
.unwrap()
.get(name)
.expect("can't spawn a non-configued slowjob")
.spawned_total,
);
let local_running_jobs_clone = {
let mut lock = self.internal.running_jobs.write().unwrap();
Arc::clone(&lock.entry(name.to_string()).or_default())
pub fn cancel(&self, job: SlowJob) -> Result<(), SlowJob> {
let mut lock = self.internal.lock().expect("lock poisoned while cancel");
if let Some(m) = lock.queue.get_mut(&job.name) {
let p = match m.iter().position(|p| p.id == job.id) {
Some(p) => p,
None => return Err(job),
};
let local_running_jobs = Arc::clone(&local_running_jobs_clone);
let global_running_jobs_clone = Arc::clone(&self.internal.global_running_jobs);
let _name_clones = name.to_string();
Queue {
task: Box::new(move || {
common_base::prof_span!(_guard, &_name_clones);
f();
local_running_jobs_clone.fetch_sub(1, Ordering::SeqCst);
global_running_jobs_clone.fetch_sub(1, Ordering::SeqCst);
// directly maintain the next task afterwards
internal.maintain();
}),
spawned_total,
local_running_jobs,
if m.remove(p).is_some() {
return Ok(());
}
}
pub fn cancel(&self, job: SlowJob) {
let mut lock = self.internal.queue.write().unwrap();
if let Some(map) = lock.get_mut(&job.name) {
map.remove(&job.id);
Err(job)
}
}
fn maintain(&self) { self.internal.maintain() }
}
#[cfg(test)]
mod tests {
use super::*;
use std::{
sync::Mutex,
time::{Duration, Instant},
};
fn mock_fn(
name: &str,
start_time: &Arc<Mutex<Option<Instant>>>,
done: &Arc<AtomicI64>,
) -> impl FnOnce() {
let name = name.to_string();
let start_time = Arc::clone(start_time);
let done = Arc::clone(done);
move || {
println!("Start {}", name);
*start_time.lock().unwrap() = Some(Instant::now());
std::thread::sleep(Duration::from_millis(500));
done.fetch_add(1, Ordering::Relaxed);
println!("Finished {}", name);
#[allow(clippy::blacklisted_name)]
fn mock_pool(
pool_threads: usize,
global_threads: u64,
foo: u64,
bar: u64,
baz: u64,
) -> SlowJobPool {
let threadpool = rayon::ThreadPoolBuilder::new()
.num_threads(pool_threads)
.build()
.unwrap();
let pool = SlowJobPool::new(global_threads, Arc::new(threadpool));
if foo != 0 {
pool.configure("FOO", |x| x / foo);
}
if bar != 0 {
pool.configure("BAR", |x| x / bar);
}
if baz != 0 {
pool.configure("BAZ", |x| x / baz);
}
pool
}
#[test]
fn global_limit() {
let threadpool = rayon::ThreadPoolBuilder::new()
.num_threads(4)
.build()
.unwrap();
let pool = SlowJobPool::new(3, Arc::new(threadpool));
pool.configure("FOO", |_| 1000);
let start = Instant::now();
let f1 = Arc::new(Mutex::new(None));
let f2 = Arc::new(Mutex::new(None));
let f3 = Arc::new(Mutex::new(None));
let f4 = Arc::new(Mutex::new(None));
let f5 = Arc::new(Mutex::new(None));
let f6 = Arc::new(Mutex::new(None));
let f7 = Arc::new(Mutex::new(None));
let done = Arc::new(AtomicI64::new(0));
pool.spawn("FOO", mock_fn("foo1", &f1, &done));
pool.spawn("FOO", mock_fn("foo2", &f2, &done));
pool.spawn("FOO", mock_fn("foo3", &f3, &done));
std::thread::sleep(Duration::from_millis(300));
pool.spawn("FOO", mock_fn("foo4", &f4, &done));
pool.spawn("FOO", mock_fn("foo5", &f5, &done));
pool.spawn("FOO", mock_fn("foo6", &f6, &done));
std::thread::sleep(Duration::from_millis(300));
pool.spawn("FOO", mock_fn("foo7", &f7, &done));
std::thread::sleep(Duration::from_secs(1));
let measure = |a: Arc<Mutex<Option<Instant>>>, s: Instant| {
a.lock().unwrap().unwrap().duration_since(s).as_millis()
};
let f1 = measure(f1, start);
let f2 = measure(f2, start);
let f3 = measure(f3, start);
let f4 = measure(f4, start);
let f5 = measure(f5, start);
let f6 = measure(f6, start);
let f7 = measure(f7, start);
assert_eq!(done.load(Ordering::Relaxed), 7);
// Just test relative times, not absolute
assert!(f1 < f4);
assert!(f1 < f5);
assert!(f1 < f6);
assert!(f1 < f7);
assert!(f2 < f4);
assert!(f2 < f5);
assert!(f2 < f6);
assert!(f2 < f7);
assert!(f3 < f4);
assert!(f3 < f5);
assert!(f3 < f6);
assert!(f3 < f7);
assert!(f4 < f7);
assert!(f5 < f7);
assert!(f6 < f7);
fn simple_queue() {
let pool = mock_pool(4, 4, 1, 0, 0);
let internal = pool.internal.lock().unwrap();
let queue_data = [("FOO", 1u64)]
.iter()
.map(|(n, c)| ((*n).to_owned(), *c))
.collect::<Vec<_>>();
let queued = queue_data
.iter()
.map(|(s, c)| (s, *c))
.collect::<HashMap<_, _>>();
let result = internal.calc_queued_order(queued, 4);
assert_eq!(result.len(), 1);
assert_eq!(result[0], "FOO");
}
#[test]
fn local_limit() {
let threadpool = rayon::ThreadPoolBuilder::new()
.num_threads(4)
.build()
.unwrap();
let pool = SlowJobPool::new(100, Arc::new(threadpool));
pool.configure("FOO", |_| 3);
let start = Instant::now();
let f1 = Arc::new(Mutex::new(None));
let f2 = Arc::new(Mutex::new(None));
let f3 = Arc::new(Mutex::new(None));
let f4 = Arc::new(Mutex::new(None));
let f5 = Arc::new(Mutex::new(None));
let f6 = Arc::new(Mutex::new(None));
let f7 = Arc::new(Mutex::new(None));
let done = Arc::new(AtomicI64::new(0));
pool.spawn("FOO", mock_fn("foo1", &f1, &done));
pool.spawn("FOO", mock_fn("foo2", &f2, &done));
pool.spawn("FOO", mock_fn("foo3", &f3, &done));
std::thread::sleep(Duration::from_millis(300));
pool.spawn("FOO", mock_fn("foo4", &f4, &done));
pool.spawn("FOO", mock_fn("foo5", &f5, &done));
pool.spawn("FOO", mock_fn("foo6", &f6, &done));
std::thread::sleep(Duration::from_millis(300));
pool.spawn("FOO", mock_fn("foo7", &f7, &done));
std::thread::sleep(Duration::from_secs(1));
let measure = |a: Arc<Mutex<Option<Instant>>>, s: Instant| {
a.lock().unwrap().unwrap().duration_since(s).as_millis()
};
let f1 = measure(f1, start);
let f2 = measure(f2, start);
let f3 = measure(f3, start);
let f4 = measure(f4, start);
let f5 = measure(f5, start);
let f6 = measure(f6, start);
let f7 = measure(f7, start);
assert_eq!(done.load(Ordering::Relaxed), 7);
assert!(f1 < f4);
assert!(f1 < f5);
assert!(f1 < f6);
assert!(f1 < f7);
assert!(f2 < f4);
assert!(f2 < f5);
assert!(f2 < f6);
assert!(f2 < f7);
assert!(f3 < f4);
assert!(f3 < f5);
assert!(f3 < f6);
assert!(f3 < f7);
assert!(f4 < f7);
assert!(f5 < f7);
assert!(f6 < f7);
fn multiple_queue() {
let pool = mock_pool(4, 4, 1, 0, 0);
let internal = pool.internal.lock().unwrap();
let queue_data = [("FOO", 2u64)]
.iter()
.map(|(n, c)| ((*n).to_owned(), *c))
.collect::<Vec<_>>();
let queued = queue_data
.iter()
.map(|(s, c)| (s, *c))
.collect::<HashMap<_, _>>();
let result = internal.calc_queued_order(queued, 4);
assert_eq!(result.len(), 2);
assert_eq!(result[0], "FOO");
assert_eq!(result[1], "FOO");
}
#[test]
fn pool() {
let threadpool = rayon::ThreadPoolBuilder::new()
.num_threads(2)
.build()
.unwrap();
let pool = SlowJobPool::new(2, Arc::new(threadpool));
pool.configure("FOO", |n| n);
pool.configure("BAR", |n| n / 2);
let f1 = Arc::new(Mutex::new(None));
let f2 = Arc::new(Mutex::new(None));
let b1 = Arc::new(Mutex::new(None));
let b2 = Arc::new(Mutex::new(None));
let done = Arc::new(AtomicI64::new(0));
let start = Instant::now();
pool.spawn("FOO", mock_fn("foo1", &f1, &done));
pool.spawn("FOO", mock_fn("foo2", &f2, &done));
std::thread::sleep(Duration::from_millis(1000));
pool.spawn("BAR", mock_fn("bar1", &b1, &done));
pool.spawn("BAR", mock_fn("bar2", &b2, &done));
std::thread::sleep(Duration::from_secs(2));
let measure = |a: Arc<Mutex<Option<Instant>>>, s: Instant| {
a.lock().unwrap().unwrap().duration_since(s).as_millis()
fn limit_queue() {
let pool = mock_pool(5, 5, 1, 0, 0);
let internal = pool.internal.lock().unwrap();
let queue_data = [("FOO", 80u64)]
.iter()
.map(|(n, c)| ((*n).to_owned(), *c))
.collect::<Vec<_>>();
let queued = queue_data
.iter()
.map(|(s, c)| (s, *c))
.collect::<HashMap<_, _>>();
let result = internal.calc_queued_order(queued, 4);
assert_eq!(result.len(), 4);
assert_eq!(result[0], "FOO");
assert_eq!(result[1], "FOO");
assert_eq!(result[2], "FOO");
assert_eq!(result[3], "FOO");
}
#[test]
fn simple_queue_2() {
let pool = mock_pool(4, 4, 1, 1, 0);
let internal = pool.internal.lock().unwrap();
let queue_data = [("FOO", 1u64), ("BAR", 1u64)]
.iter()
.map(|(n, c)| ((*n).to_owned(), *c))
.collect::<Vec<_>>();
let queued = queue_data
.iter()
.map(|(s, c)| (s, *c))
.collect::<HashMap<_, _>>();
let result = internal.calc_queued_order(queued, 4);
assert_eq!(result.len(), 2);
assert_eq!(result.iter().filter(|&x| x == "FOO").count(), 1);
assert_eq!(result.iter().filter(|&x| x == "BAR").count(), 1);
}
#[test]
fn multiple_queue_3() {
let pool = mock_pool(4, 4, 1, 1, 0);
let internal = pool.internal.lock().unwrap();
let queue_data = [("FOO", 2u64), ("BAR", 2u64)]
.iter()
.map(|(n, c)| ((*n).to_owned(), *c))
.collect::<Vec<_>>();
let queued = queue_data
.iter()
.map(|(s, c)| (s, *c))
.collect::<HashMap<_, _>>();
let result = internal.calc_queued_order(queued, 4);
assert_eq!(result.len(), 4);
assert_eq!(result.iter().filter(|&x| x == "FOO").count(), 2);
assert_eq!(result.iter().filter(|&x| x == "BAR").count(), 2);
}
#[test]
fn multiple_queue_4() {
let pool = mock_pool(4, 4, 2, 1, 0);
let internal = pool.internal.lock().unwrap();
let queue_data = [("FOO", 3u64), ("BAR", 3u64)]
.iter()
.map(|(n, c)| ((*n).to_owned(), *c))
.collect::<Vec<_>>();
let queued = queue_data
.iter()
.map(|(s, c)| (s, *c))
.collect::<HashMap<_, _>>();
let result = internal.calc_queued_order(queued, 4);
assert_eq!(result.len(), 4);
assert_eq!(result.iter().filter(|&x| x == "FOO").count(), 2);
assert_eq!(result.iter().filter(|&x| x == "BAR").count(), 2);
}
#[test]
fn multiple_queue_5() {
let pool = mock_pool(4, 4, 2, 1, 0);
let internal = pool.internal.lock().unwrap();
let queue_data = [("FOO", 5u64), ("BAR", 5u64)]
.iter()
.map(|(n, c)| ((*n).to_owned(), *c))
.collect::<Vec<_>>();
let queued = queue_data
.iter()
.map(|(s, c)| (s, *c))
.collect::<HashMap<_, _>>();
let result = internal.calc_queued_order(queued, 5);
assert_eq!(result.len(), 5);
assert_eq!(result.iter().filter(|&x| x == "FOO").count(), 2);
assert_eq!(result.iter().filter(|&x| x == "BAR").count(), 3);
}
#[test]
fn multiple_queue_6() {
let pool = mock_pool(40, 40, 2, 1, 0);
let internal = pool.internal.lock().unwrap();
let queue_data = [("FOO", 5u64), ("BAR", 5u64)]
.iter()
.map(|(n, c)| ((*n).to_owned(), *c))
.collect::<Vec<_>>();
let queued = queue_data
.iter()
.map(|(s, c)| (s, *c))
.collect::<HashMap<_, _>>();
let result = internal.calc_queued_order(queued, 11);
assert_eq!(result.len(), 10);
assert_eq!(result.iter().filter(|&x| x == "FOO").count(), 5);
assert_eq!(result.iter().filter(|&x| x == "BAR").count(), 5);
}
#[test]
#[should_panic]
fn unconfigured() {
let pool = mock_pool(4, 4, 2, 1, 0);
let mut internal = pool.internal.lock().unwrap();
internal.spawn("UNCONFIGURED", || println!());
}
#[test]
fn correct_spawn_doesnt_panic() {
let pool = mock_pool(4, 4, 2, 1, 0);
let mut internal = pool.internal.lock().unwrap();
internal.spawn("FOO", || println!("foo"));
internal.spawn("BAR", || println!("bar"));
}
#[test]
fn can_spawn() {
let pool = mock_pool(4, 4, 2, 1, 0);
let internal = pool.internal.lock().unwrap();
assert!(internal.can_spawn("FOO"));
assert!(internal.can_spawn("BAR"));
}
#[test]
fn try_run_works() {
let pool = mock_pool(4, 4, 2, 1, 0);
pool.try_run("FOO", || println!("foo")).unwrap();
pool.try_run("BAR", || println!("bar")).unwrap();
}
#[test]
fn try_run_exhausted() {
use std::{thread::sleep, time::Duration};
let pool = mock_pool(8, 8, 4, 2, 0);
let func = || loop {
sleep(Duration::from_secs(1))
};
let f1 = measure(f1, start);
let f2 = measure(f2, start);
let b1 = measure(b1, start);
let b2 = measure(b2, start);
// Expect:
// [F1, F2]
// [B1]
// [B2]
assert_eq!(done.load(Ordering::Relaxed), 4);
assert!(f1 < 600);
assert!(f2 < 600);
println!("b1 {}", b1);
println!("b2 {}", b2);
// would be to flanky:
//assert!((1000..1500).contains(&b1));
//assert!((1500..2000).contains(&b2));
assert!(b1 < b2);
pool.try_run("FOO", func).unwrap();
pool.try_run("BAR", func).unwrap();
pool.try_run("FOO", func).unwrap();
pool.try_run("BAR", func).unwrap();
pool.try_run("FOO", func).unwrap_err();
pool.try_run("BAR", func).unwrap();
pool.try_run("FOO", func).unwrap_err();
pool.try_run("BAR", func).unwrap();
pool.try_run("FOO", func).unwrap_err();
pool.try_run("BAR", func).unwrap_err();
pool.try_run("FOO", func).unwrap_err();
}
#[test]
fn actually_runs_1() {
let pool = mock_pool(4, 4, 0, 0, 1);
let barrier = Arc::new(std::sync::Barrier::new(2));
let barrier_clone = Arc::clone(&barrier);
pool.try_run("BAZ", move || {
barrier_clone.wait();
})
.unwrap();
barrier.wait();
}
#[test]
fn actually_runs_2() {
let pool = mock_pool(4, 4, 0, 0, 1);
let barrier = Arc::new(std::sync::Barrier::new(2));
let barrier_clone = Arc::clone(&barrier);
pool.spawn("BAZ", move || {
barrier_clone.wait();
});
barrier.wait();
}
#[test]
fn actually_waits() {
use std::sync::{
atomic::{AtomicBool, Ordering},
Barrier,
};
let pool = mock_pool(4, 4, 4, 0, 1);
let ops_i_ran = Arc::new(AtomicBool::new(false));
let ops_i_ran_clone = Arc::clone(&ops_i_ran);
let barrier = Arc::new(Barrier::new(2));
let barrier_clone = Arc::clone(&barrier);
let barrier2 = Arc::new(Barrier::new(2));
let barrier2_clone = Arc::clone(&barrier2);
pool.try_run("FOO", move || {
barrier_clone.wait();
})
.unwrap();
pool.spawn("FOO", move || {
ops_i_ran_clone.store(true, Ordering::SeqCst);
barrier2_clone.wait();
});
// in this case we have to sleep
std::thread::sleep(std::time::Duration::from_secs(1));
assert_eq!(ops_i_ran.load(Ordering::SeqCst), false);
// now finish the first job
barrier.wait();
// now wait on the second job to be actually finished
barrier2.wait();
}
}