mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
Cargo fmt most things (except erosion.rs).
This commit is contained in:
parent
5fd8b009a6
commit
e91578ffdb
@ -113,11 +113,8 @@ impl Client {
|
||||
log::debug!("Preparing image...");
|
||||
let world_map = Arc::new(image::DynamicImage::ImageRgba8({
|
||||
// Should not fail if the dimensions are correct.
|
||||
let world_map = image::ImageBuffer::from_raw(
|
||||
map_size.x,
|
||||
map_size.y,
|
||||
world_map_raw,
|
||||
);
|
||||
let world_map =
|
||||
image::ImageBuffer::from_raw(map_size.x, map_size.y, world_map_raw);
|
||||
world_map.ok_or(Error::Other("Server sent a bad world map image".into()))?
|
||||
}));
|
||||
log::debug!("Done preparing image...");
|
||||
|
@ -37,7 +37,7 @@ pub enum ServerMsg {
|
||||
entity_package: sync::EntityPackage<EcsCompPacket>,
|
||||
server_info: ServerInfo,
|
||||
time_of_day: state::TimeOfDay,
|
||||
world_map: (Vec2<u32>, Vec<u32>)
|
||||
world_map: (Vec2<u32>, Vec<u32>),
|
||||
},
|
||||
PlayerListUpdate(PlayerListUpdate),
|
||||
StateAnswer(Result<ClientState, (RequestStateError, ClientState)>),
|
||||
|
@ -46,7 +46,10 @@ use std::{
|
||||
};
|
||||
use uvth::{ThreadPool, ThreadPoolBuilder};
|
||||
use vek::*;
|
||||
use world::{sim::{FileOpts, WORLD_SIZE, WorldOpts}, World};
|
||||
use world::{
|
||||
sim::{FileOpts, WorldOpts, WORLD_SIZE},
|
||||
World,
|
||||
};
|
||||
const CLIENT_TIMEOUT: f64 = 20.0; // Seconds
|
||||
|
||||
pub enum Event {
|
||||
@ -104,15 +107,18 @@ impl Server {
|
||||
state.ecs_mut().register::<RegionSubscription>();
|
||||
state.ecs_mut().register::<Client>();
|
||||
|
||||
let world = World::generate(settings.world_seed, WorldOpts {
|
||||
seed_elements: true,
|
||||
world_file: if let Some(ref file) = settings.map_file {
|
||||
FileOpts::Load(file.clone())
|
||||
} else {
|
||||
FileOpts::Generate
|
||||
let world = World::generate(
|
||||
settings.world_seed,
|
||||
WorldOpts {
|
||||
seed_elements: true,
|
||||
world_file: if let Some(ref file) = settings.map_file {
|
||||
FileOpts::Load(file.clone())
|
||||
} else {
|
||||
FileOpts::Generate
|
||||
},
|
||||
..WorldOpts::default()
|
||||
},
|
||||
..WorldOpts::default()
|
||||
});
|
||||
);
|
||||
|
||||
let spawn_point = {
|
||||
// NOTE: all of these `.map(|e| e as [type])` calls should compile into no-ops,
|
||||
|
@ -104,8 +104,7 @@ impl ServerSettings {
|
||||
max_players: 100,
|
||||
start_time: 9.0 * 3600.0,
|
||||
admins: vec!["singleplayer".to_string()], // TODO: Let the player choose if they want to use admin commands or not
|
||||
..
|
||||
Self::load() // Fill in remaining fields from settings.ron.
|
||||
..Self::load() // Fill in remaining fields from settings.ron.
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -162,7 +162,7 @@ impl<'a> Widget for Map<'a> {
|
||||
let (world_map, worldsize) = self.world_map;
|
||||
let worldsize = worldsize.map2(TerrainChunkSize::RECT_SIZE, |e, f| e as f64 * f as f64);
|
||||
|
||||
Image::new(world_map/*self.imgs.map_placeholder*/)
|
||||
Image::new(world_map /*self.imgs.map_placeholder*/)
|
||||
.middle_of(state.ids.map_bg)
|
||||
.color(Some(Color::Rgba(1.0, 1.0, 1.0, fade - 0.1)))
|
||||
.w_h(700.0, 700.0)
|
||||
|
@ -137,7 +137,7 @@ impl<'a> Widget for MiniMap<'a> {
|
||||
// Map Image
|
||||
let (world_map, worldsize) = self.world_map;
|
||||
let worldsize = worldsize.map2(TerrainChunkSize::RECT_SIZE, |e, f| e as f64 * f as f64);
|
||||
Image::new(world_map/*self.imgs.map_placeholder*/)
|
||||
Image::new(world_map /*self.imgs.map_placeholder*/)
|
||||
.middle_of(state.ids.mmap_frame_bg)
|
||||
.w_h(92.0 * 4.0 * zoom, 82.0 * 4.0 * zoom)
|
||||
.parent(state.ids.mmap_frame_bg)
|
||||
|
@ -454,7 +454,10 @@ impl Hud {
|
||||
// Generate ids.
|
||||
let ids = Ids::new(ui.id_generator());
|
||||
// Load world map
|
||||
let world_map = (ui.add_graphic(Graphic::Image(client.world_map.0.clone())), client.world_map.1);
|
||||
let world_map = (
|
||||
ui.add_graphic(Graphic::Image(client.world_map.0.clone())),
|
||||
client.world_map.1,
|
||||
);
|
||||
// Load images.
|
||||
let imgs = Imgs::load(&mut ui).expect("Failed to load images!");
|
||||
// Load rotation images.
|
||||
|
@ -20,7 +20,7 @@ use client::Client;
|
||||
use common::{
|
||||
comp,
|
||||
terrain::{BlockKind, TerrainChunk, TerrainChunkSize},
|
||||
vol::{RectVolSize, ReadVol},
|
||||
vol::{ReadVol, RectVolSize},
|
||||
};
|
||||
use specs::{Join, WorldExt};
|
||||
use vek::*;
|
||||
|
@ -175,7 +175,9 @@ fn mesh_worker<V: BaseVol<Vox = Block> + RectRasterableVol + ReadVol + Debug>(
|
||||
let kind = volume.get(wpos).unwrap_or(&Block::empty()).kind();
|
||||
|
||||
if let Some(cfg) = sprite_config_for(kind) {
|
||||
let seed = wpos.x as u64 * 3 + wpos.y as u64 * 7 + wpos.x as u64 * wpos.y as u64; // Awful PRNG
|
||||
let seed = wpos.x as u64 * 3
|
||||
+ wpos.y as u64 * 7
|
||||
+ wpos.x as u64 * wpos.y as u64; // Awful PRNG
|
||||
|
||||
let instance = SpriteInstance::new(
|
||||
Mat4::identity()
|
||||
|
@ -6,10 +6,13 @@ const W: usize = 640;
|
||||
const H: usize = 480;
|
||||
|
||||
fn main() {
|
||||
let world = World::generate(0, WorldOpts {
|
||||
seed_elements: true,
|
||||
..WorldOpts::default()
|
||||
});
|
||||
let world = World::generate(
|
||||
0,
|
||||
WorldOpts {
|
||||
seed_elements: true,
|
||||
..WorldOpts::default()
|
||||
},
|
||||
);
|
||||
|
||||
let sampler = world.sample_columns();
|
||||
|
||||
|
@ -36,12 +36,15 @@ fn main() {
|
||||
let mut _map_file = PathBuf::from("./maps");
|
||||
_map_file.push(map_file);
|
||||
|
||||
let world = World::generate(1337, WorldOpts {
|
||||
seed_elements: false,
|
||||
// world_file: sim::FileOpts::Load(_map_file),
|
||||
world_file: sim::FileOpts::Save,
|
||||
..WorldOpts::default()
|
||||
});
|
||||
let world = World::generate(
|
||||
1337,
|
||||
WorldOpts {
|
||||
seed_elements: false,
|
||||
// world_file: sim::FileOpts::Load(_map_file),
|
||||
world_file: sim::FileOpts::Save,
|
||||
..WorldOpts::default()
|
||||
},
|
||||
);
|
||||
|
||||
let sampler = world.sim();
|
||||
|
||||
@ -87,25 +90,35 @@ fn main() {
|
||||
|
||||
for i in 0..W {
|
||||
for j in 0..H {
|
||||
let pos = (focus_rect + Vec2::new(i as f64, j as f64) * scale).map(|e: f64| e as i32);
|
||||
let pos =
|
||||
(focus_rect + Vec2::new(i as f64, j as f64) * scale).map(|e: f64| e as i32);
|
||||
/* let top_left = pos;
|
||||
let top_right = focus + Vec2::new(i as i32 + light_res, j as i32) * scale;
|
||||
let bottom_left = focus + Vec2::new(i as i32, j as i32 + light_res) * scale; */
|
||||
|
||||
let (alt, basement, water_alt, humidity, temperature, downhill, river_kind) = sampler
|
||||
.get(pos)
|
||||
.map(|sample| {
|
||||
(
|
||||
sample.alt,
|
||||
sample.basement,
|
||||
sample.water_alt,
|
||||
sample.humidity,
|
||||
sample.temp,
|
||||
sample.downhill,
|
||||
sample.river.river_kind,
|
||||
)
|
||||
})
|
||||
.unwrap_or((CONFIG.sea_level, CONFIG.sea_level, CONFIG.sea_level, 0.0, 0.0, None, None));
|
||||
let (alt, basement, water_alt, humidity, temperature, downhill, river_kind) =
|
||||
sampler
|
||||
.get(pos)
|
||||
.map(|sample| {
|
||||
(
|
||||
sample.alt,
|
||||
sample.basement,
|
||||
sample.water_alt,
|
||||
sample.humidity,
|
||||
sample.temp,
|
||||
sample.downhill,
|
||||
sample.river.river_kind,
|
||||
)
|
||||
})
|
||||
.unwrap_or((
|
||||
CONFIG.sea_level,
|
||||
CONFIG.sea_level,
|
||||
CONFIG.sea_level,
|
||||
0.0,
|
||||
0.0,
|
||||
None,
|
||||
None,
|
||||
));
|
||||
let humidity = humidity.min(1.0).max(0.0);
|
||||
let temperature = temperature.min(1.0).max(-1.0) * 0.5 + 0.5;
|
||||
let pos = pos * TerrainChunkSize::RECT_SIZE.map(|e| e as i32);
|
||||
@ -177,15 +190,9 @@ fn main() {
|
||||
|
||||
let true_water_alt = (alt.max(water_alt) as f64 - focus.z) / gain as f64;
|
||||
let true_alt = (alt as f64 - focus.z) / gain as f64;
|
||||
let water_depth = (true_water_alt - true_alt)
|
||||
.min(1.0)
|
||||
.max(0.0);
|
||||
let water_alt = true_water_alt
|
||||
.min(1.0)
|
||||
.max(0.0);
|
||||
let alt = true_alt
|
||||
.min(1.0)
|
||||
.max(0.0);
|
||||
let water_depth = (true_water_alt - true_alt).min(1.0).max(0.0);
|
||||
let water_alt = true_water_alt.min(1.0).max(0.0);
|
||||
let alt = true_alt.min(1.0).max(0.0);
|
||||
let quad =
|
||||
|x: f32| ((x as f64 * QUADRANTS as f64).floor() as usize).min(QUADRANTS - 1);
|
||||
if river_kind.is_none() || humidity != 0.0 {
|
||||
@ -205,17 +212,29 @@ fn main() {
|
||||
}
|
||||
|
||||
buf[j * W + i] = match (river_kind, (is_water, true_alt >= true_sea_level)) {
|
||||
(_, (false, _)) | ( None, (_, true)) => {
|
||||
(_, (false, _)) | (None, (_, true)) => {
|
||||
let (r, g, b) = (
|
||||
(if is_shaded { alt } else { alt } * if is_temperature { temperature as f64 } else if is_shaded { alt } else { 0.0 }).sqrt(),
|
||||
(if is_shaded { alt } else { alt }
|
||||
* if is_temperature {
|
||||
temperature as f64
|
||||
} else if is_shaded {
|
||||
alt
|
||||
} else {
|
||||
0.0
|
||||
})
|
||||
.sqrt(),
|
||||
if is_shaded { 0.2 + (alt * 0.8) } else { alt },
|
||||
(if is_shaded { alt } else { alt } * if is_humidity { humidity as f64 } else if is_shaded { alt } else { 0.0 }).sqrt(),
|
||||
(if is_shaded { alt } else { alt }
|
||||
* if is_humidity {
|
||||
humidity as f64
|
||||
} else if is_shaded {
|
||||
alt
|
||||
} else {
|
||||
0.0
|
||||
})
|
||||
.sqrt(),
|
||||
);
|
||||
let light = if is_shaded {
|
||||
light
|
||||
} else {
|
||||
1.0
|
||||
};
|
||||
let light = if is_shaded { light } else { 1.0 };
|
||||
u32::from_le_bytes([
|
||||
(b * light * 255.0) as u8,
|
||||
(g * light * 255.0) as u8,
|
||||
@ -228,7 +247,7 @@ fn main() {
|
||||
(/*alt*//*alt * *//*(1.0 - humidity)*/(alt * temperature).sqrt() * 255.0) as u8,
|
||||
255,
|
||||
]) */
|
||||
},
|
||||
}
|
||||
(Some(RiverKind::Ocean), _) => u32::from_le_bytes([
|
||||
((64.0 - water_depth * 64.0) * 1.0) as u8,
|
||||
((32.0 - water_depth * 32.0) * 1.0) as u8,
|
||||
@ -242,8 +261,8 @@ fn main() {
|
||||
255,
|
||||
]),
|
||||
(None, _) | (Some(RiverKind::Lake { .. }), _) => u32::from_le_bytes([
|
||||
(((64.0 + water_alt * 191.0) + (- water_depth * 64.0)) * 1.0) as u8,
|
||||
(((32.0 + water_alt * 95.0) + (- water_depth * 32.0)) * 1.0) as u8,
|
||||
(((64.0 + water_alt * 191.0) + (-water_depth * 64.0)) * 1.0) as u8,
|
||||
(((32.0 + water_alt * 95.0) + (-water_depth * 32.0)) * 1.0) as u8,
|
||||
0,
|
||||
255,
|
||||
]),
|
||||
@ -280,7 +299,8 @@ fn main() {
|
||||
}
|
||||
if win.get_mouse_down(minifb::MouseButton::Left) {
|
||||
if let Some((mx, my)) = win.get_mouse_pos(minifb::MouseMode::Clamp) {
|
||||
let pos = (focus_rect + (Vec2::new(mx as f64, my as f64) * scale)).map(|e| e as i32);
|
||||
let pos =
|
||||
(focus_rect + (Vec2::new(mx as f64, my as f64) * scale)).map(|e| e as i32);
|
||||
println!(
|
||||
"Chunk position: {:?}",
|
||||
pos.map2(TerrainChunkSize::RECT_SIZE, |e, f| e * f as i32)
|
||||
|
@ -265,7 +265,8 @@ impl<'a> BlockGen<'a> {
|
||||
sub_surface_color,
|
||||
stone_col.map(|e| e as f32 / 255.0),
|
||||
(height - grass_depth - wposf.z as f32) * 0.15,
|
||||
).map(|e| (e * 255.0) as u8);
|
||||
)
|
||||
.map(|e| (e * 255.0) as u8);
|
||||
|
||||
// Underground
|
||||
if (wposf.z as f32) > alt - 32.0 * chaos {
|
||||
|
@ -437,13 +437,14 @@ impl<'a> Sampler<'a> for ColumnGen<'a> {
|
||||
downhill_alt.sub(CONFIG.sea_level) >= CONFIG.mountain_scale * 0.25)*/
|
||||
is_rocky {
|
||||
sim.get_interpolated_monotone(wpos, |chunk| chunk.alt)?
|
||||
// sim.get_interpolated_bilinear(wpos, |chunk| chunk.alt)?
|
||||
// sim.get_interpolated(wpos, |chunk| chunk.alt)?
|
||||
// sim.get_interpolated_bilinear(wpos, |chunk| chunk.alt)?
|
||||
// sim.get_interpolated(wpos, |chunk| chunk.alt)?
|
||||
} else {
|
||||
sim.get_interpolated_monotone(wpos, |chunk| chunk.alt)?
|
||||
// sim.get_interpolated(wpos, |chunk| chunk.alt)?
|
||||
};
|
||||
let basement = alt + sim./*get_interpolated*/get_interpolated_monotone(wpos, |chunk| chunk.basement.sub(chunk.alt))?;
|
||||
let basement = alt
|
||||
+ sim./*get_interpolated*/get_interpolated_monotone(wpos, |chunk| chunk.basement.sub(chunk.alt))?;
|
||||
|
||||
// Find the average distance to each neighboring body of water.
|
||||
let mut river_count = 0.0f64;
|
||||
@ -830,7 +831,6 @@ impl<'a> Sampler<'a> for ColumnGen<'a> {
|
||||
.mul(1.0 - humidity) */
|
||||
/* .mul(32.0) */;
|
||||
|
||||
|
||||
let riverless_alt_delta = Lerp::lerp(0.0, riverless_alt_delta, warp_factor);
|
||||
let alt = alt_ + riverless_alt_delta;
|
||||
let basement = basement.min(alt);
|
||||
@ -895,7 +895,7 @@ impl<'a> Sampler<'a> for ColumnGen<'a> {
|
||||
);
|
||||
let tundra = Lerp::lerp(snow, Rgb::new(0.01, 0.3, 0.0), 0.4 + marble * 0.6);
|
||||
let dead_tundra = Lerp::lerp(warm_stone, Rgb::new(0.3, 0.12, 0.2), marble);
|
||||
let cliff = Rgb::lerp(cold_stone, /*warm_stone*/hot_stone, marble);
|
||||
let cliff = Rgb::lerp(cold_stone, /*warm_stone*/ hot_stone, marble);
|
||||
|
||||
let grass = Rgb::lerp(
|
||||
cold_grass,
|
||||
@ -953,11 +953,7 @@ impl<'a> Sampler<'a> for ColumnGen<'a> {
|
||||
.mul(1.0),
|
||||
);
|
||||
|
||||
let sub_surface_color = Lerp::lerp(
|
||||
cliff,
|
||||
ground,
|
||||
alt.sub(basement).mul(0.25)
|
||||
);
|
||||
let sub_surface_color = Lerp::lerp(cliff, ground, alt.sub(basement).mul(0.25));
|
||||
|
||||
/* let ground = Rgb::lerp(
|
||||
dead_tundra,
|
||||
@ -1087,15 +1083,18 @@ impl<'a> Sampler<'a> for ColumnGen<'a> {
|
||||
); */
|
||||
|
||||
// Snow covering
|
||||
let snow_cover =
|
||||
temp.sub(CONFIG.snow_temp)
|
||||
.max(-humidity.sub(CONFIG.desert_hum))
|
||||
.mul(16.0)
|
||||
.add((marble_small - 0.5) * 0.5);
|
||||
let snow_cover = temp
|
||||
.sub(CONFIG.snow_temp)
|
||||
.max(-humidity.sub(CONFIG.desert_hum))
|
||||
.mul(16.0)
|
||||
.add((marble_small - 0.5) * 0.5);
|
||||
let (alt, ground, sub_surface_color) = if snow_cover /*< 0.1*/<= 0.5 && alt > water_level {
|
||||
// Allow snow cover.
|
||||
(alt + 1.0 - snow_cover.max(0.0), Rgb::lerp(snow, ground, snow_cover),
|
||||
Lerp::lerp(sub_surface_color, ground, alt.sub(basement).mul(0.15)))
|
||||
(
|
||||
alt + 1.0 - snow_cover.max(0.0),
|
||||
Rgb::lerp(snow, ground, snow_cover),
|
||||
Lerp::lerp(sub_surface_color, ground, alt.sub(basement).mul(0.15)),
|
||||
)
|
||||
} else {
|
||||
(alt, ground, sub_surface_color)
|
||||
};
|
||||
@ -1165,7 +1164,7 @@ impl<'a> Sampler<'a> for ColumnGen<'a> {
|
||||
// Beach
|
||||
((ocean_level - 1.0) / 2.0).max(0.0),
|
||||
),
|
||||
sub_surface_color,// /*warm_grass*/Lerp::lerp(cliff, dirt, alt.sub(basement).mul(0.25)),
|
||||
sub_surface_color, // /*warm_grass*/Lerp::lerp(cliff, dirt, alt.sub(basement).mul(0.25)),
|
||||
// No growing directly on bedrock.
|
||||
tree_density: Lerp::lerp(0.0, tree_density, alt.sub(2.0).sub(basement).mul(0.5)),
|
||||
forest_kind: sim_chunk.forest_kind,
|
||||
@ -1183,7 +1182,7 @@ impl<'a> Sampler<'a> for ColumnGen<'a> {
|
||||
humidity,
|
||||
spawn_rate,
|
||||
location: sim_chunk.location.as_ref(),
|
||||
stone_col,
|
||||
stone_col,
|
||||
|
||||
chunk: sim_chunk,
|
||||
spawn_rules: sim_chunk
|
||||
|
@ -1,5 +1,5 @@
|
||||
use rayon::prelude::*;
|
||||
use super::Alt;
|
||||
use rayon::prelude::*;
|
||||
|
||||
/// From https://github.com/fastscape-lem/fastscapelib-fortran/blob/master/src/Diffusion.f90
|
||||
///
|
||||
@ -36,68 +36,76 @@ use super::Alt;
|
||||
|
||||
implicit none
|
||||
*/
|
||||
pub fn diffusion(nx: usize, ny: usize, xl: f64, yl: f64, dt: f64, _ibc: (),
|
||||
h: &mut [Alt], b: &mut [Alt],
|
||||
kd: impl Fn(usize) -> f64, kdsed: f64,
|
||||
) {
|
||||
pub fn diffusion(
|
||||
nx: usize,
|
||||
ny: usize,
|
||||
xl: f64,
|
||||
yl: f64,
|
||||
dt: f64,
|
||||
_ibc: (),
|
||||
h: &mut [Alt],
|
||||
b: &mut [Alt],
|
||||
kd: impl Fn(usize) -> f64,
|
||||
kdsed: f64,
|
||||
) {
|
||||
let aij = |i: usize, j: usize| j * nx + i;
|
||||
/*
|
||||
double precision, dimension(:), allocatable :: f,diag,sup,inf,res
|
||||
double precision, dimension(:,:), allocatable :: zint,kdint,zintp
|
||||
integer i,j,ij
|
||||
double precision factxp,factxm,factyp,factym,dx,dy
|
||||
*/
|
||||
let mut f : Vec<f64>;
|
||||
let mut diag : Vec<f64>;
|
||||
let mut sup : Vec<f64>;
|
||||
let mut inf : Vec<f64>;
|
||||
let mut res : Vec<f64>;
|
||||
let mut zint : Vec<f64>;
|
||||
let mut kdint : Vec<f64>;
|
||||
let mut zintp : Vec<f64>;
|
||||
let mut i : usize;
|
||||
let mut j : usize;
|
||||
let mut ij : usize;
|
||||
let mut factxp : f64;
|
||||
let mut factxm : f64;
|
||||
let mut factyp : f64;
|
||||
let mut factym : f64;
|
||||
let mut dx : f64;
|
||||
let mut dy : f64;
|
||||
/*
|
||||
character cbc*4
|
||||
/*
|
||||
double precision, dimension(:), allocatable :: f,diag,sup,inf,res
|
||||
double precision, dimension(:,:), allocatable :: zint,kdint,zintp
|
||||
integer i,j,ij
|
||||
double precision factxp,factxm,factyp,factym,dx,dy
|
||||
*/
|
||||
let mut f: Vec<f64>;
|
||||
let mut diag: Vec<f64>;
|
||||
let mut sup: Vec<f64>;
|
||||
let mut inf: Vec<f64>;
|
||||
let mut res: Vec<f64>;
|
||||
let mut zint: Vec<f64>;
|
||||
let mut kdint: Vec<f64>;
|
||||
let mut zintp: Vec<f64>;
|
||||
let mut i: usize;
|
||||
let mut j: usize;
|
||||
let mut ij: usize;
|
||||
let mut factxp: f64;
|
||||
let mut factxm: f64;
|
||||
let mut factyp: f64;
|
||||
let mut factym: f64;
|
||||
let mut dx: f64;
|
||||
let mut dy: f64;
|
||||
/*
|
||||
character cbc*4
|
||||
|
||||
!print*,'Diffusion'
|
||||
!print*,'Diffusion'
|
||||
|
||||
write (cbc,'(i4)') ibc
|
||||
write (cbc,'(i4)') ibc
|
||||
|
||||
dx=xl/(nx-1)
|
||||
dy=yl/(ny-1)
|
||||
*/
|
||||
dx=xl/(nx-1)
|
||||
dy=yl/(ny-1)
|
||||
*/
|
||||
// 2048*32/2048/2048
|
||||
// 1 / 64 m
|
||||
dx = xl / /*(nx - 1)*/nx as f64;
|
||||
dy = yl / /*(ny - 1)*/ny as f64;
|
||||
/*
|
||||
! creates 2D internal arrays to store topo and kd
|
||||
/*
|
||||
! creates 2D internal arrays to store topo and kd
|
||||
|
||||
allocate (zint(nx,ny),kdint(nx,ny),zintp(nx,ny))
|
||||
*/
|
||||
allocate (zint(nx,ny),kdint(nx,ny),zintp(nx,ny))
|
||||
*/
|
||||
zint = vec![Default::default(); nx * ny];
|
||||
kdint = vec![Default::default(); nx * ny];
|
||||
zintp = vec![Default::default(); nx * ny];
|
||||
/*
|
||||
do j=1,ny
|
||||
do i=1,nx
|
||||
ij=(j-1)*nx+i
|
||||
zint(i,j)=h(ij)
|
||||
kdint(i,j)=kd(ij)
|
||||
if (kdsed.gt.0.d0 .and. (h(ij)-b(ij)).gt.1.d-6) kdint(i,j)=kdsed
|
||||
enddo
|
||||
enddo
|
||||
/*
|
||||
do j=1,ny
|
||||
do i=1,nx
|
||||
ij=(j-1)*nx+i
|
||||
zint(i,j)=h(ij)
|
||||
kdint(i,j)=kd(ij)
|
||||
if (kdsed.gt.0.d0 .and. (h(ij)-b(ij)).gt.1.d-6) kdint(i,j)=kdsed
|
||||
enddo
|
||||
enddo
|
||||
|
||||
zintp = zint
|
||||
*/
|
||||
zintp = zint
|
||||
*/
|
||||
for j in 0..ny {
|
||||
for i in 0..nx {
|
||||
// ij = vec2_as_uniform_idx(i, j);
|
||||
@ -111,63 +119,62 @@ pub fn diffusion(nx: usize, ny: usize, xl: f64, yl: f64, dt: f64, _ibc: (),
|
||||
}
|
||||
|
||||
zintp = zint.clone();
|
||||
/*
|
||||
! first pass along the x-axis
|
||||
/*
|
||||
! first pass along the x-axis
|
||||
|
||||
allocate (f(nx),diag(nx),sup(nx),inf(nx),res(nx))
|
||||
f=0.d0
|
||||
diag=0.d0
|
||||
sup=0.d0
|
||||
inf=0.d0
|
||||
res=0.d0
|
||||
do j=2,ny-1
|
||||
*/
|
||||
allocate (f(nx),diag(nx),sup(nx),inf(nx),res(nx))
|
||||
f=0.d0
|
||||
diag=0.d0
|
||||
sup=0.d0
|
||||
inf=0.d0
|
||||
res=0.d0
|
||||
do j=2,ny-1
|
||||
*/
|
||||
f = vec![0.0; nx];
|
||||
diag = vec![0.0; nx];
|
||||
sup = vec![0.0; nx];
|
||||
inf = vec![0.0; nx];
|
||||
res = vec![0.0; nx];
|
||||
for j in 1..ny-1 {
|
||||
/*
|
||||
do i=2,nx-1
|
||||
factxp=(kdint(i+1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2
|
||||
factxm=(kdint(i-1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2
|
||||
factyp=(kdint(i,j+1)+kdint(i,j))/2.d0*(dt/2.)/dy**2
|
||||
factym=(kdint(i,j-1)+kdint(i,j))/2.d0*(dt/2.)/dy**2
|
||||
diag(i)=1.d0+factxp+factxm
|
||||
sup(i)=-factxp
|
||||
inf(i)=-factxm
|
||||
f(i)=zintp(i,j)+factyp*zintp(i,j+1)-(factyp+factym)*zintp(i,j)+factym*zintp(i,j-1)
|
||||
enddo
|
||||
*/
|
||||
for i in 1..nx-1 {
|
||||
factxp = (kdint[aij(i+1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factxm = (kdint[aij(i-1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factyp = (kdint[aij(i, j+1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
factym = (kdint[aij(i, j-1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
for j in 1..ny - 1 {
|
||||
/*
|
||||
do i=2,nx-1
|
||||
factxp=(kdint(i+1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2
|
||||
factxm=(kdint(i-1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2
|
||||
factyp=(kdint(i,j+1)+kdint(i,j))/2.d0*(dt/2.)/dy**2
|
||||
factym=(kdint(i,j-1)+kdint(i,j))/2.d0*(dt/2.)/dy**2
|
||||
diag(i)=1.d0+factxp+factxm
|
||||
sup(i)=-factxp
|
||||
inf(i)=-factxm
|
||||
f(i)=zintp(i,j)+factyp*zintp(i,j+1)-(factyp+factym)*zintp(i,j)+factym*zintp(i,j-1)
|
||||
enddo
|
||||
*/
|
||||
for i in 1..nx - 1 {
|
||||
factxp = (kdint[aij(i + 1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factxm = (kdint[aij(i - 1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factyp = (kdint[aij(i, j + 1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
factym = (kdint[aij(i, j - 1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
diag[i] = 1.0 + factxp + factxm;
|
||||
sup[i] = -factxp;
|
||||
inf[i] = -factxm;
|
||||
f[i] =
|
||||
zintp[aij(i, j)] + factyp * zintp[aij(i, j+1)] -
|
||||
(factyp + factym) *
|
||||
zintp[aij(i, j)] + factym * zintp[aij(i, j-1)];
|
||||
f[i] = zintp[aij(i, j)] + factyp * zintp[aij(i, j + 1)]
|
||||
- (factyp + factym) * zintp[aij(i, j)]
|
||||
+ factym * zintp[aij(i, j - 1)];
|
||||
}
|
||||
/*
|
||||
! left bc
|
||||
if (cbc(4:4).eq.'1') then
|
||||
diag(1)=1.
|
||||
sup(1)=0.
|
||||
f(1)=zintp(1,j)
|
||||
else
|
||||
factxp=(kdint(2,j)+kdint(1,j))/2.d0*(dt/2.)/dx**2
|
||||
factyp=(kdint(1,j+1)+kdint(1,j))/2.d0*(dt/2.)/dy**2
|
||||
factym=(kdint(1,j-1)+kdint(1,j))/2.d0*(dt/2.)/dy**2
|
||||
diag(1)=1.d0+factxp
|
||||
sup(1)=-factxp
|
||||
f(1)=zintp(1,j)+factyp*zintp(1,j+1)-(factyp+factym)*zintp(1,j)+factym*zintp(1,j-1)
|
||||
endif
|
||||
*/
|
||||
/*
|
||||
! left bc
|
||||
if (cbc(4:4).eq.'1') then
|
||||
diag(1)=1.
|
||||
sup(1)=0.
|
||||
f(1)=zintp(1,j)
|
||||
else
|
||||
factxp=(kdint(2,j)+kdint(1,j))/2.d0*(dt/2.)/dx**2
|
||||
factyp=(kdint(1,j+1)+kdint(1,j))/2.d0*(dt/2.)/dy**2
|
||||
factym=(kdint(1,j-1)+kdint(1,j))/2.d0*(dt/2.)/dy**2
|
||||
diag(1)=1.d0+factxp
|
||||
sup(1)=-factxp
|
||||
f(1)=zintp(1,j)+factyp*zintp(1,j+1)-(factyp+factym)*zintp(1,j)+factym*zintp(1,j-1)
|
||||
endif
|
||||
*/
|
||||
if true {
|
||||
diag[0] = 1.0;
|
||||
sup[0] = 0.0;
|
||||
@ -175,119 +182,118 @@ pub fn diffusion(nx: usize, ny: usize, xl: f64, yl: f64, dt: f64, _ibc: (),
|
||||
} else {
|
||||
// reflective boundary
|
||||
factxp = (kdint[aij(1, j)] + kdint[aij(0, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factyp = (kdint[aij(0, j+1)] + kdint[aij(0, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
factym = (kdint[aij(0, j-1)] + kdint[aij(0, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
factyp = (kdint[aij(0, j + 1)] + kdint[aij(0, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
factym = (kdint[aij(0, j - 1)] + kdint[aij(0, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
diag[0] = 1.0 + factxp;
|
||||
sup[0] = -factxp;
|
||||
f[0] =
|
||||
zintp[aij(0, j)] + factyp * zintp[aij(0, j+1)] -
|
||||
(factyp + factym) *
|
||||
zintp[aij(0, j)] + factym * zintp[aij(0, j-1)];
|
||||
f[0] = zintp[aij(0, j)] + factyp * zintp[aij(0, j + 1)]
|
||||
- (factyp + factym) * zintp[aij(0, j)]
|
||||
+ factym * zintp[aij(0, j - 1)];
|
||||
}
|
||||
/*
|
||||
! right bc
|
||||
if (cbc(2:2).eq.'1') then
|
||||
diag(nx)=1.
|
||||
inf(nx)=0.
|
||||
f(nx)=zintp(nx,j)
|
||||
else
|
||||
factxm=(kdint(nx-1,j)+kdint(nx,j))/2.d0*(dt/2.)/dx**2
|
||||
factyp=(kdint(nx,j+1)+kdint(nx,j))/2.d0*(dt/2.)/dy**2
|
||||
factym=(kdint(nx,j-1)+kdint(nx,j))/2.d0*(dt/2.)/dy**2
|
||||
diag(nx)=1.d0+factxm
|
||||
inf(nx)=-factxm
|
||||
f(nx)=zintp(nx,j)+factyp*zintp(nx,j+1)-(factyp+factym)*zintp(nx,j)+factym*zintp(nx,j-1)
|
||||
endif
|
||||
*/
|
||||
/*
|
||||
! right bc
|
||||
if (cbc(2:2).eq.'1') then
|
||||
diag(nx)=1.
|
||||
inf(nx)=0.
|
||||
f(nx)=zintp(nx,j)
|
||||
else
|
||||
factxm=(kdint(nx-1,j)+kdint(nx,j))/2.d0*(dt/2.)/dx**2
|
||||
factyp=(kdint(nx,j+1)+kdint(nx,j))/2.d0*(dt/2.)/dy**2
|
||||
factym=(kdint(nx,j-1)+kdint(nx,j))/2.d0*(dt/2.)/dy**2
|
||||
diag(nx)=1.d0+factxm
|
||||
inf(nx)=-factxm
|
||||
f(nx)=zintp(nx,j)+factyp*zintp(nx,j+1)-(factyp+factym)*zintp(nx,j)+factym*zintp(nx,j-1)
|
||||
endif
|
||||
*/
|
||||
if true {
|
||||
diag[nx - 1] = 1.0;
|
||||
inf[nx - 1] = 0.0;
|
||||
f[nx - 1] = zintp[aij(nx - 1, j)];
|
||||
} else {
|
||||
// reflective boundary
|
||||
factxm = (kdint[aij(nx-2, j)] + kdint[aij(nx-1, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factyp = (kdint[aij(nx-1, j+1)] + kdint[aij(nx-1, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
factym = (kdint[aij(nx-1, j-1)] + kdint[aij(nx-1, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
factxm = (kdint[aij(nx - 2, j)] + kdint[aij(nx - 1, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factyp =
|
||||
(kdint[aij(nx - 1, j + 1)] + kdint[aij(nx - 1, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
factym =
|
||||
(kdint[aij(nx - 1, j - 1)] + kdint[aij(nx - 1, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
diag[nx - 1] = 1.0 + factxm;
|
||||
inf[nx - 1] = -factxm;
|
||||
f[nx - 1] =
|
||||
zintp[aij(nx-1, j)] + factyp * zintp[aij(nx-1, j+1)] -
|
||||
(factyp + factym) *
|
||||
zintp[aij(nx-1, j)] + factym * zintp[aij(nx-1, j-1)];
|
||||
f[nx - 1] = zintp[aij(nx - 1, j)] + factyp * zintp[aij(nx - 1, j + 1)]
|
||||
- (factyp + factym) * zintp[aij(nx - 1, j)]
|
||||
+ factym * zintp[aij(nx - 1, j - 1)];
|
||||
}
|
||||
/*
|
||||
call tridag (inf,diag,sup,f,res,nx)
|
||||
do i=1,nx
|
||||
zint(i,j)=res(i)
|
||||
enddo
|
||||
*/
|
||||
/*
|
||||
call tridag (inf,diag,sup,f,res,nx)
|
||||
do i=1,nx
|
||||
zint(i,j)=res(i)
|
||||
enddo
|
||||
*/
|
||||
tridag(&inf, &diag, &sup, &f, &mut res, nx);
|
||||
for i in 0..nx {
|
||||
zint[aij(i, j)] = res[i];
|
||||
}
|
||||
/*
|
||||
enddo
|
||||
deallocate (f,diag,sup,inf,res)
|
||||
*/
|
||||
/*
|
||||
enddo
|
||||
deallocate (f,diag,sup,inf,res)
|
||||
*/
|
||||
}
|
||||
|
||||
/*
|
||||
! second pass along y-axis
|
||||
/*
|
||||
! second pass along y-axis
|
||||
|
||||
allocate (f(ny),diag(ny),sup(ny),inf(ny),res(ny))
|
||||
f=0.d0
|
||||
diag=0.d0
|
||||
sup=0.d0
|
||||
inf=0.d0
|
||||
res=0.d0
|
||||
do i=2,nx-1
|
||||
*/
|
||||
allocate (f(ny),diag(ny),sup(ny),inf(ny),res(ny))
|
||||
f=0.d0
|
||||
diag=0.d0
|
||||
sup=0.d0
|
||||
inf=0.d0
|
||||
res=0.d0
|
||||
do i=2,nx-1
|
||||
*/
|
||||
f = vec![0.0; ny];
|
||||
diag = vec![0.0; ny];
|
||||
sup = vec![0.0; ny];
|
||||
inf = vec![0.0; ny];
|
||||
res = vec![0.0; ny];
|
||||
for i in 1..nx-1 {
|
||||
/*
|
||||
do j=2,ny-1
|
||||
factxp=(kdint(i+1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2
|
||||
factxm=(kdint(i-1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2
|
||||
factyp=(kdint(i,j+1)+kdint(i,j))/2.d0*(dt/2.)/dy**2
|
||||
factym=(kdint(i,j-1)+kdint(i,j))/2.d0*(dt/2.)/dy**2
|
||||
diag(j)=1.d0+factyp+factym
|
||||
sup(j)=-factyp
|
||||
inf(j)=-factym
|
||||
f(j)=zint(i,j)+factxp*zint(i+1,j)-(factxp+factxm)*zint(i,j)+factxm*zint(i-1,j)
|
||||
enddo
|
||||
*/
|
||||
for j in 1..ny-1 {
|
||||
factxp = (kdint[aij(i+1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factxm = (kdint[aij(i-1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factyp = (kdint[aij(i, j+1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
factym = (kdint[aij(i, j-1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
for i in 1..nx - 1 {
|
||||
/*
|
||||
do j=2,ny-1
|
||||
factxp=(kdint(i+1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2
|
||||
factxm=(kdint(i-1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2
|
||||
factyp=(kdint(i,j+1)+kdint(i,j))/2.d0*(dt/2.)/dy**2
|
||||
factym=(kdint(i,j-1)+kdint(i,j))/2.d0*(dt/2.)/dy**2
|
||||
diag(j)=1.d0+factyp+factym
|
||||
sup(j)=-factyp
|
||||
inf(j)=-factym
|
||||
f(j)=zint(i,j)+factxp*zint(i+1,j)-(factxp+factxm)*zint(i,j)+factxm*zint(i-1,j)
|
||||
enddo
|
||||
*/
|
||||
for j in 1..ny - 1 {
|
||||
factxp = (kdint[aij(i + 1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factxm = (kdint[aij(i - 1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factyp = (kdint[aij(i, j + 1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
factym = (kdint[aij(i, j - 1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
diag[j] = 1.0 + factyp + factym;
|
||||
sup[j] = -factyp;
|
||||
inf[j] = -factym;
|
||||
f[j] =
|
||||
zint[aij(i, j)] + factxp * zint[aij(i+1, j)] -
|
||||
(factxp + factxm) *
|
||||
zint[aij(i, j)] + factxm * zint[aij(i-1, j)];
|
||||
f[j] = zint[aij(i, j)] + factxp * zint[aij(i + 1, j)]
|
||||
- (factxp + factxm) * zint[aij(i, j)]
|
||||
+ factxm * zint[aij(i - 1, j)];
|
||||
}
|
||||
/*
|
||||
! bottom bc
|
||||
if (cbc(1:1).eq.'1') then
|
||||
diag(1)=1.
|
||||
sup(1)=0.
|
||||
f(1)=zint(i,1)
|
||||
else
|
||||
factxp=(kdint(i+1,1)+kdint(i,j))/2.d0*(dt/2.)/dx**2
|
||||
factxm=(kdint(i-1,1)+kdint(i,1))/2.d0*(dt/2.)/dx**2
|
||||
factyp=(kdint(i,2)+kdint(i,1))/2.d0*(dt/2.)/dy**2
|
||||
diag(1)=1.d0+factyp
|
||||
sup(1)=-factyp
|
||||
f(1)=zint(i,1)+factxp*zint(i+1,1)-(factxp+factxm)*zint(i,1)+factxm*zint(i-1,1)
|
||||
endif
|
||||
*/
|
||||
/*
|
||||
! bottom bc
|
||||
if (cbc(1:1).eq.'1') then
|
||||
diag(1)=1.
|
||||
sup(1)=0.
|
||||
f(1)=zint(i,1)
|
||||
else
|
||||
factxp=(kdint(i+1,1)+kdint(i,j))/2.d0*(dt/2.)/dx**2
|
||||
factxm=(kdint(i-1,1)+kdint(i,1))/2.d0*(dt/2.)/dx**2
|
||||
factyp=(kdint(i,2)+kdint(i,1))/2.d0*(dt/2.)/dy**2
|
||||
diag(1)=1.d0+factyp
|
||||
sup(1)=-factyp
|
||||
f(1)=zint(i,1)+factxp*zint(i+1,1)-(factxp+factxm)*zint(i,1)+factxm*zint(i-1,1)
|
||||
endif
|
||||
*/
|
||||
if true {
|
||||
diag[0] = 1.0;
|
||||
sup[0] = 0.0;
|
||||
@ -297,76 +303,76 @@ pub fn diffusion(nx: usize, ny: usize, xl: f64, yl: f64, dt: f64, _ibc: (),
|
||||
// TODO: Check whether this j was actually supposed to be a 0 in the original
|
||||
// (probably).
|
||||
// factxp = (kdint[aij(i+1, 0)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factxp = (kdint[aij(i+1, 0)] + kdint[aij(i, 0)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factxm = (kdint[aij(i-1, 0)] + kdint[aij(i, 0)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factxp = (kdint[aij(i + 1, 0)] + kdint[aij(i, 0)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factxm = (kdint[aij(i - 1, 0)] + kdint[aij(i, 0)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factyp = (kdint[aij(i, 1)] + kdint[aij(i, 0)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
diag[0] = 1.0 + factyp;
|
||||
sup[0] = -factyp;
|
||||
f[0] =
|
||||
zint[aij(i, 0)] + factxp * zint[aij(i+1, 0)] -
|
||||
(factxp + factxm) *
|
||||
zint[aij(i, 0)] + factxm * zint[aij(i-1, 0)];
|
||||
f[0] = zint[aij(i, 0)] + factxp * zint[aij(i + 1, 0)]
|
||||
- (factxp + factxm) * zint[aij(i, 0)]
|
||||
+ factxm * zint[aij(i - 1, 0)];
|
||||
}
|
||||
/*
|
||||
! top bc
|
||||
if (cbc(3:3).eq.'1') then
|
||||
diag(ny)=1.
|
||||
inf(ny)=0.
|
||||
f(ny)=zint(i,ny)
|
||||
else
|
||||
factxp=(kdint(i+1,ny)+kdint(i,ny))/2.d0*(dt/2.)/dx**2
|
||||
factxm=(kdint(i-1,ny)+kdint(i,ny))/2.d0*(dt/2.)/dx**2
|
||||
factym=(kdint(i,ny-1)+kdint(i,ny))/2.d0*(dt/2.)/dy**2
|
||||
diag(ny)=1.d0+factym
|
||||
inf(ny)=-factym
|
||||
f(ny)=zint(i,ny)+factxp*zint(i+1,ny)-(factxp+factxm)*zint(i,ny)+factxm*zint(i-1,ny)
|
||||
endif
|
||||
*/
|
||||
/*
|
||||
! top bc
|
||||
if (cbc(3:3).eq.'1') then
|
||||
diag(ny)=1.
|
||||
inf(ny)=0.
|
||||
f(ny)=zint(i,ny)
|
||||
else
|
||||
factxp=(kdint(i+1,ny)+kdint(i,ny))/2.d0*(dt/2.)/dx**2
|
||||
factxm=(kdint(i-1,ny)+kdint(i,ny))/2.d0*(dt/2.)/dx**2
|
||||
factym=(kdint(i,ny-1)+kdint(i,ny))/2.d0*(dt/2.)/dy**2
|
||||
diag(ny)=1.d0+factym
|
||||
inf(ny)=-factym
|
||||
f(ny)=zint(i,ny)+factxp*zint(i+1,ny)-(factxp+factxm)*zint(i,ny)+factxm*zint(i-1,ny)
|
||||
endif
|
||||
*/
|
||||
if true {
|
||||
diag[ny - 1] = 1.0;
|
||||
inf[ny - 1] = 0.0;
|
||||
f[ny - 1] = zint[aij(i, ny - 1)];
|
||||
} else {
|
||||
// reflective boundary
|
||||
factxp = (kdint[aij(i+1, ny-1)] + kdint[aij(i, ny-1)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factxm = (kdint[aij(i-1, ny-1)] + kdint[aij(i, ny-1)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factym = (kdint[aij(i, ny-2)] + kdint[aij(i, ny-1)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
factxp =
|
||||
(kdint[aij(i + 1, ny - 1)] + kdint[aij(i, ny - 1)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factxm =
|
||||
(kdint[aij(i - 1, ny - 1)] + kdint[aij(i, ny - 1)]) / 2.0 * (dt / 2.0) / (dx * dx);
|
||||
factym = (kdint[aij(i, ny - 2)] + kdint[aij(i, ny - 1)]) / 2.0 * (dt / 2.0) / (dy * dy);
|
||||
diag[ny - 1] = 1.0 + factym;
|
||||
inf[ny - 1] = -factym;
|
||||
f[ny - 1] =
|
||||
zint[aij(i, ny-1)] + factxp * zint[aij(i+1, ny-1)] -
|
||||
(factxp + factxm) *
|
||||
zint[aij(i, ny-1)] + factxm * zint[aij(i-1, ny-1)];
|
||||
f[ny - 1] = zint[aij(i, ny - 1)] + factxp * zint[aij(i + 1, ny - 1)]
|
||||
- (factxp + factxm) * zint[aij(i, ny - 1)]
|
||||
+ factxm * zint[aij(i - 1, ny - 1)];
|
||||
}
|
||||
/*
|
||||
call tridag (inf,diag,sup,f,res,ny)
|
||||
do j=1,ny
|
||||
zintp(i,j)=res(j)
|
||||
enddo
|
||||
*/
|
||||
/*
|
||||
call tridag (inf,diag,sup,f,res,ny)
|
||||
do j=1,ny
|
||||
zintp(i,j)=res(j)
|
||||
enddo
|
||||
*/
|
||||
tridag(&inf, &diag, &sup, &f, &mut res, ny);
|
||||
for j in 0..ny {
|
||||
zintp[aij(i, j)] = res[j];
|
||||
}
|
||||
/*
|
||||
enddo
|
||||
deallocate (f,diag,sup,inf,res)
|
||||
*/
|
||||
/*
|
||||
enddo
|
||||
deallocate (f,diag,sup,inf,res)
|
||||
*/
|
||||
}
|
||||
/*
|
||||
! stores result in 1D array
|
||||
/*
|
||||
! stores result in 1D array
|
||||
|
||||
do j=1,ny
|
||||
do i=1,nx
|
||||
ij=(j-1)*nx+i
|
||||
etot(ij)=etot(ij)+h(ij)-zintp(i,j)
|
||||
erate(ij)=erate(ij)+(h(ij)-zintp(i,j))/dt
|
||||
h(ij)=zintp(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do j=1,ny
|
||||
do i=1,nx
|
||||
ij=(j-1)*nx+i
|
||||
etot(ij)=etot(ij)+h(ij)-zintp(i,j)
|
||||
erate(ij)=erate(ij)+(h(ij)-zintp(i,j))/dt
|
||||
h(ij)=zintp(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
b=min(h,b)
|
||||
*/
|
||||
b=min(h,b)
|
||||
*/
|
||||
for j in 0..ny {
|
||||
for i in 0..nx {
|
||||
ij = aij(i, j);
|
||||
@ -378,13 +384,13 @@ pub fn diffusion(nx: usize, ny: usize, xl: f64, yl: f64, dt: f64, _ibc: (),
|
||||
b.par_iter_mut().zip(h).for_each(|(mut b, h)| {
|
||||
*b = h.min(*b);
|
||||
});
|
||||
/*
|
||||
deallocate (zint,kdint,zintp)
|
||||
/*
|
||||
deallocate (zint,kdint,zintp)
|
||||
|
||||
return
|
||||
return
|
||||
|
||||
end subroutine Diffusion
|
||||
*/
|
||||
end subroutine Diffusion
|
||||
*/
|
||||
}
|
||||
|
||||
/*
|
||||
@ -400,39 +406,39 @@ end subroutine Diffusion
|
||||
double precision a(n),b(n),c(n),r(n),u(n)
|
||||
*/
|
||||
pub fn tridag(a: &[f64], b: &[f64], c: &[f64], r: &[f64], u: &mut [f64], n: usize) {
|
||||
/*
|
||||
INTEGER j
|
||||
double precision bet
|
||||
double precision,dimension(:),allocatable::gam
|
||||
/*
|
||||
INTEGER j
|
||||
double precision bet
|
||||
double precision,dimension(:),allocatable::gam
|
||||
|
||||
allocate (gam(n))
|
||||
allocate (gam(n))
|
||||
|
||||
if(b(1).eq.0.d0) stop 'in tridag'
|
||||
*/
|
||||
let mut j : usize;
|
||||
let mut bet : f64;
|
||||
let mut precision : f64;
|
||||
if(b(1).eq.0.d0) stop 'in tridag'
|
||||
*/
|
||||
let mut j: usize;
|
||||
let mut bet: f64;
|
||||
let mut precision: f64;
|
||||
let mut gam: Vec<f64>;
|
||||
|
||||
gam = vec![Default::default(); n];
|
||||
|
||||
assert!(b[0] != 0.0);
|
||||
/*
|
||||
/*
|
||||
|
||||
! first pass
|
||||
! first pass
|
||||
|
||||
bet=b(1)
|
||||
u(1)=r(1)/bet
|
||||
do 11 j=2,n
|
||||
gam(j)=c(j-1)/bet
|
||||
bet=b(j)-a(j)*gam(j)
|
||||
if(bet.eq.0.) then
|
||||
print*,'tridag failed'
|
||||
stop
|
||||
endif
|
||||
u(j)=(r(j)-a(j)*u(j-1))/bet
|
||||
11 continue
|
||||
*/
|
||||
bet=b(1)
|
||||
u(1)=r(1)/bet
|
||||
do 11 j=2,n
|
||||
gam(j)=c(j-1)/bet
|
||||
bet=b(j)-a(j)*gam(j)
|
||||
if(bet.eq.0.) then
|
||||
print*,'tridag failed'
|
||||
stop
|
||||
endif
|
||||
u(j)=(r(j)-a(j)*u(j-1))/bet
|
||||
11 continue
|
||||
*/
|
||||
bet = b[0];
|
||||
u[0] = r[0] / bet;
|
||||
for j in 1..n {
|
||||
@ -448,21 +454,21 @@ do 11 j=2,n
|
||||
// = r'[j] / b'[j]
|
||||
u[j] = (r[j] - a[j] * u[j - 1]) / bet;
|
||||
}
|
||||
/*
|
||||
! second pass
|
||||
/*
|
||||
! second pass
|
||||
|
||||
do 12 j=n-1,1,-1
|
||||
u(j)=u(j)-gam(j+1)*u(j+1)
|
||||
12 continue
|
||||
*/
|
||||
do 12 j=n-1,1,-1
|
||||
u(j)=u(j)-gam(j+1)*u(j+1)
|
||||
12 continue
|
||||
*/
|
||||
for j in (0..n - 1).rev() {
|
||||
u[j] = u[j] - gam[j + 1] * u[j + 1];
|
||||
}
|
||||
/*
|
||||
deallocate (gam)
|
||||
/*
|
||||
deallocate (gam)
|
||||
|
||||
return
|
||||
return
|
||||
|
||||
END
|
||||
*/
|
||||
END
|
||||
*/
|
||||
}
|
||||
|
@ -12,9 +12,9 @@ pub use self::erosion::{
|
||||
pub use self::location::Location;
|
||||
pub use self::settlement::Settlement;
|
||||
pub use self::util::{
|
||||
cdf_irwin_hall, downhill, get_oceans, HybridMulti as HybridMulti_, local_cells, map_edge_factor, neighbors,
|
||||
NEIGHBOR_DELTA, ScaleBias,
|
||||
uniform_idx_as_vec2, uniform_noise, uphill, vec2_as_uniform_idx, InverseCdf,
|
||||
cdf_irwin_hall, downhill, get_oceans, local_cells, map_edge_factor, neighbors,
|
||||
uniform_idx_as_vec2, uniform_noise, uphill, vec2_as_uniform_idx, HybridMulti as HybridMulti_,
|
||||
InverseCdf, ScaleBias, NEIGHBOR_DELTA,
|
||||
};
|
||||
|
||||
use crate::{
|
||||
@ -29,8 +29,8 @@ use common::{
|
||||
vol::RectVolSize,
|
||||
};
|
||||
use noise::{
|
||||
BasicMulti, Billow, Fbm, HybridMulti, MultiFractal, NoiseFn, RangeFunction,
|
||||
RidgedMulti, Seedable, SuperSimplex, Worley,
|
||||
BasicMulti, Billow, Fbm, HybridMulti, MultiFractal, NoiseFn, RangeFunction, RidgedMulti,
|
||||
Seedable, SuperSimplex, Worley,
|
||||
};
|
||||
use num::{Float, Signed};
|
||||
use rand::{Rng, SeedableRng};
|
||||
@ -39,9 +39,9 @@ use rayon::prelude::*;
|
||||
use serde_derive::{Deserialize, Serialize};
|
||||
use std::{
|
||||
collections::HashMap,
|
||||
io::{BufReader, BufWriter},
|
||||
f32, f64,
|
||||
fs::File,
|
||||
io::{BufReader, BufWriter},
|
||||
ops::{Add, Div, Mul, Neg, Sub},
|
||||
path::PathBuf,
|
||||
sync::Arc,
|
||||
@ -54,10 +54,7 @@ use vek::*;
|
||||
// cleanly representable in f32 (that stops around 1024 * 4 * 1024 * 4, for signed floats anyway)
|
||||
// but I think that is probably less important since I don't think we actually cast a chunk id to
|
||||
// float, just coordinates... could be wrong though!
|
||||
pub const WORLD_SIZE: Vec2<usize> = Vec2 {
|
||||
x: 1024,
|
||||
y: 1024,
|
||||
};
|
||||
pub const WORLD_SIZE: Vec2<usize> = Vec2 { x: 1024, y: 1024 };
|
||||
|
||||
/// A structure that holds cached noise values and cumulative distribution functions for the input
|
||||
/// that led to those values. See the definition of InverseCdf for a description of how to
|
||||
@ -107,7 +104,7 @@ pub(crate) struct GenCtx {
|
||||
pub town_gen: StructureGen2d,
|
||||
|
||||
pub river_seed: RandomField,
|
||||
pub rock_strength_nz: /*HybridMulti_*/Fbm,
|
||||
pub rock_strength_nz: Fbm,
|
||||
pub uplift_nz: Worley,
|
||||
}
|
||||
|
||||
@ -146,7 +143,7 @@ impl Default for WorldOpts {
|
||||
/// A way to store certain components between runs of map generation. Only intended for
|
||||
/// development purposes--no attempt is made to detect map invalidation or make sure that the map
|
||||
/// is synchronized with updates to noise-rs, changes to other parameters, etc.
|
||||
#[derive(Serialize,Deserialize)]
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub struct WorldFile {
|
||||
/// Saved altitude height map.
|
||||
pub alt: Box<[Alt]>,
|
||||
@ -166,7 +163,9 @@ pub struct WorldSim {
|
||||
impl WorldSim {
|
||||
pub fn generate(seed: u32, opts: WorldOpts) -> Self {
|
||||
let mut rng = ChaChaRng::from_seed(seed_expan::rng_state(seed));
|
||||
let continent_scale = 5_000.0f64/*32768.0*/.div(32.0).mul(TerrainChunkSize::RECT_SIZE.x as f64);
|
||||
let continent_scale = 5_000.0f64 /*32768.0*/
|
||||
.div(32.0)
|
||||
.mul(TerrainChunkSize::RECT_SIZE.x as f64);
|
||||
let rock_lacunarity = /*0.5*/2.0/*HybridMulti::DEFAULT_LACUNARITY*/;
|
||||
let uplift_scale = /*512.0*//*256.0*/128.0;
|
||||
let uplift_turb_scale = uplift_scale / 4.0/*32.0*//*64.0*/;
|
||||
@ -290,9 +289,9 @@ impl WorldSim {
|
||||
let erosion_pow_low = /*0.25*//*1.5*//*2.0*//*0.5*//*4.0*//*0.25*//*1.0*//*2.0*//*1.5*//*1.5*//*0.35*//*0.43*//*0.5*//*0.45*//*0.37*/1.002;
|
||||
let erosion_pow_high = /*1.5*//*1.0*//*0.55*//*0.51*//*2.0*/1.002;
|
||||
let erosion_center = /*0.45*//*0.75*//*0.75*//*0.5*//*0.75*/0.5;
|
||||
let n_steps = /*200*//*10_000*//*1000*//*50*//*100*/100;//100; // /*100*//*50*//*100*//*100*//*50*//*25*/25/*100*//*37*/;//150;//37/*100*/;//50;//50;//37;//50;//37; // /*37*//*29*//*40*//*150*/37; //150;//200;
|
||||
let n_small_steps = 0;//25;//8;//50;//50;//8;//8;//8;//8;//8; // 8
|
||||
let n_post_load_steps = 0;//25;//8
|
||||
let n_steps = /*200*//*10_000*//*1000*//*50*//*100*/100; //100; // /*100*//*50*//*100*//*100*//*50*//*25*/25/*100*//*37*/;//150;//37/*100*/;//50;//50;//37;//50;//37; // /*37*//*29*//*40*//*150*/37; //150;//200;
|
||||
let n_small_steps = 0; //25;//8;//50;//50;//8;//8;//8;//8;//8; // 8
|
||||
let n_post_load_steps = 0; //25;//8
|
||||
|
||||
// Logistic regression. Make sure x ∈ (0, 1).
|
||||
let logit = |x: f64| x.ln() - (-x).ln_1p();
|
||||
@ -304,7 +303,8 @@ impl WorldSim {
|
||||
|
||||
let exp_inverse_cdf = |x: f64/*, pow: f64*/| -(-x).ln_1p()/* / ln(pow)*/;
|
||||
// 2 / pi * ln(tan(pi/2 * p))
|
||||
let hypsec_inverse_cdf = |x: f64| f64::consts::FRAC_2_PI * ((x * f64::consts::FRAC_PI_2).tan().ln());
|
||||
let hypsec_inverse_cdf =
|
||||
|x: f64| f64::consts::FRAC_2_PI * ((x * f64::consts::FRAC_PI_2).tan().ln());
|
||||
|
||||
let min_epsilon =
|
||||
1.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64).max(f64::EPSILON as f64 * 0.5);
|
||||
@ -364,10 +364,9 @@ impl WorldSim {
|
||||
.alt_nz
|
||||
.get((wposf.div(10_000.0)).into_array())
|
||||
.min(1.0)
|
||||
.max(-1.0)
|
||||
/* .mul(0.25)
|
||||
.add(0.125) */)
|
||||
// .add(0.5)
|
||||
.max(-1.0)/* .mul(0.25)
|
||||
.add(0.125) */)
|
||||
// .add(0.5)
|
||||
.sub(0.05)
|
||||
// .add(0.05)
|
||||
// .add(0.075)
|
||||
@ -525,102 +524,110 @@ impl WorldSim {
|
||||
});
|
||||
|
||||
// Calculate oceans.
|
||||
let old_height = |posi: usize| alt_old[posi].1 * CONFIG.mountain_scale * height_scale as f32;
|
||||
let old_height =
|
||||
|posi: usize| alt_old[posi].1 * CONFIG.mountain_scale * height_scale as f32;
|
||||
/* let is_ocean = (0..WORLD_SIZE.x * WORLD_SIZE.y)
|
||||
.into_par_iter()
|
||||
.map(|i| map_edge_factor(i) == 0.0)
|
||||
.collect::<Vec<_>>(); */
|
||||
.into_par_iter()
|
||||
.map(|i| map_edge_factor(i) == 0.0)
|
||||
.collect::<Vec<_>>(); */
|
||||
let is_ocean = get_oceans(old_height);
|
||||
let is_ocean_fn = |posi: usize| is_ocean[posi];
|
||||
let turb_wposf_div = 8.0/*64.0*/;
|
||||
|
||||
let uplift_nz_dist = gen_ctx.uplift_nz
|
||||
.clone()
|
||||
.enable_range(true);
|
||||
let uplift_nz_dist = gen_ctx.uplift_nz.clone().enable_range(true);
|
||||
// Recalculate altitudes without oceans.
|
||||
// NaNs in these uniform vectors wherever is_ocean_fn returns true.
|
||||
let (alt_old_no_ocean, alt_old_inverse) =
|
||||
uniform_noise(|posi, _| {
|
||||
if is_ocean_fn(posi) {
|
||||
None
|
||||
} else {
|
||||
Some(old_height(posi) /*.abs()*/)
|
||||
}
|
||||
});
|
||||
let (uplift_uniform, _) =
|
||||
uniform_noise(|posi, wposf| {
|
||||
if is_ocean_fn(posi) {
|
||||
None
|
||||
} else {
|
||||
let turb_wposf =
|
||||
wposf.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(turb_wposf_div);
|
||||
let turb = Vec2::new(
|
||||
gen_ctx.turb_x_nz.get(turb_wposf.into_array()),
|
||||
gen_ctx.turb_y_nz.get(turb_wposf.into_array()),
|
||||
) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
// let turb = Vec2::zero();
|
||||
let turb_wposf = wposf + turb;
|
||||
let turb_wposi = turb_wposf
|
||||
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
|
||||
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
|
||||
let turb_posi = vec2_as_uniform_idx(turb_wposi);
|
||||
let udist = uplift_nz_dist.get(turb_wposf.into_array())
|
||||
.min(1.0)
|
||||
.max(-1.0)
|
||||
.mul(0.5)
|
||||
.add(0.5);
|
||||
let uheight = gen_ctx.uplift_nz.get(turb_wposf.into_array())
|
||||
/* .min(0.5)
|
||||
.max(-0.5)*/
|
||||
.min(1.0)
|
||||
.max(-1.0)
|
||||
.mul(0.5)
|
||||
.add(0.5);
|
||||
let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array())
|
||||
let (alt_old_no_ocean, alt_old_inverse) = uniform_noise(|posi, _| {
|
||||
if is_ocean_fn(posi) {
|
||||
None
|
||||
} else {
|
||||
Some(old_height(posi) /*.abs()*/)
|
||||
}
|
||||
});
|
||||
let (uplift_uniform, _) = uniform_noise(|posi, wposf| {
|
||||
if is_ocean_fn(posi) {
|
||||
None
|
||||
} else {
|
||||
let turb_wposf = wposf
|
||||
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
|
||||
.div(turb_wposf_div);
|
||||
let turb = Vec2::new(
|
||||
gen_ctx.turb_x_nz.get(turb_wposf.into_array()),
|
||||
gen_ctx.turb_y_nz.get(turb_wposf.into_array()),
|
||||
) * uplift_turb_scale
|
||||
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
// let turb = Vec2::zero();
|
||||
let turb_wposf = wposf + turb;
|
||||
let turb_wposi = turb_wposf
|
||||
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
|
||||
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
|
||||
let turb_posi = vec2_as_uniform_idx(turb_wposi);
|
||||
let udist = uplift_nz_dist
|
||||
.get(turb_wposf.into_array())
|
||||
.min(1.0)
|
||||
.max(-1.0)
|
||||
.mul(0.5)
|
||||
.add(0.5);
|
||||
let uheight = gen_ctx
|
||||
.uplift_nz
|
||||
.get(turb_wposf.into_array())
|
||||
/* .min(0.5)
|
||||
.max(-0.5)*/
|
||||
.min(1.0)
|
||||
.max(-1.0)
|
||||
.mul(0.5)
|
||||
.add(0.5);
|
||||
let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array())
|
||||
.min(1.0)
|
||||
.max(-1.0)
|
||||
.mul(0.5)
|
||||
.add(0.5); */
|
||||
chaos[posi].1;
|
||||
|
||||
let uchaos_1 = (uchaos as f64) / 1.32;
|
||||
let uchaos_1 = (uchaos as f64) / 1.32;
|
||||
|
||||
let oheight = /*alt_old*//*alt_base*/alt_old_no_ocean[/*(turb_posi / 64) * 64*/posi].0 as f64 - 0.5;
|
||||
assert!(udist >= 0.0);
|
||||
assert!(udist <= 1.0);
|
||||
let uheight_1 = uheight;//.powf(2.0);
|
||||
let udist_1 = (0.5 - udist).mul(2.0).max(0.0);
|
||||
let udist_2 = udist.mul(2.0).min(1.0);
|
||||
let udist_3 = (1.0 - udist).max(0.0);
|
||||
let udist_4 = udist.min(1.0);
|
||||
let variation = 1.0.min(64.0 * 64.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64 * (TerrainChunkSize::RECT_SIZE.x as f64 * TerrainChunkSize::RECT_SIZE.y as f64 / 128.0 / 128.0)));
|
||||
let variation_1 = (uheight * /*udist_2*/udist_4).min(variation);
|
||||
let height =
|
||||
(oheight + 0.5).powf(2.0);
|
||||
// 1.0 - variation + variation * uchaos_1;
|
||||
// uheight * /*udist_2*/udist_4 - variation_1 + variation_1 * uchaos_1;
|
||||
// uheight * (0.5 + 0.5 * ((uchaos as f64) / 1.32)) - 0.125;
|
||||
// 0.2;
|
||||
// 1.0;
|
||||
// uheight_1;
|
||||
// uheight_1 * (0.8 + 0.2 * oheight.signum() * oheight.abs().powf(0.25));
|
||||
// uheight_1 * (/*udist_2*/udist.powf(2.0) * (f64::consts::PI * 2.0 * (1.0 / (1.0 - udist).max(f64::EPSILON)).min(2.5)/*udist * 5.0*/ * 2.0).cos().mul(0.5).add(0.5));
|
||||
// uheight * udist_ * (udist_ * 4.0 * 2 * f64::consts::PI).sin()
|
||||
// uheight;
|
||||
// (0.8 * uheight + oheight.powf(2.0) * 0.2).max(0.0).min(1.0);
|
||||
// ((0.8 - 0.2) * uheight + 0.2 + oheight.signum() * oheight.abs().powf(/*0.5*/2.0) * udist_2.powf(2.0)).max(0.0).min(1.0);
|
||||
// ((0.8 - 0.2) * uheight + 0.2 + oheight.signum() * oheight.abs().powf(/*0.5*/2.0) * 0.2).max(0.0).min(1.0);
|
||||
// (0.8 * uheight * udist_1 + 0.8 * udist_2 + oheight.powf(2.0) * 0.2).max(0.0).min(1.0);
|
||||
/* uheight * 0.8 * udist_1.powf(2.0) +
|
||||
/*exp_inverse_cdf*/(oheight/*.max(0.0).min(max_epsilon).abs()*/).powf(2.0) * 0.2 * udist_2.powf(2.0); */
|
||||
// (uheight + oheight.powf(2.0) * 0.05).max(0.0).min(1.0);
|
||||
// (uheight + oheight.powf(2.0) * 0.2).max(0.0).min(1.0);
|
||||
// * (1.0 - udist);// uheight * (1.0 - udist)/*oheight*//* * udist*/ + oheight * udist;/*uheight * (1.0 - udist);*/
|
||||
// let height = uheight * (0.5 - udist) * 0.8 + (oheight.signum() * oheight.max(0.0).abs().powf(2.0)) * 0.2;// * (1.0 - udist);// uheight * (1.0 - udist)/*oheight*//* * udist*/ + oheight * udist;/*uheight * (1.0 - udist);*/
|
||||
|
||||
Some(height)
|
||||
}
|
||||
});
|
||||
let oheight = /*alt_old*//*alt_base*/alt_old_no_ocean[/*(turb_posi / 64) * 64*/posi].0 as f64 - 0.5;
|
||||
assert!(udist >= 0.0);
|
||||
assert!(udist <= 1.0);
|
||||
let uheight_1 = uheight; //.powf(2.0);
|
||||
let udist_1 = (0.5 - udist).mul(2.0).max(0.0);
|
||||
let udist_2 = udist.mul(2.0).min(1.0);
|
||||
let udist_3 = (1.0 - udist).max(0.0);
|
||||
let udist_4 = udist.min(1.0);
|
||||
let variation = 1.0.min(
|
||||
64.0 * 64.0
|
||||
/ (WORLD_SIZE.x as f64
|
||||
* WORLD_SIZE.y as f64
|
||||
* (TerrainChunkSize::RECT_SIZE.x as f64
|
||||
* TerrainChunkSize::RECT_SIZE.y as f64
|
||||
/ 128.0
|
||||
/ 128.0)),
|
||||
);
|
||||
let variation_1 = (uheight * /*udist_2*/udist_4).min(variation);
|
||||
let height = (oheight + 0.5).powf(2.0);
|
||||
// 1.0 - variation + variation * uchaos_1;
|
||||
// uheight * /*udist_2*/udist_4 - variation_1 + variation_1 * uchaos_1;
|
||||
// uheight * (0.5 + 0.5 * ((uchaos as f64) / 1.32)) - 0.125;
|
||||
// 0.2;
|
||||
// 1.0;
|
||||
// uheight_1;
|
||||
// uheight_1 * (0.8 + 0.2 * oheight.signum() * oheight.abs().powf(0.25));
|
||||
// uheight_1 * (/*udist_2*/udist.powf(2.0) * (f64::consts::PI * 2.0 * (1.0 / (1.0 - udist).max(f64::EPSILON)).min(2.5)/*udist * 5.0*/ * 2.0).cos().mul(0.5).add(0.5));
|
||||
// uheight * udist_ * (udist_ * 4.0 * 2 * f64::consts::PI).sin()
|
||||
// uheight;
|
||||
// (0.8 * uheight + oheight.powf(2.0) * 0.2).max(0.0).min(1.0);
|
||||
// ((0.8 - 0.2) * uheight + 0.2 + oheight.signum() * oheight.abs().powf(/*0.5*/2.0) * udist_2.powf(2.0)).max(0.0).min(1.0);
|
||||
// ((0.8 - 0.2) * uheight + 0.2 + oheight.signum() * oheight.abs().powf(/*0.5*/2.0) * 0.2).max(0.0).min(1.0);
|
||||
// (0.8 * uheight * udist_1 + 0.8 * udist_2 + oheight.powf(2.0) * 0.2).max(0.0).min(1.0);
|
||||
/* uheight * 0.8 * udist_1.powf(2.0) +
|
||||
/*exp_inverse_cdf*/(oheight/*.max(0.0).min(max_epsilon).abs()*/).powf(2.0) * 0.2 * udist_2.powf(2.0); */
|
||||
// (uheight + oheight.powf(2.0) * 0.05).max(0.0).min(1.0);
|
||||
// (uheight + oheight.powf(2.0) * 0.2).max(0.0).min(1.0);
|
||||
// * (1.0 - udist);// uheight * (1.0 - udist)/*oheight*//* * udist*/ + oheight * udist;/*uheight * (1.0 - udist);*/
|
||||
// let height = uheight * (0.5 - udist) * 0.8 + (oheight.signum() * oheight.max(0.0).abs().powf(2.0)) * 0.2;// * (1.0 - udist);// uheight * (1.0 - udist)/*oheight*//* * udist*/ + oheight * udist;/*uheight * (1.0 - udist);*/
|
||||
Some(height)
|
||||
}
|
||||
});
|
||||
|
||||
let old_height_uniform = |posi: usize| alt_old_no_ocean[posi].0;
|
||||
let alt_old_min_uniform = 0.0;
|
||||
@ -684,22 +691,25 @@ impl WorldSim {
|
||||
if is_ocean_fn(posi) {
|
||||
return 1.0;
|
||||
}
|
||||
let wposf = (uniform_idx_as_vec2(posi)
|
||||
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
||||
.map(|e| e as f64);
|
||||
let turb_wposf =
|
||||
wposf.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(turb_wposf_div);
|
||||
let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
||||
.map(|e| e as f64);
|
||||
let turb_wposf = wposf
|
||||
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
|
||||
.div(turb_wposf_div);
|
||||
let turb = Vec2::new(
|
||||
gen_ctx.turb_x_nz.get(turb_wposf.into_array()),
|
||||
gen_ctx.turb_y_nz.get(turb_wposf.into_array()),
|
||||
) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
) * uplift_turb_scale
|
||||
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
// let turb = Vec2::zero();
|
||||
let turb_wposf = wposf + turb;
|
||||
let turb_wposi = turb_wposf
|
||||
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
|
||||
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
|
||||
let turb_posi = vec2_as_uniform_idx(turb_wposi);
|
||||
let uheight = gen_ctx.uplift_nz.get(turb_wposf.into_array())
|
||||
let uheight = gen_ctx
|
||||
.uplift_nz
|
||||
.get(turb_wposf.into_array())
|
||||
/* .min(0.5)
|
||||
.max(-0.5)*/
|
||||
.min(1.0)
|
||||
@ -716,9 +726,7 @@ impl WorldSim {
|
||||
// ((3.5 - 1.5) * (1.0 - uheight) + 1.5) as f32
|
||||
1.0
|
||||
};
|
||||
let theta_func = |posi| {
|
||||
0.4
|
||||
};
|
||||
let theta_func = |posi| 0.4;
|
||||
let kf_func = {
|
||||
|posi| {
|
||||
if is_ocean_fn(posi) {
|
||||
@ -731,19 +739,23 @@ impl WorldSim {
|
||||
let wposf = (uniform_idx_as_vec2(posi)
|
||||
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
||||
.map(|e| e as f64);
|
||||
let turb_wposf =
|
||||
wposf.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(turb_wposf_div);
|
||||
let turb_wposf = wposf
|
||||
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
|
||||
.div(turb_wposf_div);
|
||||
let turb = Vec2::new(
|
||||
gen_ctx.turb_x_nz.get(turb_wposf.into_array()),
|
||||
gen_ctx.turb_y_nz.get(turb_wposf.into_array()),
|
||||
) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
) * uplift_turb_scale
|
||||
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
// let turb = Vec2::zero();
|
||||
let turb_wposf = wposf + turb;
|
||||
let turb_wposi = turb_wposf
|
||||
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
|
||||
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
|
||||
let turb_posi = vec2_as_uniform_idx(turb_wposi);
|
||||
let uheight = gen_ctx.uplift_nz.get(turb_wposf.into_array())
|
||||
let uheight = gen_ctx
|
||||
.uplift_nz
|
||||
.get(turb_wposf.into_array())
|
||||
/* .min(0.5)
|
||||
.max(-0.5)*/
|
||||
.min(1.0)
|
||||
@ -784,7 +796,7 @@ impl WorldSim {
|
||||
// ((1.0 - uheight) * (0.5 - 0.5 * /*((1.32 - uchaos as f64) / 1.32)*/oheight_2) * (1.5e-4 - 2.0e-6) + 2.0e-6)
|
||||
// ((1.0 - uheight) * (0.5 - 0.5 * /*((1.32 - uchaos as f64) / 1.32)*/oheight) * (1.5e-4 - 2.0e-6) + 2.0e-6)
|
||||
// 2e-5
|
||||
2.5e-6 * 16.0.powf(0.4)/* / 4.0 * 0.25 *//* * 4.0*/
|
||||
2.5e-6 * 16.0.powf(0.4) /* / 4.0 * 0.25 *//* * 4.0*/
|
||||
// 2.9e-10
|
||||
// ((1.0 - uheight) * (5e-5 - 2.9e-10) + 2.9e-10)
|
||||
// ((1.0 - uheight) * (5e-5 - 2.9e-14) + 2.9e-14)
|
||||
@ -798,19 +810,23 @@ impl WorldSim {
|
||||
let wposf = (uniform_idx_as_vec2(posi)
|
||||
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
||||
.map(|e| e as f64);
|
||||
let turb_wposf =
|
||||
wposf.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(turb_wposf_div);
|
||||
let turb_wposf = wposf
|
||||
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
|
||||
.div(turb_wposf_div);
|
||||
let turb = Vec2::new(
|
||||
gen_ctx.turb_x_nz.get(turb_wposf.into_array()),
|
||||
gen_ctx.turb_y_nz.get(turb_wposf.into_array()),
|
||||
) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
) * uplift_turb_scale
|
||||
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
// let turb = Vec2::zero();
|
||||
let turb_wposf = wposf + turb;
|
||||
let turb_wposi = turb_wposf
|
||||
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
|
||||
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
|
||||
let turb_posi = vec2_as_uniform_idx(turb_wposi);
|
||||
let uheight = gen_ctx.uplift_nz.get(turb_wposf.into_array())
|
||||
let uheight = gen_ctx
|
||||
.uplift_nz
|
||||
.get(turb_wposf.into_array())
|
||||
/* .min(0.5)
|
||||
.max(-0.5)*/
|
||||
.min(1.0)
|
||||
@ -821,209 +837,215 @@ impl WorldSim {
|
||||
// kd = 1.5e-2: normal-high (plateau [fan sediment])
|
||||
// kd = 1e-2: normal (plateau)
|
||||
1.0e-2 * (1.0 / 16.0) // m_old^2 / y * (1 m_new / 4 m_old)^2
|
||||
// (uheight * (1.0e-1 - 1.0e-2) + 1.0e-2)
|
||||
// (uheight * (1.0e-1 - 1.0e-2) + 1.0e-2)
|
||||
}
|
||||
};
|
||||
let g_func =
|
||||
|posi| {
|
||||
if /*is_ocean_fn(posi)*/map_edge_factor(posi) == 0.0 {
|
||||
return 0.0;
|
||||
// return 5.0;
|
||||
}
|
||||
let wposf = (uniform_idx_as_vec2(posi)
|
||||
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
||||
let g_func = |posi| {
|
||||
if
|
||||
/*is_ocean_fn(posi)*/
|
||||
map_edge_factor(posi) == 0.0 {
|
||||
return 0.0;
|
||||
// return 5.0;
|
||||
}
|
||||
let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
||||
.map(|e| e as f64);
|
||||
let turb_wposf =
|
||||
wposf.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(turb_wposf_div);
|
||||
let turb = Vec2::new(
|
||||
gen_ctx.turb_x_nz.get(turb_wposf.into_array()),
|
||||
gen_ctx.turb_y_nz.get(turb_wposf.into_array()),
|
||||
) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
// let turb = Vec2::zero();
|
||||
let turb_wposf = wposf + turb;
|
||||
let turb_wposi = turb_wposf
|
||||
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
|
||||
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
|
||||
let turb_posi = vec2_as_uniform_idx(turb_wposi);
|
||||
let uheight = gen_ctx.uplift_nz.get(turb_wposf.into_array())
|
||||
/* .min(0.5)
|
||||
.max(-0.5)*/
|
||||
.min(1.0)
|
||||
.max(-1.0)
|
||||
.mul(0.5)
|
||||
.add(0.5);
|
||||
let turb_wposf = wposf
|
||||
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
|
||||
.div(turb_wposf_div);
|
||||
let turb = Vec2::new(
|
||||
gen_ctx.turb_x_nz.get(turb_wposf.into_array()),
|
||||
gen_ctx.turb_y_nz.get(turb_wposf.into_array()),
|
||||
) * uplift_turb_scale
|
||||
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
// let turb = Vec2::zero();
|
||||
let turb_wposf = wposf + turb;
|
||||
let turb_wposi = turb_wposf
|
||||
.map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64)
|
||||
.map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0));
|
||||
let turb_posi = vec2_as_uniform_idx(turb_wposi);
|
||||
let uheight = gen_ctx
|
||||
.uplift_nz
|
||||
.get(turb_wposf.into_array())
|
||||
/* .min(0.5)
|
||||
.max(-0.5)*/
|
||||
.min(1.0)
|
||||
.max(-1.0)
|
||||
.mul(0.5)
|
||||
.add(0.5);
|
||||
|
||||
let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array())
|
||||
let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array())
|
||||
.min(1.0)
|
||||
.max(-1.0)
|
||||
.mul(0.5)
|
||||
.add(0.5); */
|
||||
chaos[posi].1;
|
||||
|
||||
assert!(uchaos <= 1.32);
|
||||
assert!(uchaos <= 1.32);
|
||||
|
||||
// G = d* v_s / p_0, where
|
||||
// v_s is the settling velocity of sediment grains
|
||||
// p_0 is the mean precipitation rate
|
||||
// d* is the sediment concentration ratio (between concentration near riverbed
|
||||
// interface, and average concentration over the water column).
|
||||
// d* varies with Rouse number which defines relative contribution of bed, suspended,
|
||||
// and washed loads.
|
||||
//
|
||||
// G is typically on the order of 1 or greater. However, we are only guaranteed to
|
||||
// converge for G ≤ 1, so we keep it in the chaos range of [0.12, 1.32].
|
||||
// (((1.32 - uchaos) / 1.32).powf(0.75) * 1.32).min(/*1.1*/1.0)
|
||||
// ((1.32 - 0.12) * (1.0 - uheight) + 0.12) as f32
|
||||
// 1.1 * (1.0 - uheight) as f32
|
||||
// 1.0 * (1.0 - uheight) as f32
|
||||
// 1.0
|
||||
// 5.0
|
||||
// 10.0
|
||||
// 2.0
|
||||
// 0.0
|
||||
1.0
|
||||
// 1.5
|
||||
};
|
||||
let uplift_fn =
|
||||
|posi| {
|
||||
if is_ocean_fn(posi) {
|
||||
/* return 1e-2
|
||||
.mul(max_erosion_per_delta_t) as f32; */
|
||||
return 0.0;
|
||||
}
|
||||
let wposf = (uniform_idx_as_vec2(posi)
|
||||
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
||||
// G = d* v_s / p_0, where
|
||||
// v_s is the settling velocity of sediment grains
|
||||
// p_0 is the mean precipitation rate
|
||||
// d* is the sediment concentration ratio (between concentration near riverbed
|
||||
// interface, and average concentration over the water column).
|
||||
// d* varies with Rouse number which defines relative contribution of bed, suspended,
|
||||
// and washed loads.
|
||||
//
|
||||
// G is typically on the order of 1 or greater. However, we are only guaranteed to
|
||||
// converge for G ≤ 1, so we keep it in the chaos range of [0.12, 1.32].
|
||||
// (((1.32 - uchaos) / 1.32).powf(0.75) * 1.32).min(/*1.1*/1.0)
|
||||
// ((1.32 - 0.12) * (1.0 - uheight) + 0.12) as f32
|
||||
// 1.1 * (1.0 - uheight) as f32
|
||||
// 1.0 * (1.0 - uheight) as f32
|
||||
// 1.0
|
||||
// 5.0
|
||||
// 10.0
|
||||
// 2.0
|
||||
// 0.0
|
||||
1.0
|
||||
// 1.5
|
||||
};
|
||||
let uplift_fn = |posi| {
|
||||
if is_ocean_fn(posi) {
|
||||
/* return 1e-2
|
||||
.mul(max_erosion_per_delta_t) as f32; */
|
||||
return 0.0;
|
||||
}
|
||||
let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
||||
.map(|e| e as f64);
|
||||
let alt_main = {
|
||||
// Extension upwards from the base. A positive number from 0 to 1 curved to be
|
||||
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
|
||||
let alt_main = (gen_ctx
|
||||
.alt_nz
|
||||
.get((wposf.div(2_000.0)).into_array())
|
||||
let alt_main = {
|
||||
// Extension upwards from the base. A positive number from 0 to 1 curved to be
|
||||
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
|
||||
let alt_main = (gen_ctx
|
||||
.alt_nz
|
||||
.get((wposf.div(2_000.0)).into_array())
|
||||
.min(1.0)
|
||||
.max(-1.0))
|
||||
.abs()
|
||||
.powf(1.35);
|
||||
|
||||
fn spring(x: f64, pow: f64) -> f64 {
|
||||
x.abs().powf(pow) * x.signum()
|
||||
}
|
||||
|
||||
(0.0 + alt_main
|
||||
+ (gen_ctx
|
||||
.small_nz
|
||||
.get((wposf.div(300.0)).into_array())
|
||||
.min(1.0)
|
||||
.max(-1.0))
|
||||
.abs()
|
||||
.powf(1.35);
|
||||
|
||||
fn spring(x: f64, pow: f64) -> f64 {
|
||||
x.abs().powf(pow) * x.signum()
|
||||
}
|
||||
|
||||
(0.0 + alt_main
|
||||
+ (gen_ctx
|
||||
.small_nz
|
||||
.get((wposf.div(300.0)).into_array())
|
||||
.min(1.0)
|
||||
.max(-1.0))
|
||||
.mul(alt_main.powf(0.8).max(/*0.25*/ 0.15))
|
||||
.mul(0.3)
|
||||
.add(1.0)
|
||||
.mul(0.4)
|
||||
/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0)
|
||||
.mul(0.045)*/)
|
||||
};
|
||||
let height =
|
||||
.mul(alt_main.powf(0.8).max(/*0.25*/ 0.15))
|
||||
.mul(0.3)
|
||||
.add(1.0)
|
||||
.mul(0.4)/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0)
|
||||
.mul(0.045)*/)
|
||||
};
|
||||
let height =
|
||||
((/*old_height_uniform*/uplift_uniform[posi]./*0*/1 - alt_old_min_uniform) as f64
|
||||
/ (alt_old_max_uniform - alt_old_min_uniform) as f64)
|
||||
/*((old_height(posi) - alt_old_min) as f64
|
||||
/ (alt_old_max - alt_old_min) as f64)*/
|
||||
;
|
||||
|
||||
let height = height.mul(max_epsilon - min_epsilon).add(min_epsilon);
|
||||
/*.max(1e-7 / CONFIG.mountain_scale as f64)
|
||||
.min(1.0f64 - 1e-7);*/
|
||||
/* let alt_main = {
|
||||
// Extension upwards from the base. A positive number from 0 to 1 curved to be
|
||||
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
|
||||
let alt_main = (gen_ctx
|
||||
.alt_nz
|
||||
.get((wposf.div(2_000.0)).into_array())
|
||||
let height = height.mul(max_epsilon - min_epsilon).add(min_epsilon);
|
||||
/*.max(1e-7 / CONFIG.mountain_scale as f64)
|
||||
.min(1.0f64 - 1e-7);*/
|
||||
/* let alt_main = {
|
||||
// Extension upwards from the base. A positive number from 0 to 1 curved to be
|
||||
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
|
||||
let alt_main = (gen_ctx
|
||||
.alt_nz
|
||||
.get((wposf.div(2_000.0)).into_array())
|
||||
.min(1.0)
|
||||
.max(-1.0))
|
||||
.abs()
|
||||
.powf(1.35);
|
||||
|
||||
fn spring(x: f64, pow: f64) -> f64 {
|
||||
x.abs().powf(pow) * x.signum()
|
||||
}
|
||||
|
||||
(0.0 + alt_main
|
||||
+ (gen_ctx
|
||||
.small_nz
|
||||
.get((wposf.div(300.0)).into_array())
|
||||
.min(1.0)
|
||||
.max(-1.0))
|
||||
.abs()
|
||||
.powf(1.35);
|
||||
|
||||
fn spring(x: f64, pow: f64) -> f64 {
|
||||
x.abs().powf(pow) * x.signum()
|
||||
}
|
||||
|
||||
(0.0 + alt_main
|
||||
+ (gen_ctx
|
||||
.small_nz
|
||||
.get((wposf.div(300.0)).into_array())
|
||||
.min(1.0)
|
||||
.max(-1.0))
|
||||
.mul(alt_main.powf(0.8).max(/*0.25*/ 0.15))
|
||||
.mul(0.3)
|
||||
.add(1.0)
|
||||
.mul(0.4)
|
||||
+ spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0).mul(0.045))
|
||||
}; */
|
||||
// let height = height + (alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64 * ((1.0 / CONFIG.mountain_scale as f64).powf(1.0 / erosion_pow_low));
|
||||
let height = erosion_factor(height);
|
||||
assert!(height >= 0.0);
|
||||
assert!(height <= 1.0);
|
||||
// assert!(alt_main >= 0.0);
|
||||
let (bump_factor, bump_max) = if
|
||||
/*height < f32::EPSILON as f64 * 0.5*//*false*/
|
||||
/*true*/false {
|
||||
(
|
||||
/*(alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64*/
|
||||
(alt_main / CONFIG.mountain_scale as f64 * 128.0).mul(0.1).powf(1.2) * /*(1.0 / CONFIG.mountain_scale as f64)*/(f32::EPSILON * 0.5) as f64,
|
||||
(f32::EPSILON * 0.5) as f64,
|
||||
)
|
||||
} else {
|
||||
(0.0, 0.0)
|
||||
};
|
||||
// tan(6/360*2*pi)*32 ~ 3.4
|
||||
// 3.4/32*512 ~ 54
|
||||
// 18/32*512 ~ 288
|
||||
// tan(pi/6)*32 ~ 18
|
||||
// tan(54/360*2*pi)*32
|
||||
// let height = 1.0f64;
|
||||
let turb_wposf =
|
||||
wposf.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(turb_wposf_div);
|
||||
let turb = Vec2::new(
|
||||
gen_ctx.turb_x_nz.get(turb_wposf.into_array()),
|
||||
gen_ctx.turb_y_nz.get(turb_wposf.into_array()),
|
||||
) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
let turb_wposf = wposf + turb;
|
||||
let uheight = gen_ctx.uplift_nz.get(turb_wposf.into_array())
|
||||
/* .min(0.5)
|
||||
.max(-0.5)*/
|
||||
.min(1.0)
|
||||
.max(-1.0)
|
||||
.mul(0.5)
|
||||
.add(0.5);
|
||||
// u = 1e-3: normal-high (dike, mountain)
|
||||
// u = 5e-4: normal (mid example in Yuan, average mountain uplift)
|
||||
// u = 2e-4: low (low example in Yuan; known that lagoons etc. may have u ~ 0.05).
|
||||
// u = 0: low (plateau [fan, altitude = 0.0])
|
||||
// let height = uheight;
|
||||
// let height = 1.0f64;
|
||||
|
||||
// let height = 1.0 / 7.0f64;
|
||||
// let height = 0.0 / 31.0f64;
|
||||
let bfrac = /*erosion_factor(0.5);*/0.0;
|
||||
let height = (height - bfrac).abs().div(1.0 - bfrac);
|
||||
let height = height
|
||||
/* .mul(31.0 / 32.0)
|
||||
.add(1.0 / 32.0) */
|
||||
/* .mul(15.0 / 16.0)
|
||||
.add(1.0 / 16.0) */
|
||||
/* .mul(5.0 / 8.0)
|
||||
.add(3.0 / 8.0) */
|
||||
/* .mul(6.0 / 8.0)
|
||||
.add(2.0 / 8.0) */
|
||||
/* .mul(7.0 / 8.0)
|
||||
.add(1.0 / 8.0) */
|
||||
.mul(max_erosion_per_delta_t)
|
||||
.sub(/*1.0 / CONFIG.mountain_scale as f64*/ bump_max)
|
||||
.add(bump_factor);
|
||||
/* .sub(/*1.0 / CONFIG.mountain_scale as f64*/(f32::EPSILON * 0.5) as f64)
|
||||
.add(bump_factor); */
|
||||
height as f32
|
||||
.mul(alt_main.powf(0.8).max(/*0.25*/ 0.15))
|
||||
.mul(0.3)
|
||||
.add(1.0)
|
||||
.mul(0.4)
|
||||
+ spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0).mul(0.045))
|
||||
}; */
|
||||
// let height = height + (alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64 * ((1.0 / CONFIG.mountain_scale as f64).powf(1.0 / erosion_pow_low));
|
||||
let height = erosion_factor(height);
|
||||
assert!(height >= 0.0);
|
||||
assert!(height <= 1.0);
|
||||
// assert!(alt_main >= 0.0);
|
||||
let (bump_factor, bump_max) = if
|
||||
/*height < f32::EPSILON as f64 * 0.5*//*false*/
|
||||
/*true*/
|
||||
false {
|
||||
(
|
||||
/*(alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64*/
|
||||
(alt_main / CONFIG.mountain_scale as f64 * 128.0).mul(0.1).powf(1.2) * /*(1.0 / CONFIG.mountain_scale as f64)*/(f32::EPSILON * 0.5) as f64,
|
||||
(f32::EPSILON * 0.5) as f64,
|
||||
)
|
||||
} else {
|
||||
(0.0, 0.0)
|
||||
};
|
||||
// tan(6/360*2*pi)*32 ~ 3.4
|
||||
// 3.4/32*512 ~ 54
|
||||
// 18/32*512 ~ 288
|
||||
// tan(pi/6)*32 ~ 18
|
||||
// tan(54/360*2*pi)*32
|
||||
// let height = 1.0f64;
|
||||
let turb_wposf = wposf
|
||||
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
|
||||
.div(turb_wposf_div);
|
||||
let turb = Vec2::new(
|
||||
gen_ctx.turb_x_nz.get(turb_wposf.into_array()),
|
||||
gen_ctx.turb_y_nz.get(turb_wposf.into_array()),
|
||||
) * uplift_turb_scale
|
||||
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
||||
let turb_wposf = wposf + turb;
|
||||
let uheight = gen_ctx
|
||||
.uplift_nz
|
||||
.get(turb_wposf.into_array())
|
||||
/* .min(0.5)
|
||||
.max(-0.5)*/
|
||||
.min(1.0)
|
||||
.max(-1.0)
|
||||
.mul(0.5)
|
||||
.add(0.5);
|
||||
// u = 1e-3: normal-high (dike, mountain)
|
||||
// u = 5e-4: normal (mid example in Yuan, average mountain uplift)
|
||||
// u = 2e-4: low (low example in Yuan; known that lagoons etc. may have u ~ 0.05).
|
||||
// u = 0: low (plateau [fan, altitude = 0.0])
|
||||
// let height = uheight;
|
||||
// let height = 1.0f64;
|
||||
|
||||
// let height = 1.0 / 7.0f64;
|
||||
// let height = 0.0 / 31.0f64;
|
||||
let bfrac = /*erosion_factor(0.5);*/0.0;
|
||||
let height = (height - bfrac).abs().div(1.0 - bfrac);
|
||||
let height = height
|
||||
/* .mul(31.0 / 32.0)
|
||||
.add(1.0 / 32.0) */
|
||||
/* .mul(15.0 / 16.0)
|
||||
.add(1.0 / 16.0) */
|
||||
/* .mul(5.0 / 8.0)
|
||||
.add(3.0 / 8.0) */
|
||||
/* .mul(6.0 / 8.0)
|
||||
.add(2.0 / 8.0) */
|
||||
/* .mul(7.0 / 8.0)
|
||||
.add(1.0 / 8.0) */
|
||||
.mul(max_erosion_per_delta_t)
|
||||
.sub(/*1.0 / CONFIG.mountain_scale as f64*/ bump_max)
|
||||
.add(bump_factor);
|
||||
/* .sub(/*1.0 / CONFIG.mountain_scale as f64*/(f32::EPSILON * 0.5) as f64)
|
||||
.add(bump_factor); */
|
||||
height as f32
|
||||
};
|
||||
let alt_func = |posi| {
|
||||
if is_ocean_fn(posi) {
|
||||
// -max_erosion_per_delta_t as f32
|
||||
@ -1062,9 +1084,8 @@ impl WorldSim {
|
||||
.mul(alt_main.powf(0.8).max(/*0.25*/ 0.15))
|
||||
.mul(0.3)
|
||||
.add(1.0)
|
||||
.mul(0.4)
|
||||
/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0)
|
||||
.mul(0.045)*/)
|
||||
.mul(0.4)/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0)
|
||||
.mul(0.045)*/)
|
||||
};
|
||||
|
||||
// (kf_func(posi) / 1.5e-4 * CONFIG.mountain_scale as f64) as f32
|
||||
@ -1112,7 +1133,7 @@ impl WorldSim {
|
||||
};
|
||||
|
||||
let reader = BufReader::new(file);
|
||||
let map : WorldFile = match bincode::deserialize_from(reader) {
|
||||
let map: WorldFile = match bincode::deserialize_from(reader) {
|
||||
Ok(map) => map,
|
||||
Err(err) => {
|
||||
log::warn!("Couldn't parse map: {:?})", err);
|
||||
@ -1120,7 +1141,9 @@ impl WorldSim {
|
||||
}
|
||||
};
|
||||
|
||||
if map.alt.len() != map.basement.len() || map.alt.len() != WORLD_SIZE.x as usize * WORLD_SIZE.y as usize {
|
||||
if map.alt.len() != map.basement.len()
|
||||
|| map.alt.len() != WORLD_SIZE.x as usize * WORLD_SIZE.y as usize
|
||||
{
|
||||
log::warn!("World size of map is invalid.");
|
||||
return None;
|
||||
}
|
||||
@ -1149,8 +1172,16 @@ impl WorldSim {
|
||||
n_steps,
|
||||
&river_seed,
|
||||
&rock_strength_nz,
|
||||
|posi| alt_func(posi),// + if is_ocean_fn(posi) { 0.0 } else { 128.0 },
|
||||
|posi| alt_func(posi) - if is_ocean_fn(posi) { 0.0 } else { /*1400.0*//*CONFIG.mountain_scale * 0.75*/0.0 },// if is_ocean_fn(posi) { old_height(posi) } else { 0.0 },
|
||||
|posi| alt_func(posi), // + if is_ocean_fn(posi) { 0.0 } else { 128.0 },
|
||||
|posi| {
|
||||
alt_func(posi)
|
||||
- if is_ocean_fn(posi) {
|
||||
0.0
|
||||
} else {
|
||||
/*1400.0*//*CONFIG.mountain_scale * 0.75*/
|
||||
0.0
|
||||
}
|
||||
}, // if is_ocean_fn(posi) { old_height(posi) } else { 0.0 },
|
||||
is_ocean_fn,
|
||||
uplift_fn,
|
||||
|posi| n_func(posi),
|
||||
@ -1180,13 +1211,10 @@ impl WorldSim {
|
||||
};
|
||||
|
||||
// Save map, if necessary.
|
||||
let map = WorldFile {
|
||||
alt,
|
||||
basement,
|
||||
};
|
||||
let map = WorldFile { alt, basement };
|
||||
(|| {
|
||||
if let FileOpts::Save = opts.world_file {
|
||||
use std::{time::SystemTime};
|
||||
use std::time::SystemTime;
|
||||
// Check if folder exists and create it if it does not
|
||||
let mut path = PathBuf::from("./maps");
|
||||
if !path.exists() {
|
||||
@ -1243,7 +1271,10 @@ impl WorldSim {
|
||||
|
||||
let is_ocean = get_oceans(|posi| alt[posi]);
|
||||
let is_ocean_fn = |posi: usize| is_ocean[posi];
|
||||
let mut dh = downhill(|posi| alt[posi] as f32/*&alt*/, /*old_height*/ is_ocean_fn);
|
||||
let mut dh = downhill(
|
||||
|posi| alt[posi] as f32, /*&alt*/
|
||||
/*old_height*/ is_ocean_fn,
|
||||
);
|
||||
let (boundary_len, indirection, water_alt_pos, _) = get_lakes(/*&/*water_alt*/alt*/|posi| alt[posi] as f32, &mut dh);
|
||||
let flux_old = get_drainage(&water_alt_pos, &dh, boundary_len);
|
||||
|
||||
@ -1258,7 +1289,9 @@ impl WorldSim {
|
||||
/* // Find the pass this lake is flowing into (i.e. water at the lake bottom gets
|
||||
// pushed towards the point identified by pass_idx).
|
||||
let neighbor_pass_idx = dh[lake_idx]; */
|
||||
let chunk_water_alt = if /*neighbor_pass_idx*/dh[lake_idx] < 0 {
|
||||
let chunk_water_alt = if
|
||||
/*neighbor_pass_idx*/
|
||||
dh[lake_idx] < 0 {
|
||||
// This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea level)
|
||||
// or part of a lake that flows directly into the ocean. In the former case, water
|
||||
// is at sea level so we just return 0.0. In the latter case, the lake bottom must
|
||||
@ -1293,9 +1326,9 @@ impl WorldSim {
|
||||
|
||||
let water_alt = fill_sinks(water_height_initial, is_ocean_fn);
|
||||
/* let water_alt = (0..WORLD_SIZE.x * WORLD_SIZE.y)
|
||||
.into_par_iter()
|
||||
.map(|posi| water_height_initial(posi))
|
||||
.collect::<Vec<_>>(); */
|
||||
.into_par_iter()
|
||||
.map(|posi| water_height_initial(posi))
|
||||
.collect::<Vec<_>>(); */
|
||||
|
||||
let rivers = get_rivers(&water_alt_pos, &water_alt, &dh, &indirection, &flux_old);
|
||||
|
||||
@ -1312,7 +1345,9 @@ impl WorldSim {
|
||||
/* // Find the pass this lake is flowing into (i.e. water at the lake bottom gets
|
||||
// pushed towards the point identified by pass_idx).
|
||||
let neighbor_pass_idx = dh[lake_idx]; */
|
||||
if /*neighbor_pass_idx*/dh[lake_idx] < 0 {
|
||||
if
|
||||
/*neighbor_pass_idx*/
|
||||
dh[lake_idx] < 0 {
|
||||
// This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea level)
|
||||
// or part of a lake that flows directly into the ocean. In the former case, water
|
||||
// is at sea level so we just return 0.0. In the latter case, the lake bottom must
|
||||
@ -1970,9 +2005,7 @@ impl SimChunk {
|
||||
let height_scale = 1.0; // 1.0 / CONFIG.mountain_scale;
|
||||
let mut alt = CONFIG.sea_level.add(alt_pre.div(height_scale));
|
||||
let mut basement = CONFIG.sea_level.add(basement_pre.div(height_scale));
|
||||
let water_alt = CONFIG
|
||||
.sea_level
|
||||
.add(water_alt_pre.div(height_scale));
|
||||
let water_alt = CONFIG.sea_level.add(water_alt_pre.div(height_scale));
|
||||
let downhill = if downhill_pre == -2 {
|
||||
None
|
||||
} else if downhill_pre < 0 {
|
||||
@ -2030,7 +2063,9 @@ impl SimChunk {
|
||||
}
|
||||
|
||||
// No trees in the ocean, with zero humidity (currently), or directly on bedrock.
|
||||
let tree_density = if is_underwater/* || alt - basement.min(alt) < 2.0 */ {
|
||||
let tree_density = if is_underwater
|
||||
/* || alt - basement.min(alt) < 2.0 */
|
||||
{
|
||||
0.0
|
||||
} else {
|
||||
let tree_density = (gen_ctx.tree_nz.get((wposf.div(1024.0)).into_array()))
|
||||
|
@ -218,7 +218,7 @@ pub fn local_cells(posi: usize) -> impl Clone + Iterator<Item = usize> {
|
||||
}
|
||||
|
||||
// NOTE: want to keep this such that the chunk index is in ascending order!
|
||||
pub const NEIGHBOR_DELTA : [(i32, i32); 8] = [
|
||||
pub const NEIGHBOR_DELTA: [(i32, i32); 8] = [
|
||||
(-1, -1),
|
||||
(0, -1),
|
||||
(1, -1),
|
||||
@ -233,12 +233,12 @@ pub const NEIGHBOR_DELTA : [(i32, i32); 8] = [
|
||||
pub fn neighbors(posi: usize) -> impl Clone + Iterator<Item = usize> {
|
||||
let pos = uniform_idx_as_vec2(posi);
|
||||
NEIGHBOR_DELTA
|
||||
.iter()
|
||||
.map(move |&(x, y)| Vec2::new(pos.x + x, pos.y + y))
|
||||
.filter(|pos| {
|
||||
pos.x >= 0 && pos.y >= 0 && pos.x < WORLD_SIZE.x as i32 && pos.y < WORLD_SIZE.y as i32
|
||||
})
|
||||
.map(vec2_as_uniform_idx)
|
||||
.iter()
|
||||
.map(move |&(x, y)| Vec2::new(pos.x + x, pos.y + y))
|
||||
.filter(|pos| {
|
||||
pos.x >= 0 && pos.y >= 0 && pos.x < WORLD_SIZE.x as i32 && pos.y < WORLD_SIZE.y as i32
|
||||
})
|
||||
.map(vec2_as_uniform_idx)
|
||||
}
|
||||
|
||||
// Note that we should already have okay cache locality since we have a grid.
|
||||
@ -249,10 +249,14 @@ pub fn uphill<'a>(dh: &'a [isize], posi: usize) -> impl Clone + Iterator<Item =
|
||||
/// Compute the neighbor "most downhill" from all chunks.
|
||||
///
|
||||
/// TODO: See if allocating in advance is worthwhile.
|
||||
pub fn downhill<F: Float>(h: impl Fn(usize) -> F + Sync, is_ocean: impl Fn(usize) -> bool + Sync) -> Box<[isize]> {
|
||||
pub fn downhill<F: Float>(
|
||||
h: impl Fn(usize) -> F + Sync,
|
||||
is_ocean: impl Fn(usize) -> bool + Sync,
|
||||
) -> Box<[isize]> {
|
||||
// Constructs not only the list of downhill nodes, but also computes an ordering (visiting
|
||||
// nodes in order from roots to leaves).
|
||||
(0..WORLD_SIZE.x * WORLD_SIZE.y).into_par_iter()
|
||||
(0..WORLD_SIZE.x * WORLD_SIZE.y)
|
||||
.into_par_iter()
|
||||
// .enumerate()
|
||||
.map(|(posi/*, &nh*/)| {
|
||||
let nh = h(posi);
|
||||
@ -702,5 +706,3 @@ impl<'a, F: NoiseFn<T> + 'a, T> NoiseFn<T> for ScaleBias<'a, F> {
|
||||
(self.source.get(point) * self.scale) + self.bias
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user