mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
3324c08640
- this bug was initially called imbris bug, as it happened on his runners and i couldn't reproduce it locally at fist :) - When in a Handshake a seperate mpsc::Channel was created for (Cid, Frame) transport however the protocol could already catch non handshake data any more and push in into this mpsc::Channel. Then this channel got dropped and a fresh one was created for the network::Channel. These droped Frames are ofc a BUG! I tried multiple things to solve this: - dont create a new mpsc::Channel, but instead bind it to the Protocol itself and always use 1. This would work theoretically, but in bParticipant side we are using 1 mpsc::Channel<(Cid, Frame)> to handle ALL the network::channel. If now ever Protocol would have it's own, and with that every network::Channel had it's own it would no longer work out Bad Idea... - using the first method but creating the mpsc::Channel inside the scheduler instead protocol neither works, as the scheduler doesnt know the remote_pid yet - i dont want a hack to say the protocol only listen to 2 messages and then stop no matter what So i switched over to the simply method now: - Do everything like before with 2 mpsc::Channels - after the handshake. close the receiver and listen for all remaining (cid, frame) combinations - when starting the channel, reapply them to the new sender/listener combination - added tracing - switched Protocol RwLock to Mutex, as it's only ever 1 - Additionally changed the layout and introduces the c2w_frame_s and w2s_cid_frame_s name schema - Fixed a bug in scheduler which WOULD cause a DEADLOCK if handshake would fail - fixd a but in api_send_send_main, i need to store the stream_p otherwise it's immeadiatly closed and a stream_a.send() isn't guaranteed - add extra test to verify that a send message is received even if the Stream is already closed - changed OutGoing to Outgoing - fixed a bug that `metrics.tick()` was never called - removed 2 unused nightly features and added `deny_code`
167 lines
5.4 KiB
Rust
167 lines
5.4 KiB
Rust
use async_std::task;
|
|
use task::block_on;
|
|
use veloren_network::StreamError;
|
|
mod helper;
|
|
use helper::{network_participant_stream, tcp};
|
|
|
|
#[test]
|
|
fn close_network() {
|
|
let (_, _) = helper::setup(false, 0);
|
|
let (_, _p1_a, mut s1_a, _, _p1_b, mut s1_b) = block_on(network_participant_stream(tcp()));
|
|
|
|
std::thread::sleep(std::time::Duration::from_millis(200));
|
|
|
|
assert_eq!(s1_a.send("Hello World"), Err(StreamError::StreamClosed));
|
|
let msg1: Result<String, _> = block_on(s1_b.recv());
|
|
assert_eq!(msg1, Err(StreamError::StreamClosed));
|
|
}
|
|
|
|
#[test]
|
|
fn close_participant() {
|
|
let (_, _) = helper::setup(false, 0);
|
|
let (n_a, p1_a, mut s1_a, n_b, p1_b, mut s1_b) = block_on(network_participant_stream(tcp()));
|
|
|
|
block_on(n_a.disconnect(p1_a)).unwrap();
|
|
block_on(n_b.disconnect(p1_b)).unwrap();
|
|
|
|
assert_eq!(s1_a.send("Hello World"), Err(StreamError::StreamClosed));
|
|
assert_eq!(
|
|
block_on(s1_b.recv::<String>()),
|
|
Err(StreamError::StreamClosed)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn close_stream() {
|
|
let (_, _) = helper::setup(false, 0);
|
|
let (_n_a, _, mut s1_a, _n_b, _, _) = block_on(network_participant_stream(tcp()));
|
|
|
|
// s1_b is dropped directly while s1_a isn't
|
|
std::thread::sleep(std::time::Duration::from_millis(200));
|
|
|
|
assert_eq!(s1_a.send("Hello World"), Err(StreamError::StreamClosed));
|
|
assert_eq!(
|
|
block_on(s1_a.recv::<String>()),
|
|
Err(StreamError::StreamClosed)
|
|
);
|
|
}
|
|
|
|
///THIS is actually a bug which currently luckily doesn't trigger, but with new
|
|
/// async-std WE must make sure, if a stream is `drop`ed inside a `block_on`,
|
|
/// that no panic is thrown.
|
|
#[test]
|
|
fn close_streams_in_block_on() {
|
|
let (_, _) = helper::setup(false, 0);
|
|
let (_n_a, _p_a, s1_a, _n_b, _p_b, s1_b) = block_on(network_participant_stream(tcp()));
|
|
block_on(async {
|
|
//make it locally so that they are dropped later
|
|
let mut s1_a = s1_a;
|
|
let mut s1_b = s1_b;
|
|
s1_a.send("ping").unwrap();
|
|
assert_eq!(s1_b.recv().await, Ok("ping".to_string()));
|
|
drop(s1_a);
|
|
});
|
|
}
|
|
|
|
#[test]
|
|
fn stream_simple_3msg_then_close() {
|
|
let (_, _) = helper::setup(false, 0);
|
|
let (_n_a, _, mut s1_a, _n_b, _, mut s1_b) = block_on(network_participant_stream(tcp()));
|
|
|
|
s1_a.send(1u8).unwrap();
|
|
s1_a.send(42).unwrap();
|
|
s1_a.send("3rdMessage").unwrap();
|
|
assert_eq!(block_on(s1_b.recv()), Ok(1u8));
|
|
assert_eq!(block_on(s1_b.recv()), Ok(42));
|
|
assert_eq!(block_on(s1_b.recv()), Ok("3rdMessage".to_string()));
|
|
drop(s1_a);
|
|
std::thread::sleep(std::time::Duration::from_millis(200));
|
|
assert_eq!(s1_b.send("Hello World"), Err(StreamError::StreamClosed));
|
|
}
|
|
|
|
#[test]
|
|
fn stream_send_first_then_receive() {
|
|
// recv should still be possible even if stream got closed if they are in queue
|
|
let (_, _) = helper::setup(false, 0);
|
|
let (_n_a, _, mut s1_a, _n_b, _, mut s1_b) = block_on(network_participant_stream(tcp()));
|
|
|
|
s1_a.send(1u8).unwrap();
|
|
s1_a.send(42).unwrap();
|
|
s1_a.send("3rdMessage").unwrap();
|
|
drop(s1_a);
|
|
std::thread::sleep(std::time::Duration::from_millis(500));
|
|
assert_eq!(block_on(s1_b.recv()), Ok(1u8));
|
|
assert_eq!(block_on(s1_b.recv()), Ok(42));
|
|
assert_eq!(block_on(s1_b.recv()), Ok("3rdMessage".to_string()));
|
|
assert_eq!(s1_b.send("Hello World"), Err(StreamError::StreamClosed));
|
|
}
|
|
|
|
#[test]
|
|
fn stream_send_1_then_close_stream() {
|
|
let (_, _) = helper::setup(false, 0);
|
|
let (_n_a, _, mut s1_a, _n_b, _, mut s1_b) = block_on(network_participant_stream(tcp()));
|
|
s1_a.send("this message must be received, even if stream is closed already!")
|
|
.unwrap();
|
|
drop(s1_a);
|
|
std::thread::sleep(std::time::Duration::from_millis(500));
|
|
let exp = Ok("this message must be received, even if stream is closed already!".to_string());
|
|
assert_eq!(block_on(s1_b.recv()), exp);
|
|
println!("all received and done");
|
|
}
|
|
|
|
#[test]
|
|
fn stream_send_100000_then_close_stream() {
|
|
let (_, _) = helper::setup(false, 0);
|
|
let (_n_a, _, mut s1_a, _n_b, _, mut s1_b) = block_on(network_participant_stream(tcp()));
|
|
for _ in 0..100000 {
|
|
s1_a.send("woop_PARTY_HARD_woop").unwrap();
|
|
}
|
|
drop(s1_a);
|
|
let exp = Ok("woop_PARTY_HARD_woop".to_string());
|
|
println!("start receiving");
|
|
block_on(async {
|
|
for _ in 0..100000 {
|
|
assert_eq!(s1_b.recv().await, exp);
|
|
}
|
|
});
|
|
println!("all received and done");
|
|
}
|
|
|
|
#[test]
|
|
fn stream_send_100000_then_close_stream_remote() {
|
|
let (_, _) = helper::setup(false, 0);
|
|
let (_n_a, _, mut s1_a, _n_b, _, _s1_b) = block_on(network_participant_stream(tcp()));
|
|
for _ in 0..100000 {
|
|
s1_a.send("woop_PARTY_HARD_woop").unwrap();
|
|
}
|
|
drop(s1_a);
|
|
drop(_s1_b);
|
|
//no receiving
|
|
}
|
|
|
|
#[test]
|
|
fn stream_send_100000_then_close_stream_remote2() {
|
|
let (_, _) = helper::setup(false, 0);
|
|
let (_n_a, _, mut s1_a, _n_b, _, _s1_b) = block_on(network_participant_stream(tcp()));
|
|
for _ in 0..100000 {
|
|
s1_a.send("woop_PARTY_HARD_woop").unwrap();
|
|
}
|
|
drop(_s1_b);
|
|
std::thread::sleep(std::time::Duration::from_millis(200));
|
|
drop(s1_a);
|
|
//no receiving
|
|
}
|
|
|
|
#[test]
|
|
fn stream_send_100000_then_close_stream_remote3() {
|
|
let (_, _) = helper::setup(false, 0);
|
|
let (_n_a, _, mut s1_a, _n_b, _, _s1_b) = block_on(network_participant_stream(tcp()));
|
|
for _ in 0..100000 {
|
|
s1_a.send("woop_PARTY_HARD_woop").unwrap();
|
|
}
|
|
drop(_s1_b);
|
|
std::thread::sleep(std::time::Duration::from_millis(200));
|
|
drop(s1_a);
|
|
//no receiving
|
|
}
|