veloren/assets/voxygen/shaders/particle-vert.glsl
2023-08-02 07:55:10 +00:00

742 lines
29 KiB
GLSL

#version 420 core
#include <constants.glsl>
#define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION
#define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE
#define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET
#define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN
#include <globals.glsl>
#include <srgb.glsl>
#include <random.glsl>
#include <lod.glsl>
layout(location = 0) in vec3 v_pos;
// in uint v_col;
layout(location = 1) in uint v_norm_ao;
layout(location = 2) in float inst_time;
layout(location = 3) in float inst_lifespan;
layout(location = 4) in float inst_entropy;
layout(location = 5) in int inst_mode;
layout(location = 6) in vec3 inst_dir;
layout(location = 7) in vec3 inst_pos;
layout(location = 0) out vec3 f_pos;
layout(location = 1) flat out vec3 f_norm;
layout(location = 2) out vec4 f_col;
//layout(location = x) out float f_ao;
//layout(location = x) out float f_light;
layout(location = 3) out float f_reflect;
const float SCALE = 1.0 / 11.0;
// Modes
const int SMOKE = 0;
const int FIRE = 1;
const int GUN_POWDER_SPARK = 2;
const int SHRAPNEL = 3;
const int FIREWORK_BLUE = 4;
const int FIREWORK_GREEN = 5;
const int FIREWORK_PURPLE = 6;
const int FIREWORK_RED = 7;
const int FIREWORK_WHITE = 8;
const int FIREWORK_YELLOW = 9;
const int LEAF = 10;
const int FIREFLY = 11;
const int BEE = 12;
const int GROUND_SHOCKWAVE = 13;
const int ENERGY_HEALING = 14;
const int ENERGY_NATURE = 15;
const int FLAMETHROWER = 16;
const int FIRE_SHOCKWAVE = 17;
const int FIRE_BOWL = 18;
const int SNOW = 19;
const int EXPLOSION = 20;
const int ICE = 21;
const int LIFESTEAL_BEAM = 22;
const int CULTIST_FLAME = 23;
const int STATIC_SMOKE = 24;
const int BLOOD = 25;
const int ENRAGED = 26;
const int BIG_SHRAPNEL = 27;
const int LASER = 28;
const int BUBBLES = 29;
const int WATER = 30;
const int ICE_SPIKES = 31;
const int DRIP = 32;
const int TORNADO = 33;
const int DEATH = 34;
const int ENERGY_BUFFING = 35;
const int WEB_STRAND = 36;
const int BLACK_SMOKE = 37;
const int LIGHTNING = 38;
const int STEAM = 39;
const int BARRELORGAN = 40;
const int POTION_SICKNESS = 41;
const int GIGA_SNOW = 42;
const int CYCLOPS_CHARGE = 43;
const int PORTAL_FIZZ = 45;
const int INK = 46;
// meters per second squared (acceleration)
const float earth_gravity = 9.807;
struct Attr {
vec3 offs;
vec3 scale;
vec4 col;
mat4 rot;
};
float lifetime = tick.x - inst_time;
vec3 linear_motion(vec3 init_offs, vec3 vel) {
return init_offs + vel * lifetime;
}
vec3 quadratic_bezier_motion(vec3 start, vec3 ctrl0, vec3 end) {
float t = lifetime;
float u = 1 - lifetime;
return u*u*start + t*u*ctrl0 + t*t*end;
}
vec3 grav_vel(float grav) {
return vec3(0, 0, -grav * lifetime);
}
float exp_scale(float factor) {
return 1 / (1 - lifetime * factor);
}
float linear_scale(float factor) {
return lifetime * factor;
}
float percent() {
return lifetime / inst_lifespan;
}
float slow_end(float factor) {
return (1 + factor) * percent() / (percent() + factor);
}
float slow_start(float factor) {
return 1-(1 + factor) * (1-percent()) / ((1-percent()) + factor);
}
float start_end(float from, float to) {
return mix(from, to, lifetime / inst_lifespan);
}
mat4 spin_in_axis(vec3 axis, float angle)
{
axis = normalize(axis);
float s = sin(angle);
float c = cos(angle);
float oc = 1.0 - c;
return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0,
oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0,
oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0,
0, 0, 0, 1);
}
mat4 identity() {
return mat4(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
}
vec3 perp_axis1(vec3 axis) {
return normalize(vec3(axis.y + axis.z, -axis.x + axis.z, -axis.x - axis.y));
}
vec3 perp_axis2(vec3 axis1, vec3 axis2) {
return normalize(vec3(axis1.y * axis2.z - axis1.z * axis2.y, axis1.z * axis2.x - axis1.x * axis2.z, axis1.x * axis2.y - axis1.y * axis2.x));
}
// Line is the axis of the spiral, it goes from the start position to the end position
// Radius is the distance from the axis the particle is
// Time function is some value that ideally goes from 0 to 1. When it is 0, it is as
// the point (0, 0, 0), when it is 1, it is at the point provided by the coordinates of line
// Frequency increases the frequency of rotation
// Offset is an offset to the angle of the rotation
vec3 spiral_motion(vec3 line, float radius, float time_function, float frequency, float offset) {
vec3 axis2 = perp_axis1(line);
vec3 axis3 = perp_axis2(line, axis2);
return line * time_function + vec3(
radius * cos(frequency * time_function - offset) * axis2.x + radius * sin(frequency * time_function - offset) * axis3.x,
radius * cos(frequency * time_function - offset) * axis2.y + radius * sin(frequency * time_function - offset) * axis3.y,
radius * cos(frequency * time_function - offset) * axis2.z + radius * sin(frequency * time_function - offset) * axis3.z);
}
void main() {
float rand0 = hash(vec4(inst_entropy + 0));
float rand1 = hash(vec4(inst_entropy + 1));
float rand2 = hash(vec4(inst_entropy + 2));
float rand3 = hash(vec4(inst_entropy + 3));
float rand4 = hash(vec4(inst_entropy + 4));
float rand5 = hash(vec4(inst_entropy + 5));
float rand6 = hash(vec4(inst_entropy + 6));
float rand7 = hash(vec4(inst_entropy + 7));
float rand8 = hash(vec4(inst_entropy + 8));
float rand9 = hash(vec4(inst_entropy + 9));
vec3 start_pos = inst_pos - focus_off.xyz;
Attr attr;
f_reflect = 1.0;
switch(inst_mode) {
case SMOKE:
attr = Attr(
linear_motion(
vec3(0),
vec3(rand2 * 0.02, rand3 * 0.02, 1.0 + rand4 * 0.1)
),
vec3(linear_scale(0.5)),
vec4(vec3(0.8, 0.8, 1) * 0.125 * (3.8 + rand0), start_end(1.0, 0.0)),
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 0.5)
);
break;
case BLACK_SMOKE:
attr = Attr(
linear_motion(
vec3(0),
vec3(rand2 * 0.02, rand3 * 0.02, 1.0 + rand4 * 0.1)
),
vec3(linear_scale(0.5)),
vec4(vec3(0.8, 0.8, 1) * 0.125 * (1.8 + rand0), start_end(1.0, 0.0)),
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 0.5)
);
break;
case FIRE:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
attr = Attr(
linear_motion(
vec3(0.0),
vec3(rand2 * 0.1, rand3 * 0.1, 2.0 + rand4 * 1.0)
),
vec3(1.0),
vec4(6, 3 + rand5 * 0.3 - 0.8 * percent(), 0.4, 1),
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3)
);
break;
case FIRE_BOWL:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
attr = Attr(
linear_motion(
vec3(normalize(vec2(rand0, rand1)) * 0.1, 0.6),
vec3(rand2 * 0.2, rand3 * 0.5, 0.8 + rand4 * 0.5)
),
vec3(0.2), // Size
vec4(2, 1.5 + rand5 * 0.5, 0, start_end(1.0, 0.0)), // Colour
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3)
);
break;
case GUN_POWDER_SPARK:
attr = Attr(
linear_motion(
normalize(vec3(rand0, rand1, rand3)) * 0.3,
normalize(vec3(rand4, rand5, rand6)) * 4.0 + grav_vel(earth_gravity)
),
vec3(1.0),
vec4(3.5, 3 + rand7, 0, 1),
spin_in_axis(vec3(1,0,0),0)
);
break;
case SHRAPNEL:
attr = Attr(
linear_motion(
vec3(0),
normalize(vec3(rand4, rand5, rand6)) * 20.0 + grav_vel(earth_gravity)
),
vec3(1),
vec4(vec3(0.25), 1),
spin_in_axis(vec3(1,0,0),0)
);
break;
case BIG_SHRAPNEL:
float brown_color = 0.05 + 0.1 * rand1;
attr = Attr(
linear_motion(
vec3(0),
normalize(vec3(rand4, rand5, rand6)) * 15.0 + grav_vel(earth_gravity)
),
vec3(5 * (1 - percent())),
vec4(vec3(brown_color, brown_color / 2, 0), 1),
spin_in_axis(vec3(1,0,0),0)
);
break;
case FIREWORK_BLUE:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
attr = Attr(
linear_motion(
vec3(0),
normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity)
),
vec3(3.0 + rand0),
vec4(vec3(0, 0, 2), 1),
identity()
);
break;
case FIREWORK_GREEN:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
attr = Attr(
linear_motion(
vec3(0),
normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity)
),
vec3(3.0 + rand0),
vec4(vec3(0, 2, 0), 1),
identity()
);
break;
case FIREWORK_PURPLE:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
attr = Attr(
linear_motion(
vec3(0),
normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity)
),
vec3(3.0 + rand0),
vec4(vec3(2, 0, 2), 1),
identity()
);
break;
case FIREWORK_RED:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
attr = Attr(
linear_motion(
vec3(0),
normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity)
),
vec3(3.0 + rand0),
vec4(vec3(2, 0, 0), 1),
identity()
);
break;
case FIREWORK_WHITE:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
attr = Attr(
linear_motion(
vec3(0),
normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity)
),
vec3(3.0 + rand0),
vec4(vec3(2, 2, 2), 1),
identity()
);
break;
case FIREWORK_YELLOW:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
attr = Attr(
linear_motion(
vec3(0),
normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity)
),
vec3(3.0 + rand0),
vec4(vec3(2, 2, 0), 1),
identity()
);
break;
case LEAF:
attr = Attr(
linear_motion(
vec3(0),
vec3(0, 0, -2)
) + vec3(sin(lifetime), sin(lifetime + 0.7), sin(lifetime * 0.5)) * 2.0,
vec3(4),
vec4(vec3(0.2 + rand7 * 0.2, 0.2 + (0.25 + rand6 * 0.5) * 0.3, 0) * (0.75 + rand1 * 0.5), 1),
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5)
);
break;
case SNOW:
float height = mix(-4, 60, pow(start_end(1, 0), 3));
float wind_speed = (inst_pos.z - 2000) * 0.025;
vec3 offset = linear_motion(vec3(0), vec3(1, 1, 0) * wind_speed);
float end_alt = alt_at(start_pos.xy + offset.xy);
attr = Attr(
offset + vec3(0, 0, end_alt - start_pos.z + height) + vec3(sin(lifetime), sin(lifetime + 0.7), sin(lifetime * 0.5)) * 3,
vec3(mix(4, 0, pow(start_end(1, 0), 4))),
vec4(1),
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5)
);
break;
case FIREFLY:
float raise = pow(sin(3.1416 * lifetime / inst_lifespan), 0.2);
attr = Attr(
vec3(0, 0, raise * 5.0) + vec3(
sin(lifetime * 1.0 + rand0) + sin(lifetime * 7.0 + rand3) * 0.3,
sin(lifetime * 3.0 + rand1) + sin(lifetime * 8.0 + rand4) * 0.3,
sin(lifetime * 2.0 + rand2) + sin(lifetime * 9.0 + rand5) * 0.3
),
vec3(raise),
vec4(vec3(10.3, 9, 1.5), 1),
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5)
);
break;
case BEE:
float lower = pow(sin(3.1416 * lifetime / inst_lifespan), 0.2);
attr = Attr(
vec3(0, 0, lower * -0.5) + vec3(
sin(lifetime * 2.0 + rand0) + sin(lifetime * 9.0 + rand3) * 0.3,
sin(lifetime * 3.0 + rand1) + sin(lifetime * 10.0 + rand4) * 0.3,
sin(lifetime * 4.0 + rand2) + sin(lifetime * 11.0 + rand5) * 0.3
) * 0.5,
vec3(lower),
vec4(vec3(1, 0.7, 0), 1),
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5)
);
break;
case GROUND_SHOCKWAVE:
attr = Attr(
vec3(0.0),
vec3(11.0, 11.0, (33.0 * rand0 * sin(2.0 * lifetime * 3.14 * 2.0))) / 3,
vec4(vec3(0.32 + (rand0 * 0.04), 0.22 + (rand1 * 0.03), 0.05 + (rand2 * 0.01)), 1),
spin_in_axis(vec3(1,0,0),0)
);
break;
case ENERGY_HEALING:
f_reflect = 0.0;
float spiral_radius = start_end(1 - pow(abs(rand5), 5), 1) * length(inst_dir);
attr = Attr(
spiral_motion(vec3(0, 0, rand3 + 1), spiral_radius, lifetime, abs(rand0), rand1 * 2 * PI) + vec3(0, 0, rand2),
vec3(6 * abs(rand4) * (1 - slow_start(2)) * pow(spiral_radius / length(inst_dir), 0.5)),
vec4(vec3(0, 1.7, 0.7) * 3, 1),
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3)
);
break;
case LIFESTEAL_BEAM:
f_reflect = 0.0;
float green_col = 0.8 + 0.8 * sin(tick.x * 5 + lifetime * 5);
float purple_col = 0.6 + 0.5 * sin(tick.x * 4 - lifetime * 4) - min(max(green_col - 1, 0), 0.3);
float red_col = 1.15 + 0.1 * sin(tick.x * 3 - lifetime * 3) - min(max(green_col - 1, 0), 0.3) - max(purple_col - 0.5, 0);
attr = Attr(
spiral_motion(inst_dir, 0.3 * (floor(2 * rand0 + 0.5) - 0.5) * min(linear_scale(10), 1), lifetime / inst_lifespan, 10.0, inst_time),
vec3((1.7 - 0.7 * abs(floor(2 * rand0 - 0.5) + 0.5)) * (1.5 + 0.5 * sin(tick.x * 10 - lifetime * 4))),
vec4(vec3(red_col + purple_col * 0.6, green_col + purple_col * 0.35, purple_col), 1),
spin_in_axis(inst_dir, tick.z)
);
break;
case ENERGY_NATURE:
f_reflect = 0.0;
spiral_radius = start_end(1 - pow(abs(rand5), 5), 1) * length(inst_dir);
attr = Attr(
spiral_motion(vec3(0, 0, rand3 + 1), spiral_radius, lifetime, abs(rand0), rand1 * 2 * PI) + vec3(0, 0, rand2),
vec3(6 * abs(rand4) * (1 - slow_start(2)) * pow(spiral_radius / length(inst_dir), 0.5)),
vec4(vec3(0, 1.7, 1.3), 1),
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3)
);
break;
case FLAMETHROWER:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
attr = Attr(
(inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1,
vec3((2.5 * (1 - slow_start(0.2)))),
vec4(6, 3 + rand5 * 0.6 - 0.8 * percent(), 0.4, 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
case EXPLOSION:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
attr = Attr(
inst_dir * ((rand0+1.0)/2 + 0.4) * slow_end(0.25) + 0.3 * grav_vel(earth_gravity),
vec3((3 * (1 - slow_start(0.1)))),
vec4(6, 3 + rand5 * 0.3 - 0.8 * percent(), 0.4, 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
case ICE:
f_reflect = 0.0; // Ice doesn't reflect to look like magic
float ice_color = 1.9 + rand5 * 0.3;
attr = Attr(
inst_dir * ((rand0+1.0)/2 + 0.4) * slow_end(2.0) + 0.3 * grav_vel(earth_gravity),
vec3((5 * (1 - slow_start(.1)))),
vec4(0.8 * ice_color, 0.9 * ice_color, ice_color, 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
case FIRE_SHOCKWAVE:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
attr = Attr(
vec3(rand0, rand1, lifetime * 10 + rand2),
vec3((5 * (1 - slow_start(0.5)))),
vec4(6, 3 + rand5 * 0.6 - 0.8 * percent(), 0.4, 1),
spin_in_axis(vec3(rand3, rand4, rand5), rand6)
);
break;
case CULTIST_FLAME:
f_reflect = 0.0; // Fire doesn't reflect light, it emits it
float purp_color = 0.9 + 0.3 * rand3;
attr = Attr(
(inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1,
vec3((3.5 * (1 - slow_start(0.2)))),
vec4(purp_color, 0.0, purp_color, 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
case STATIC_SMOKE:
attr = Attr(
vec3(0),
vec3((0.5 * (1 - slow_start(0.8)))),
vec4(1.0),
spin_in_axis(vec3(rand6, rand7, rand8), rand9)
);
break;
case BLOOD:
attr = Attr(
linear_motion(
vec3(0),
normalize(vec3(rand4, rand5, rand6)) * 5.0 + grav_vel(earth_gravity)
),
vec3((2.0 * (1 - slow_start(0.8)))),
vec4(1, 0, 0, 1),
spin_in_axis(vec3(1,0,0),0)
);
break;
case ENRAGED:
f_reflect = 0.0;
float red_color = 1.2 + 0.3 * rand3;
attr = Attr(
(inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1,
vec3((3.5 * (1 - slow_start(0.2)))),
vec4(red_color, 0.0, 0.0, 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
case LASER:
f_reflect = 0.0;
vec3 perp_axis = normalize(cross(inst_dir, vec3(0.0, 0.0, 1.0)));
offset = vec3(0.0);
if (rand0 > 0.0) {
offset = perp_axis * 0.5;
} else {
offset = perp_axis * -0.5;
}
attr = Attr(
inst_dir * percent() + offset,
vec3(1.0, 1.0, 50.0),
vec4(vec3(2.0, 0.0, 0.0), 1),
spin_in_axis(perp_axis, asin(inst_dir.z / length(inst_dir)) + PI / 2.0)
);
break;
case BUBBLES:
f_reflect = 0.0; // Magic water doesn't reflect light, it emits it
float blue_color = 1.5 + 0.2 * rand3 + 1.5 * max(floor(rand4 + 0.3), 0.0);
float size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15);
attr = Attr(
(inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1,
vec3(size),
vec4(0.5 * blue_color, 0.75 * blue_color, blue_color, 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
case WATER:
f_reflect = 0.0; // Magic water doesn't reflect light, it emits it
blue_color = 1.25 + 0.2 * rand3 + 1.75 * max(floor(rand4 + 0.15), 0.0);
size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15);
attr = Attr(
(inst_dir * slow_end(0.2)) + vec3(rand0, rand1, rand2) * 0.5,
vec3(size),
vec4(0.5 * blue_color, 0.9 * blue_color, blue_color, 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 5 + 3 * rand9)
);
break;
case ICE_SPIKES:
f_reflect = 0.0; // Ice doesn't reflect to look like magic
ice_color = 1.7 + rand5 * 0.2;
attr = Attr(
vec3(0.0),
vec3(11.0, 11.0, 11.0 * length(inst_dir) * 2.0 * (0.5 - abs(0.5 - slow_end(0.5)))) / 3,
vec4(0.8 * ice_color, 0.9 * ice_color, ice_color, 1),
spin_in_axis(vec3(1,0,0),0)
);
break;
case DRIP:
attr = Attr(
linear_motion(
vec3(0),
normalize(vec3(rand4, rand5, rand6)) + grav_vel(earth_gravity)
),
vec3((2.0 * (1 - slow_start(0.2)))),
vec4(1, 1, 0, 1),
spin_in_axis(vec3(1,0,0),0)
);
break;
case TORNADO:
f_reflect = 0.0;
attr = Attr(
spiral_motion(vec3(0, 0, 5), abs(rand0) + abs(rand1) * percent() * 3.0, percent(), 15.0 * abs(rand2), rand3),
vec3((2.5 * (1 - slow_start(0.05)))),
vec4(vec3(1.2 + 0.5 * percent()), 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
case DEATH:
f_reflect = 0.0;
attr = Attr(
linear_motion(
vec3(0),
vec3(rand2 * 0.02, rand3 * 0.02, 2.0 + rand4 * 0.6)
),
vec3((1.2 * (1 - slow_start(.1)))),
vec4(vec3(1.2 + 0.5 * percent()), 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
case ENERGY_BUFFING:
f_reflect = 0.0;
spiral_radius = start_end(1 - pow(abs(rand5), 5), 1) * length(inst_dir);
attr = Attr(
spiral_motion(vec3(0, 0, rand3 + 1), spiral_radius, lifetime, abs(rand0), rand1 * 2 * PI) + vec3(0, 0, rand2),
vec3(6 * abs(rand4) * (1 - slow_start(2)) * pow(spiral_radius / length(inst_dir), 0.5)),
vec4(vec3(1.4), 1),
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3)
);
break;
case WEB_STRAND:
f_reflect = 0.0;
perp_axis = normalize(cross(inst_dir, vec3(0.0, 0.0, 1.0)));
attr = Attr(
inst_dir * percent(),
vec3(1.0, 1.0, 50.0),
vec4(vec3(2.0), 1),
spin_in_axis(perp_axis, asin(inst_dir.z / length(inst_dir)) + PI / 2.0)
);
break;
case LIGHTNING:
f_reflect = 0.0;
perp_axis = normalize(cross(inst_dir, vec3(0.0, 0.0, 1.0)));
float z = inst_dir.z * (percent() - 1.0);
vec3 start_off = vec3(abs(fract(vec3(vec2(z) * vec2(0.015, 0.01), 0)) - 0.5) * z * 0.4);
attr = Attr(
inst_dir * percent() + start_off,
vec3(max(3.0, 0.05 * length(start_pos + inst_dir * percent()))),
vec4(10.0, 20.0, 50.0, 1.0),// * (1.0 - length(inst_dir) * 0.1),
identity()//spin_in_axis(perp_axis, asin(inst_dir.z / length(inst_dir)) + PI / 2.0)
);
break;
case STEAM:
f_reflect = 0.0; // Magic steam doesn't reflect light, it emits it
float steam_size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15);
attr = Attr(
(inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1,
vec3(steam_size),
vec4(vec3(0.7, 2.7, 1.3), 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
case BARRELORGAN:
attr = Attr(
linear_motion(
vec3(rand0 * 0.25, rand1 * 0.25, 1.7 + rand5),
vec3(rand2 * 0.1, rand3 * 0.1, 1.0 + rand4 * 0.5)
),
vec3(exp_scale(-0.2)) * rand0,
vec4(vec3(0.7, 2.7, 1.3), 1),
spin_in_axis(vec3(1,0,0),0)
);
break;
case POTION_SICKNESS:
attr = Attr(
quadratic_bezier_motion(
vec3(0.0),
vec3(inst_dir.xy, 0.0),
inst_dir
),
vec3((2.0 * (1 - slow_start(0.8)))),
vec4(0.075, 0.625, 0, 1),
spin_in_axis(vec3(1,0,0),0)
);
break;
case GIGA_SNOW:
f_reflect = 0.0;
attr = Attr(
(inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1,
vec3((3.5 * (1 - slow_start(0.2)))),
vec4(vec3(2, 2, 2), 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
case CYCLOPS_CHARGE:
f_reflect = 0.0;
float burn_size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15);
attr = Attr(
(inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1,
vec3(burn_size),
vec4(vec3(6.9, 0.0, 0.0), 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
case PORTAL_FIZZ:
attr = Attr(
inst_dir * (0.7 + pow(percent(), 5)) + vec3(
sin(lifetime * 1.25 + rand0 * 10) + sin(lifetime * 1.3 + rand3 * 10),
sin(lifetime * 1.2 + rand1 * 10) + sin(lifetime * 1.4 + rand4 * 10),
sin(lifetime * 5 + rand2)
) * 0.03,
vec3(pow(1.0 - abs(percent() - 0.5) * 2.0, 0.2)),
vec4(mix(vec3(0.4, 0.2, 0.8), vec3(5, 2, 10), pow(percent(), 2)), 1),
/* vec4(vec3(1.8 - percent() * 2, 0.4 + percent() * 2, 5.0 + rand6), 1), */
spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5)
);
break;
case INK:
f_reflect = 0.0; // Magic water doesn't reflect light, it emits it
float black_color = 0.3 + 0.2 * rand3 + 0.3 * max(floor(rand4 + 0.3), 0.0);
float ink_size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15);
attr = Attr(
(inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1,
vec3(ink_size),
vec4(0.5 * black_color, 0.75 * black_color, black_color, 1),
spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9)
);
break;
default:
attr = Attr(
linear_motion(
vec3(rand0 * 0.25, rand1 * 0.25, 1.7 + rand5),
vec3(rand2 * 0.1, rand3 * 0.1, 1.0 + rand4 * 0.5)
),
vec3(exp_scale(-0.2)) * rand0,
vec4(1),
spin_in_axis(vec3(1,0,0),0)
);
break;
}
// Temporary: use shrinking particles as a substitute for fading ones
attr.scale *= pow(attr.col.a, 0.25);
f_pos = start_pos + (v_pos * attr.scale * SCALE * mat3(attr.rot) + attr.offs);
#ifdef EXPERIMENTAL_CURVEDWORLD
f_pos.z -= pow(distance(f_pos.xy + focus_off.xy, focus_pos.xy + focus_off.xy) * 0.05, 2);
#endif
// First 3 normals are negative, next 3 are positive
// TODO: Make particle normals match orientation
vec4 normals[6] = vec4[](vec4(-1,0,0,0), vec4(1,0,0,0), vec4(0,-1,0,0), vec4(0,1,0,0), vec4(0,0,-1,0), vec4(0,0,1,0));
f_norm =
// inst_pos *
normalize(((normals[(v_norm_ao >> 0) & 0x7u]) * attr.rot).xyz);
//vec3 col = vec3((uvec3(v_col) >> uvec3(0, 8, 16)) & uvec3(0xFFu)) / 255.0;
f_col = vec4(attr.col.rgb, attr.col.a);
gl_Position =
all_mat *
vec4(f_pos, 1);
}