veloren/world/src/column/mod.rs
2020-01-23 18:18:14 +01:00

1241 lines
52 KiB
Rust

use crate::{
all::ForestKind,
block::StructureMeta,
generator::{Generator, SpawnRules, TownGen},
sim::{
local_cells, uniform_idx_as_vec2, vec2_as_uniform_idx, LocationInfo, RiverKind, SimChunk,
WorldSim,
},
util::{RandomPerm, Sampler, UnitChooser},
CONFIG,
};
use common::{
assets,
terrain::{BlockKind, Structure, TerrainChunkSize},
vol::RectVolSize,
};
use lazy_static::lazy_static;
use noise::NoiseFn;
use roots::find_roots_cubic;
use std::{
cmp::Reverse,
f32, f64,
ops::{Add, Div, Mul, Neg, Sub},
sync::Arc,
};
use vek::*;
pub struct ColumnGen<'a> {
pub sim: &'a WorldSim,
}
static UNIT_CHOOSER: UnitChooser = UnitChooser::new(0x700F4EC7);
static DUNGEON_RAND: RandomPerm = RandomPerm::new(0x42782335);
lazy_static! {
pub static ref DUNGEONS: Vec<Arc<Structure>> = vec![
assets::load_map("world.structure.dungeon.ruins", |s: Structure| s
.with_center(Vec3::new(57, 58, 61))
.with_default_kind(BlockKind::Dense))
.unwrap(),
assets::load_map("world.structure.dungeon.ruins_2", |s: Structure| s
.with_center(Vec3::new(53, 57, 60))
.with_default_kind(BlockKind::Dense))
.unwrap(),
assets::load_map("world.structure.dungeon.ruins_3", |s: Structure| s
.with_center(Vec3::new(58, 45, 72))
.with_default_kind(BlockKind::Dense))
.unwrap(),
assets::load_map(
"world.structure.dungeon.meso_sewer_temple",
|s: Structure| s
.with_center(Vec3::new(63, 62, 60))
.with_default_kind(BlockKind::Dense)
)
.unwrap(),
assets::load_map("world.structure.dungeon.ruins_maze", |s: Structure| s
.with_center(Vec3::new(60, 60, 116))
.with_default_kind(BlockKind::Dense))
.unwrap(),
];
}
impl<'a> ColumnGen<'a> {
pub fn new(sim: &'a WorldSim) -> Self {
Self { sim }
}
fn get_local_structure(&self, wpos: Vec2<i32>) -> Option<StructureData> {
let (pos, seed) = self
.sim
.gen_ctx
.region_gen
.get(wpos)
.iter()
.copied()
.min_by_key(|(pos, _)| pos.distance_squared(wpos))
.unwrap();
let chunk_pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32);
let chunk = self.sim.get(chunk_pos)?;
if seed % 5 == 2
&& chunk.temp > CONFIG.desert_temp
&& chunk.alt > chunk.water_alt + 5.0
&& chunk.chaos <= 0.35
{
/*Some(StructureData {
pos,
seed,
meta: Some(StructureMeta::Pyramid { height: 140 }),
})*/
None
} else if seed % 17 == 2 && chunk.chaos < 0.2 {
Some(StructureData {
pos,
seed,
meta: Some(StructureMeta::Volume {
units: UNIT_CHOOSER.get(seed),
volume: &DUNGEONS[DUNGEON_RAND.get(seed) as usize % DUNGEONS.len()],
}),
})
} else {
None
}
}
fn gen_close_structures(&self, wpos: Vec2<i32>) -> [Option<StructureData>; 9] {
let mut metas = [None; 9];
self.sim
.gen_ctx
.structure_gen
.get(wpos)
.iter()
.copied()
.enumerate()
.for_each(|(i, (pos, seed))| {
metas[i] = self.get_local_structure(pos).or(Some(StructureData {
pos,
seed,
meta: None,
}));
});
metas
}
}
fn river_spline_coeffs(
// _sim: &WorldSim,
chunk_pos: Vec2<f64>,
spline_derivative: Vec2<f32>,
downhill_pos: Vec2<f64>,
) -> Vec3<Vec2<f64>> {
let dxy = downhill_pos - chunk_pos;
// Since all splines have been precomputed, we don't have to do that much work to evaluate the
// spline. The spline is just ax^2 + bx + c = 0, where
//
// a = dxy - chunk.river.spline_derivative
// b = chunk.river.spline_derivative
// c = chunk_pos
let spline_derivative = spline_derivative.map(|e| e as f64);
Vec3::new(dxy - spline_derivative, spline_derivative, chunk_pos)
}
/// Find the nearest point from a quadratic spline to this point (in terms of t, the "distance along the curve"
/// by which our spline is parameterized). Note that if t < 0.0 or t >= 1.0, we probably shouldn't
/// be considered "on the curve"... hopefully this works out okay and gives us what we want (a
/// river that extends outwards tangent to a quadratic curve, with width configured by distance
/// along the line).
fn quadratic_nearest_point(
spline: &Vec3<Vec2<f64>>,
point: Vec2<f64>,
) -> Option<(f64, Vec2<f64>, f64)> {
let a = spline.z.x;
let b = spline.y.x;
let c = spline.x.x;
let d = point.x;
let e = spline.z.y;
let f = spline.y.y;
let g = spline.x.y;
let h = point.y;
// This is equivalent to solving the following cubic equation (derivation is a bit annoying):
//
// A = 2(c^2 + g^2)
// B = 3(b * c + g * f)
// C = ((a - d) * 2 * c + b^2 + (e - h) * 2 * g + f^2)
// D = ((a - d) * b + (e - h) * f)
//
// Ax³ + Bx² + Cx + D = 0
//
// Once solved, this yield up to three possible values for t (reflecting minimal and maximal
// values). We should choose the minimal such real value with t between 0.0 and 1.0. If we
// fall outside those bounds, then we are outside the spline and return None.
let a_ = (c * c + g * g) * 2.0;
let b_ = (b * c + g * f) * 3.0;
let a_d = a - d;
let e_h = e - h;
let c_ = a_d * c * 2.0 + b * b + e_h * g * 2.0 + f * f;
let d_ = a_d * b + e_h * f;
let roots = find_roots_cubic(a_, b_, c_, d_);
let roots = roots.as_ref();
let min_root = roots
.iter()
.copied()
.filter_map(|root| {
let river_point = spline.x * root * root + spline.y * root + spline.z;
let river_zero = spline.z;
let river_one = spline.x + spline.y + spline.z;
if root > 0.0 && root < 1.0 {
Some((root, river_point))
} else if river_point.distance_squared(river_zero) < 0.5 {
Some((root, /*river_point*/ river_zero))
} else if river_point.distance_squared(river_one) < 0.5 {
Some((root, /*river_point*/ river_one))
} else {
None
}
})
.map(|(root, river_point)| {
let river_distance = river_point.distance_squared(point);
(root, river_point, river_distance)
})
// In the (unlikely?) case that distances are equal, prefer the earliest point along the
// river.
.min_by(|&(ap, _, a), &(bp, _, b)| {
(a, ap < 0.0 || ap > 1.0, ap)
.partial_cmp(&(b, bp < 0.0 || bp > 1.0, bp))
.unwrap()
});
min_root
}
impl<'a> Sampler<'a> for ColumnGen<'a> {
type Index = Vec2<i32>;
type Sample = Option<ColumnSample<'a>>;
fn get(&self, wpos: Vec2<i32>) -> Option<ColumnSample<'a>> {
let wposf = wpos.map(|e| e as f64);
let chunk_pos = wpos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32);
let sim = &self.sim;
let turb = Vec2::new(
sim.gen_ctx.turb_x_nz.get((wposf.div(48.0)).into_array()) as f32,
sim.gen_ctx.turb_y_nz.get((wposf.div(48.0)).into_array()) as f32,
) * 12.0;
let wposf_turb = wposf + turb.map(|e| e as f64);
let chaos = sim.get_interpolated(wpos, |chunk| chunk.chaos)?;
let temp = sim.get_interpolated(wpos, |chunk| chunk.temp)?;
let humidity = sim.get_interpolated(wpos, |chunk| chunk.humidity)?;
let rockiness = sim.get_interpolated(wpos, |chunk| chunk.rockiness)?;
let tree_density = sim.get_interpolated(wpos, |chunk| chunk.tree_density)?;
let spawn_rate = sim.get_interpolated(wpos, |chunk| chunk.spawn_rate)?;
let sim_chunk = sim.get(chunk_pos)?;
let neighbor_coef = TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
let my_chunk_idx = vec2_as_uniform_idx(chunk_pos);
let neighbor_river_data = local_cells(my_chunk_idx).filter_map(|neighbor_idx: usize| {
let neighbor_pos = uniform_idx_as_vec2(neighbor_idx);
let neighbor_chunk = sim.get(neighbor_pos)?;
Some((neighbor_pos, neighbor_chunk, &neighbor_chunk.river))
});
let lake_width = (TerrainChunkSize::RECT_SIZE.x as f64 * (2.0f64.sqrt())) + 12.0;
let neighbor_river_data = neighbor_river_data.map(|(posj, chunkj, river)| {
let kind = match river.river_kind {
Some(kind) => kind,
None => {
return (posj, chunkj, river, None);
}
};
let downhill_pos = if let Some(pos) = chunkj.downhill {
pos
} else {
match kind {
RiverKind::River { .. } => {
log::error!("What? River: {:?}, Pos: {:?}", river, posj);
panic!("How can a river have no downhill?");
}
RiverKind::Lake { .. } => {
return (posj, chunkj, river, None);
}
RiverKind::Ocean => posj,
}
};
let downhill_wpos = downhill_pos.map(|e| e as f64);
let downhill_pos =
downhill_pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32);
let neighbor_pos = posj.map(|e| e as f64) * neighbor_coef;
let direction = neighbor_pos - downhill_wpos;
let river_width_min = if let RiverKind::River { cross_section } = kind {
cross_section.x as f64
} else {
lake_width
};
let downhill_chunk = sim.get(downhill_pos).expect("How can this not work?");
let coeffs =
river_spline_coeffs(neighbor_pos, chunkj.river.spline_derivative, downhill_wpos);
let (direction, coeffs, downhill_chunk, river_t, river_pos, river_dist) = match kind {
RiverKind::River { .. } => {
if let Some((t, pt, dist)) = quadratic_nearest_point(&coeffs, wposf) {
(direction, coeffs, downhill_chunk, t, pt, dist.sqrt())
} else {
let ndist = wposf.distance_squared(neighbor_pos);
let ddist = wposf.distance_squared(downhill_wpos);
let (closest_pos, closest_dist, closest_t) = if ndist <= ddist {
(neighbor_pos, ndist, 0.0)
} else {
(downhill_wpos, ddist, 1.0)
};
(
direction,
coeffs,
downhill_chunk,
closest_t,
closest_pos,
closest_dist.sqrt(),
)
}
}
RiverKind::Lake { neighbor_pass_pos } => {
let pass_dist = neighbor_pass_pos
.map2(
neighbor_pos
.map2(TerrainChunkSize::RECT_SIZE, |f, g| (f as i32, g as i32)),
|e, (f, g)| ((e - f) / g).abs(),
)
.reduce_partial_max();
let spline_derivative = river.spline_derivative;
let neighbor_pass_pos = if pass_dist <= 1 {
neighbor_pass_pos
} else {
downhill_wpos.map(|e| e as i32)
};
let pass_dist = neighbor_pass_pos
.map2(
neighbor_pos
.map2(TerrainChunkSize::RECT_SIZE, |f, g| (f as i32, g as i32)),
|e, (f, g)| ((e - f) / g).abs(),
)
.reduce_partial_max();
if pass_dist > 1 {
return (posj, chunkj, river, None);
}
let neighbor_pass_wpos = neighbor_pass_pos.map(|e| e as f64);
let neighbor_pass_pos = neighbor_pass_pos
.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32);
let coeffs =
river_spline_coeffs(neighbor_pos, spline_derivative, neighbor_pass_wpos);
let direction = neighbor_pos - neighbor_pass_wpos;
if let Some((t, pt, dist)) = quadratic_nearest_point(&coeffs, wposf) {
(
direction,
coeffs,
sim.get(neighbor_pass_pos).expect("Must already work"),
t,
pt,
dist.sqrt(),
)
} else {
let ndist = wposf.distance_squared(neighbor_pos);
/* let ddist = wposf.distance_squared(neighbor_pass_wpos); */
let (closest_pos, closest_dist, closest_t) = /*if ndist <= ddist */ {
(neighbor_pos, ndist, 0.0)
} /* else {
(neighbor_pass_wpos, ddist, 1.0)
} */;
(
direction,
coeffs,
sim.get(neighbor_pass_pos).expect("Must already work"),
closest_t,
closest_pos,
closest_dist.sqrt(),
)
}
}
RiverKind::Ocean => {
let ndist = wposf.distance_squared(neighbor_pos);
let (closest_pos, closest_dist, closest_t) = (neighbor_pos, ndist, 0.0);
(
direction,
coeffs,
sim.get(closest_pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
e as i32 / sz as i32
}))
.expect("Must already work"),
closest_t,
closest_pos,
closest_dist.sqrt(),
)
}
};
let river_width_max =
if let Some(RiverKind::River { cross_section }) = downhill_chunk.river.river_kind {
cross_section.x as f64
} else {
lake_width
};
let river_width_noise = (sim.gen_ctx.small_nz.get((river_pos.div(16.0)).into_array()))
.max(-1.0)
.min(1.0)
.mul(0.5)
.sub(0.5) as f64;
let river_width = Lerp::lerp(
river_width_min,
river_width_max,
river_t.max(0.0).min(1.0).powf(0.5),
);
let river_width = river_width * (1.0 + river_width_noise * 0.3);
// To find the distance, we just evaluate the quadratic equation at river_t and see
// if it's within width (but we should be able to use it for a lot more, and this
// probably isn't the very best approach anyway since it will bleed out).
// let river_pos = coeffs.x * river_t * river_t + coeffs.y * river_t + coeffs.z;
let res = Vec2::new(0.0, (river_dist - (river_width * 0.5).max(1.0)).max(0.0));
(
posj,
chunkj,
river,
Some((
direction,
res,
river_width,
(river_t, (river_pos, coeffs), downhill_chunk),
)),
)
});
let downhill = sim_chunk.downhill;
let downhill_pos = downhill.and_then(|downhill_pos| sim.get(downhill_pos));
debug_assert!(sim_chunk.water_alt >= CONFIG.sea_level);
let downhill_water_alt = downhill_pos
.map(|downhill_chunk| {
downhill_chunk
.water_alt
.min(sim_chunk.water_alt)
.max(sim_chunk.alt.min(sim_chunk.water_alt))
})
.unwrap_or(CONFIG.sea_level);
let is_cliffs = sim_chunk.is_cliffs;
let near_cliffs = sim_chunk.near_cliffs;
let is_rocky = sim_chunk.humidity < CONFIG.desert_hum
&& (/*sim_chunk.temp < CONFIG.snow_temp || */sim_chunk.alt.sub(CONFIG.sea_level) >= CONFIG.mountain_scale * 0.25);
/* let downhill_alt_rocky = downhill_pos
.map(|downhill_chunk| {
downhill_chunk.humidity < CONFIG.forest_hum &&
(downhill_chunk.temperature < CONFIG.|| downhill_chunk.alt.sub(CONFIG.sea_level) >= CONFIG.mountain_scale * 0.25)
})
.unwrap_or(CONFIG.sea_level); */
let alt = if
/*humidity < CONFIG.desert_hum &&
(temp < CONFIG.snow_temp ||
downhill_alt.sub(CONFIG.sea_level) >= CONFIG.mountain_scale * 0.25)*/
is_rocky {
sim.get_interpolated_monotone(wpos, |chunk| chunk.alt)?
// sim.get_interpolated_bilinear(wpos, |chunk| chunk.alt)?
// sim.get_interpolated(wpos, |chunk| chunk.alt)?
} else {
sim.get_interpolated_monotone(wpos, |chunk| chunk.alt)?
// sim.get_interpolated(wpos, |chunk| chunk.alt)?
};
// Find the average distance to each neighboring body of water.
let mut river_count = 0.0f64;
let mut overlap_count = 0.0f64;
let mut river_distance_product = 1.0f64;
let mut river_overlap_distance_product = 0.0f64;
let mut max_river = None;
let mut max_key = None;
// IDEA:
// For every "nearby" chunk, check whether it is a river. If so, find the closest point on
// the river segment to wposf (if two point are equidistant, choose the earlier one),
// calling this point river_pos and the length (from 0 to 1) along the river segment for
// the nearby chunk river_t. Let river_dist be the distance from river_pos to wposf.
//
// Let river_alt be the interpolated river height at this point
// (from the alt/water altitude at the river, to the alt/water_altitude of the downhill
// river, increasing with river_t).
//
// Now, if river_dist is <= river_width * 0.5, then we don't care what altitude we use, and
// mark that we are on a river (we decide what river to use using a heuristic, and set the
// solely according to the computed river_alt for that point).
//
// Otherwise, we let dist = river_dist - river_width * 0.5.
//
// If dist >= TerrainChunkSize::RECT_SIZE.x, we don't include this river in the calculation
// of the correct altitude for this point.
//
// Otherwise (i.e. dist < TerrainChunkSize::RECT_SIZE.x), we want to bias the altitude of
// this point towards the altitude of the river. Specifically, as the dist goes from
// TerrainChunkSize::RECT_SIZE.x to 0, the weighted altitude of this point should go from
// alt to river_alt.
neighbor_river_data.for_each(|(river_chunk_idx, river_chunk, river, dist)| {
match river.river_kind {
Some(kind) => {
if kind.is_river() && !dist.is_some() {
// Ostensibly near a river segment, but not "usefully" so (there is no
// closest point between t = 0.0 and t = 1.0).
return;
} else {
let river_dist = dist.map(|(_, dist, _, (river_t, _, downhill_river))| {
let downhill_height = if kind.is_river() {
Lerp::lerp(
river_chunk.alt.max(river_chunk.water_alt),
downhill_river.alt.max(downhill_river.water_alt),
river_t as f32,
) as f64
} else {
let neighbor_pos =
river_chunk_idx.map(|e| e as f64) * neighbor_coef;
if dist.y == 0.0 {
-(wposf - neighbor_pos).magnitude()
} else {
-(wposf - neighbor_pos).magnitude()
}
};
(Reverse((dist.x, dist.y)), downhill_height)
});
let river_dist = river_dist.or_else(|| {
if !kind.is_river() {
let neighbor_pos =
river_chunk_idx.map(|e| e as f64) * neighbor_coef;
let dist = (wposf - neighbor_pos).magnitude();
let dist_upon =
(dist - TerrainChunkSize::RECT_SIZE.x as f64 * 0.5).max(0.0);
let dist_ = if dist == 0.0 { f64::INFINITY } else { -dist };
Some((Reverse((0.0, dist_upon)), dist_))
} else {
None
}
});
let river_key = (river_dist, Reverse(kind));
if max_key < Some(river_key) {
max_river = Some((river_chunk_idx, river_chunk, river, dist));
max_key = Some(river_key);
}
}
// NOTE: we scale by the distance to the river divided by the difference
// between the edge of the river that we intersect, and the remaining distance
// until the nearest point in "this" chunk (i.e. the one whose top-left corner
// is chunk_pos) that is at least 2 chunks away from the river source.
if let Some((_, dist, _, (river_t, _, downhill_river_chunk))) = dist {
let max_distance = if !river.is_river() {
/*(*/
TerrainChunkSize::RECT_SIZE.x as f64 /* * (1.0 - (2.0f64.sqrt() / 2.0))) + 4.0*/ - lake_width * 0.5
} else {
TerrainChunkSize::RECT_SIZE.x as f64
};
let scale_factor = max_distance;
let river_dist = dist.y;
if !(dist.x == 0.0 && river_dist < scale_factor) {
return;
}
// We basically want to project outwards from river_pos, along the current
// tangent line, to chunks <= river_width * 1.0 away from this
// point. We *don't* want to deal with closer chunks because they
// NOTE: river_width <= 2 * max terrain chunk size width, so this should not
// lead to division by zero.
// NOTE: If distance = 0.0 this goes to zero, which is desired since it
// means points that actually intersect with rivers will not be interpolated
// with the "normal" height of this point.
// NOTE: We keep the maximum at 1.0 so we don't undo work from another river
// just by being far away.
let river_scale = river_dist / scale_factor;
let river_alt =
Lerp::lerp(river_chunk.alt, downhill_river_chunk.alt, river_t as f32);
let river_alt = Lerp::lerp(river_alt, alt, river_scale as f32);
let river_alt_diff = river_alt - alt;
let river_alt_inv = river_alt_diff as f64;
river_overlap_distance_product += (1.0 - river_scale) * river_alt_inv;
overlap_count += 1.0 - river_scale;
river_count += 1.0;
river_distance_product *= river_scale;
}
}
None => {}
}
});
let river_scale_factor = if river_count == 0.0 {
1.0
} else {
let river_scale_factor = river_distance_product;
if river_scale_factor == 0.0 {
0.0
} else {
river_scale_factor.powf(if river_count == 0.0 {
1.0
} else {
1.0 / river_count
})
}
};
let cliff_hill = (sim
.gen_ctx
.small_nz
.get((wposf_turb.div(128.0)).into_array()) as f32)
.mul(4.0);
let alt_for_river = alt
+ if overlap_count == 0.0 {
0.0
} else {
river_overlap_distance_product / overlap_count
} as f32;
let river_gouge = 0.5;
let (in_water, alt_, water_level, warp_factor) = if let Some((
max_border_river_pos,
river_chunk,
max_border_river,
max_border_river_dist,
)) = max_river
{
// This is flowing into a lake, or a lake, or is at least a non-ocean tile.
//
// If we are <= water_alt, we are in the lake; otherwise, we are flowing into it.
let (in_water, new_alt, new_water_alt, warp_factor) = max_border_river
.river_kind
.and_then(|river_kind| {
if let RiverKind::River { cross_section } = river_kind {
if max_border_river_dist.map(|(_, dist, _, _)| dist) != Some(Vec2::zero()) {
return None;
}
let (_, _, river_width, (river_t, (river_pos, _), downhill_river_chunk)) =
max_border_river_dist.unwrap();
let river_alt = Lerp::lerp(
river_chunk.alt.max(river_chunk.water_alt),
downhill_river_chunk.alt.max(downhill_river_chunk.water_alt),
river_t as f32,
);
let new_alt = river_alt - river_gouge;
let river_dist = wposf.distance(river_pos);
let river_height_factor = river_dist / (river_width * 0.5);
Some((
true,
Lerp::lerp(
new_alt - cross_section.y.max(1.0),
new_alt - 1.0,
(river_height_factor * river_height_factor) as f32,
),
new_alt,
0.0,
))
} else {
None
}
})
.unwrap_or_else(|| {
max_border_river
.river_kind
.and_then(|river_kind| {
match river_kind {
RiverKind::Ocean => {
let (
_,
dist,
river_width,
(river_t, (river_pos, _), downhill_river_chunk),
) = if let Some(dist) = max_border_river_dist {
dist
} else {
log::error!(
"Ocean: {:?} Here: {:?}, Ocean: {:?}",
max_border_river,
chunk_pos,
max_border_river_pos
);
panic!(
"Oceans should definitely have a downhill! ...Right?"
);
};
let lake_water_alt = Lerp::lerp(
river_chunk.alt.max(river_chunk.water_alt),
downhill_river_chunk
.alt
.max(downhill_river_chunk.water_alt),
river_t as f32,
);
if dist == Vec2::zero() {
let river_dist = wposf.distance(river_pos);
let _river_height_factor = river_dist / (river_width * 0.5);
return Some((
true,
alt_for_river.min(lake_water_alt - 1.0 - river_gouge),
lake_water_alt - river_gouge,
0.0,
));
}
Some((
river_scale_factor <= 1.0,
alt_for_river,
downhill_water_alt,
river_scale_factor as f32,
))
}
RiverKind::Lake { .. } => {
let lake_dist = (max_border_river_pos.map(|e| e as f64)
* neighbor_coef)
.distance(wposf);
let downhill_river_chunk = max_border_river_pos;
let lake_id_dist = downhill_river_chunk - chunk_pos;
let in_bounds = lake_id_dist.x >= -1
&& lake_id_dist.y >= -1
&& lake_id_dist.x <= 1
&& lake_id_dist.y <= 1;
let in_bounds =
in_bounds && (lake_id_dist.x >= 0 && lake_id_dist.y >= 0);
let (_, dist, _, (river_t, _, downhill_river_chunk)) =
if let Some(dist) = max_border_river_dist {
dist
} else {
if lake_dist
<= TerrainChunkSize::RECT_SIZE.x as f64 * 1.0
|| in_bounds
{
let gouge_factor = 0.0;
return Some((
in_bounds
|| downhill_water_alt
.max(river_chunk.water_alt)
> alt_for_river,
alt_for_river,
(downhill_water_alt.max(river_chunk.water_alt)
- river_gouge),
river_scale_factor as f32
* (1.0 - gouge_factor),
));
} else {
return Some((
false,
alt_for_river,
downhill_water_alt,
river_scale_factor as f32,
));
}
};
let lake_dist = dist.y;
let lake_water_alt = Lerp::lerp(
river_chunk.alt.max(river_chunk.water_alt),
downhill_river_chunk
.alt
.max(downhill_river_chunk.water_alt),
river_t as f32,
);
if dist == Vec2::zero() {
return Some((
true,
alt_for_river.min(lake_water_alt - 1.0 - river_gouge),
lake_water_alt - river_gouge,
0.0,
));
}
if lake_dist <= TerrainChunkSize::RECT_SIZE.x as f64 * 1.0
|| in_bounds
{
let gouge_factor = if in_bounds && lake_dist <= 1.0 {
1.0
} else {
0.0
};
let in_bounds_ =
lake_dist <= TerrainChunkSize::RECT_SIZE.x as f64 * 0.5;
if gouge_factor == 1.0 {
return Some((
/*alt_for_river < lake_water_alt || in_bounds,*/
true,
alt.min(lake_water_alt - 1.0 - river_gouge),
downhill_water_alt.max(lake_water_alt)
- river_gouge,
0.0,
));
} else {
return Some((
/*alt_for_river < lake_water_alt || in_bounds,*/
true,
alt_for_river,
if in_bounds_ {
downhill_water_alt.max(lake_water_alt)
- river_gouge
} else {
downhill_water_alt - river_gouge
},
river_scale_factor as f32 * (1.0 - gouge_factor),
));
}
}
Some((
river_scale_factor <= 1.0,
alt_for_river,
downhill_water_alt,
river_scale_factor as f32,
))
}
RiverKind::River { .. } => {
// FIXME: Make water altitude accurate.
Some((
river_scale_factor <= 1.0,
alt_for_river,
downhill_water_alt,
river_scale_factor as f32,
))
}
}
})
.unwrap_or((
false,
alt_for_river,
downhill_water_alt,
river_scale_factor as f32,
))
});
(in_water, new_alt, new_water_alt, warp_factor)
} else {
(false, alt_for_river, downhill_water_alt, 1.0)
};
// let warp_factor = 0.0;
let riverless_alt_delta = (sim
.gen_ctx
.small_nz
.get((wposf_turb.div(/*200.0*//*50.0*/200.0 * (32.0 / TerrainChunkSize::RECT_SIZE.x as f64)/*24.0*//*56.0 / (chaos as f64).max(0.05)*//*50.0*/)).into_array()) as f32)
.min(1.0).max(-1.0)
// .mul(0.5).add(0.5)
.abs()
.mul(3.0)
// .mul(chaos.min(1.0).max(0.05))
/* .mul(27.0) */
+ (sim
.gen_ctx
.small_nz
.get((wposf_turb.div(400.0 * (32.0 / TerrainChunkSize::RECT_SIZE.x as f64))).into_array()) as f32)
.min(1.0).max(-1.0)
// .mul(0.5).add(0.5)
.abs()
.mul(3.0)
/* .mul((1.0 - chaos).min(1.0).max(0.3))
.mul(1.0 - humidity) */
/* .mul(32.0) */;
let basement = alt_
+ sim./*get_interpolated*/get_interpolated_monotone(wpos, |chunk| chunk.basement.sub(chunk.alt))?;
let riverless_alt_delta = Lerp::lerp(0.0, riverless_alt_delta, warp_factor);
let alt = alt_ + riverless_alt_delta;
let basement = basement.min(alt);
let rock = (sim.gen_ctx.small_nz.get(
Vec3::new(wposf.x, wposf.y, alt as f64)
.div(100.0)
.into_array(),
) as f32)
.mul(rockiness)
.sub(0.4)
.max(0.0)
.mul(8.0);
let wposf3d = Vec3::new(wposf.x, wposf.y, alt as f64);
let marble_small = (sim.gen_ctx.hill_nz.get((wposf3d.div(3.0)).into_array()) as f32)
.powf(3.0)
.add(1.0)
.mul(0.5);
let marble = (sim.gen_ctx.hill_nz.get((wposf3d.div(48.0)).into_array()) as f32)
.mul(0.75)
.add(1.0)
.mul(0.5)
.add(marble_small.sub(0.5).mul(0.25));
//let temp = temp.add((marble - 0.5) * 0.1);
//let humidity = humidity.add((marble - 0.5) * 0.10);
// Colours
let cold_grass = Rgb::new(0.0, 0.5, 0.25);
// let cold_grass = Rgb::new(0.1, 0.5, 0.1);
let warm_grass = Rgb::new(0.4, 0.8, 0.0);
// let warm_grass = Rgb::new(0.1, 0.9, 0.2);
let dark_grass = Rgb::new(0.15, 0.4, 0.1);
// let dark_grass = Rgb::new(0.1, 0.3, 0.2);
let wet_grass = Rgb::new(0.1, 0.8, 0.2);
// let wet_grass = Rgb::new(0.1, 0.5, 0.5);
let cold_stone = Rgb::new(0.57, 0.67, 0.8);
// let cold_stone = Rgb::new(0.5, 0.5, 0.5);
let hot_stone = Rgb::new(0.07, 0.07, 0.06);
let warm_stone = Rgb::new(0.77, 0.77, 0.64);
// //let warm_stone = Rgb::new(0.6, 0.6, 0.5);
// let warm_stone = Rgb::new(0.6, 0.5, 0.1);
let beach_sand = Rgb::new(0.9, 0.82, 0.6);
let desert_sand = Rgb::new(0.95, 0.75, 0.5);
// let desert_sand = Rgb::new(0.7, 0.7, 0.4);
let snow = Rgb::new(0.8, 0.85, 1.0);
// let snow = Rgb::new(0.0, 0.0, 0.1);
// let stone_col = Rgb::new(152, 98, 16);
let stone_col = Rgb::new(195, 187, 201);
/*let dirt = Lerp::lerp(
Rgb::new(0.4, 0.4, 0.4),
Rgb::new(0.4, 0.4, 0.4),
marble,
);*/
let dirt = Lerp::lerp(
Rgb::new(0.075, 0.07, 0.3),
Rgb::new(0.75, 0.55, 0.1),
marble,
);
let tundra = Lerp::lerp(snow, Rgb::new(0.01, 0.3, 0.0), 0.4 + marble * 0.6);
let dead_tundra = Lerp::lerp(warm_stone, Rgb::new(0.3, 0.12, 0.2), marble);
let cliff = Rgb::lerp(cold_stone, /*warm_stone*/ hot_stone, marble);
let grass = Rgb::lerp(
cold_grass,
warm_grass,
marble.sub(0.5).add(1.0.sub(humidity).mul(0.5)).powf(1.5),
);
let snow_moss = Rgb::lerp(snow, cold_grass, 0.4 + marble.powf(1.5) * 0.6);
let moss = Rgb::lerp(dark_grass, cold_grass, marble.powf(1.5));
let rainforest = Rgb::lerp(wet_grass, warm_grass, marble.powf(1.5));
let sand = Rgb::lerp(beach_sand, desert_sand, marble);
let tropical = Rgb::lerp(
Rgb::lerp(
grass,
Rgb::new(0.15, 0.2, 0.15),
marble_small
.sub(0.5)
.mul(0.2)
.add(0.75.mul(1.0.sub(humidity)))
.powf(0.667),
),
Rgb::new(0.87, 0.62, 0.56),
marble.powf(1.5).sub(0.5).mul(4.0),
);
// For below desert humidity, we are always sand or rock, depending on altitude and
// temperature.
/* let ground = Rgb::lerp(
cliff,
Rgb::lerp(
dead_tundra,
sand,
temp.sub(CONFIG.snow_temp)
.div(CONFIG.desert_temp.sub(CONFIG.snow_temp))
.mul(/*4.5*/ 0.5),
),
alt.sub(basement)
.mul(0.25)
/* alt.sub(CONFIG.sea_level)
.sub(CONFIG.mountain_scale * 0.25)
.div(CONFIG.mountain_scale * 0.125), */
); */
let ground = Lerp::lerp(
Lerp::lerp(
dead_tundra,
sand,
temp.sub(CONFIG.snow_temp)
.div(CONFIG.desert_temp.sub(CONFIG.snow_temp))
.mul(/*4.5*/ 0.5),
),
dirt,
humidity
.sub(CONFIG.desert_hum)
.div(CONFIG.forest_hum.sub(CONFIG.desert_hum))
.mul(1.0),
);
let sub_surface_color = Lerp::lerp(cliff, ground, alt.sub(basement).mul(0.25));
/* let ground = Rgb::lerp(
dead_tundra,
sand,
temp.sub(CONFIG.snow_temp)
.div(CONFIG.desert_temp.sub(CONFIG.snow_temp))
.mul(/*4.5*/ 0.5),
/* alt.sub(CONFIG.sea_level)
.sub(CONFIG.mountain_scale * 0.25)
.div(CONFIG.mountain_scale * 0.125), */
); */
// From desert to forest humidity, we go from tundra to dirt to grass to moss to sand,
// depending on temperature.
let ground = Rgb::lerp(
ground,
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
tundra,
// snow_temp to temperate_temp
dirt,
temp.sub(CONFIG.snow_temp)
.div(CONFIG.temperate_temp.sub(CONFIG.snow_temp))
/*.sub((marble - 0.5) * 0.05)
.mul(256.0)*/
.mul(1.0),
// .mul(2.0),
),
// temperate_temp to tropical_temp
grass,
temp.sub(CONFIG.temperate_temp)
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
.mul(4.0),
),
// tropical_temp to desert_temp
moss,
temp.sub(CONFIG.tropical_temp)
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
.mul(1.0),
// .mul(2.0),
),
// above desert_temp
sand,
temp.sub(CONFIG.desert_temp)
.div(1.0 - CONFIG.desert_temp)
.mul(4.0),
// .mul(2.0),
),
humidity
.sub(CONFIG.desert_hum)
.div(CONFIG.forest_hum.sub(CONFIG.desert_hum))
.mul(1.0),
// .mul(2.0),
);
// From forest to jungle humidity, we go from snow to dark grass to grass to tropics to sand
// depending on temperature.
let ground = Rgb::lerp(
ground,
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
snow_moss,
// temperate_temp to tropical_temp
grass,
temp.sub(CONFIG.temperate_temp)
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
.mul(4.0),
),
// tropical_temp to desert_temp
tropical,
temp.sub(CONFIG.tropical_temp)
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
.mul(1.0),
// .mul(2.0),
),
// above desert_temp
sand,
temp.sub(CONFIG.desert_temp)
.div(1.0 - CONFIG.desert_temp)
.mul(4.0),
// .mul(2.0),
),
humidity
.sub(CONFIG.forest_hum)
.div(CONFIG.jungle_hum.sub(CONFIG.forest_hum))
.mul(1.0),
// .mul(2.0),
);
// From jungle humidity upwards, we go from snow to grass to rainforest to tropics to sand.
let ground = Rgb::lerp(
ground,
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
snow_moss,
// temperate_temp to tropical_temp
rainforest,
temp.sub(CONFIG.temperate_temp)
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
.mul(4.0),
),
// tropical_temp to desert_temp
tropical,
temp.sub(CONFIG.tropical_temp)
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
.mul(4.0),
// .mul(2.0),
),
// above desert_temp
sand,
temp.sub(CONFIG.desert_temp)
.div(1.0 - CONFIG.desert_temp)
.mul(4.0),
// .mul(2.0),
),
humidity.sub(CONFIG.jungle_hum).mul(1.0),
);
/* // Bedrock
let ground = Rgb::lerp(
cliff,
ground,
alt.sub(basement)
.mul(0.25)
); */
// Snow covering
let snow_cover = temp
.sub(CONFIG.snow_temp)
.max(-humidity.sub(CONFIG.desert_hum))
.mul(16.0)
.add((marble_small - 0.5) * 0.5);
let (alt, ground, sub_surface_color) = if snow_cover /*< 0.1*/<= 0.5 && alt > water_level {
// Allow snow cover.
(
alt + 1.0 - snow_cover.max(0.0),
Rgb::lerp(snow, ground, snow_cover),
Lerp::lerp(sub_surface_color, ground, alt.sub(basement).mul(0.15)),
)
} else {
(alt, ground, sub_surface_color)
};
/* let ground = Rgb::lerp(
snow,
ground,
temp.sub(CONFIG.snow_temp)
.max(-humidity.sub(CONFIG.desert_hum))
.mul(16.0)
.add((marble_small - 0.5) * 0.5),
); */
// Caves
let cave_at = |wposf: Vec2<f64>| {
(sim.gen_ctx.cave_0_nz.get(
Vec3::new(wposf.x, wposf.y, alt as f64 * 8.0)
.div(800.0)
.into_array(),
) as f32)
.powf(2.0)
.neg()
.add(1.0)
.mul((1.32 - chaos).min(1.0))
};
let cave_xy = cave_at(wposf);
let cave_alt = alt - 24.0
+ (sim
.gen_ctx
.cave_1_nz
.get(Vec2::new(wposf.x, wposf.y).div(48.0).into_array()) as f32)
* 8.0
+ (sim
.gen_ctx
.cave_1_nz
.get(Vec2::new(wposf.x, wposf.y).div(500.0).into_array()) as f32)
.add(1.0)
.mul(0.5)
.powf(15.0)
.mul(150.0);
let near_ocean = max_river.and_then(|(_, _, river_data, _)| {
if (river_data.is_lake() || river_data.river_kind == Some(RiverKind::Ocean))
&& ((alt <= water_level.max(CONFIG.sea_level + 5.0) && !is_cliffs) || !near_cliffs)
{
Some(water_level)
} else {
None
}
});
let ocean_level = if let Some(_sea_level) = near_ocean {
alt - CONFIG.sea_level
} else {
5.0
};
Some(ColumnSample {
alt,
basement,
chaos,
water_level,
warp_factor,
surface_color: Rgb::lerp(
Rgb::lerp(cliff, sand, alt.sub(basement).mul(0.25)),
// Land
ground,
// Beach
((ocean_level - 1.0) / 2.0).max(0.0),
),
sub_surface_color, // /*warm_grass*/Lerp::lerp(cliff, dirt, alt.sub(basement).mul(0.25)),
// No growing directly on bedrock.
tree_density: Lerp::lerp(0.0, tree_density, alt.sub(2.0).sub(basement).mul(0.5)),
forest_kind: sim_chunk.forest_kind,
close_structures: self.gen_close_structures(wpos),
cave_xy,
cave_alt,
marble,
marble_small,
rock,
is_cliffs,
near_cliffs,
cliff_hill,
close_cliffs: sim.gen_ctx.cliff_gen.get(wpos),
temp,
humidity,
spawn_rate,
location: sim_chunk.location.as_ref(),
stone_col,
chunk: sim_chunk,
spawn_rules: sim_chunk
.structures
.town
.as_ref()
.map(|town| TownGen.spawn_rules(town, wpos))
.unwrap_or(SpawnRules::default())
.and(SpawnRules {
cliffs: !in_water,
trees: true,
}),
})
}
}
#[derive(Clone)]
pub struct ColumnSample<'a> {
pub alt: f32,
pub basement: f32,
pub chaos: f32,
pub water_level: f32,
pub warp_factor: f32,
pub surface_color: Rgb<f32>,
pub sub_surface_color: Rgb<f32>,
pub tree_density: f32,
pub forest_kind: ForestKind,
pub close_structures: [Option<StructureData>; 9],
pub cave_xy: f32,
pub cave_alt: f32,
pub marble: f32,
pub marble_small: f32,
pub rock: f32,
pub is_cliffs: bool,
pub near_cliffs: bool,
pub cliff_hill: f32,
pub close_cliffs: [(Vec2<i32>, u32); 9],
pub temp: f32,
pub humidity: f32,
pub spawn_rate: f32,
pub location: Option<&'a LocationInfo>,
//making cliffs
pub stone_col: Rgb<u8>,
pub chunk: &'a SimChunk,
pub spawn_rules: SpawnRules,
}
#[derive(Copy, Clone)]
pub struct StructureData {
pub pos: Vec2<i32>,
pub seed: u32,
pub meta: Option<StructureMeta>,
}