veloren/voxygen/src/render/renderer.rs
2021-06-02 23:55:59 -04:00

2242 lines
82 KiB
Rust

use super::{
consts::Consts,
instances::Instances,
mesh::Mesh,
model::Model,
pipelines::{
clouds, figure, fluid, lod_terrain, particle, postprocess, shadow, skybox, sprite, terrain,
ui, GlobalModel, Globals,
},
texture::Texture,
AaMode, AddressMode, CloudMode, FilterMode, FluidMode, LightingMode, RenderError, RenderMode,
ShadowMapMode, ShadowMode, Vertex,
};
use common::assets::{self, AssetExt, AssetHandle};
use common_base::span;
use core::convert::TryFrom;
use glsl_include::Context as IncludeContext;
use tracing::{error, info, warn};
use vek::*;
// /// Represents the format of the pre-processed color target.
// // TODO: `(gfx::format::R11_G11_B10, gfx::format::Float)` would be better in
// // theory, but it doesn't seem to work
// pub type TgtColorFmt = gfx::format::Rgba16F;
// /// Represents the format of the pre-processed depth and stencil target.
// pub type TgtDepthStencilFmt = gfx::format::Depth;
//
// /// Represents the format of the window's color target.
// pub type WinColorFmt = gfx::format::Srgba8;
// /// Represents the format of the window's depth target.
// pub type WinDepthFmt = gfx::format::Depth;
//
// /// Represents the format of the pre-processed shadow depth target.
// pub type ShadowDepthStencilFmt = gfx::format::Depth;
//
// /// A handle to a pre-processed color target.
// pub type TgtColorView = gfx::handle::RenderTargetView<gfx_backend::Resources,
// TgtColorFmt>; /// A handle to a pre-processed depth target.
// pub type TgtDepthStencilView =
// gfx::handle::DepthStencilView<gfx_backend::Resources,
// TgtDepthStencilFmt>;
//
// /// A handle to a window color target.
// pub type WinColorView = gfx::handle::RenderTargetView<gfx_backend::Resources,
// WinColorFmt>; /// A handle to a window depth target.
// pub type WinDepthView = gfx::handle::DepthStencilView<gfx_backend::Resources,
// WinDepthFmt>;
//
// /// Represents the format of LOD shadows.
// pub type LodTextureFmt = (gfx::format::R8_G8_B8_A8, gfx::format::Unorm);
//
// /// Represents the format of LOD altitudes.
// pub type LodAltFmt = (gfx::format::R16_G16, gfx::format::Unorm);
//
// /// Represents the format of LOD map colors.
// pub type LodColorFmt = (gfx::format::R8_G8_B8_A8, gfx::format::Srgb);
//
// /// Represents the format of greedy meshed color-light textures.
// pub type ColLightFmt = (gfx::format::R8_G8_B8_A8, gfx::format::Unorm);
//
// /// A handle to a shadow depth target.
// pub type ShadowDepthStencilView =
// gfx::handle::DepthStencilView<gfx_backend::Resources,
// ShadowDepthStencilFmt>; /// A handle to a shadow depth target as a resource.
// pub type ShadowResourceView = gfx::handle::ShaderResourceView<
// gfx_backend::Resources,
// <ShadowDepthStencilFmt as gfx::format::Formatted>::View,
// >;
//
// /// A handle to a render color target as a resource.
// pub type TgtColorRes = gfx::handle::ShaderResourceView<
// gfx_backend::Resources,
// <TgtColorFmt as gfx::format::Formatted>::View,
// >;
//
// /// A handle to a render depth target as a resource.
// pub type TgtDepthRes = gfx::handle::ShaderResourceView<
// gfx_backend::Resources,
// <TgtDepthStencilFmt as gfx::format::Formatted>::View,
// >;
//
// /// A handle to a greedy meshed color-light texture as a resource.
// pub type ColLightRes = gfx::handle::ShaderResourceView<
// gfx_backend::Resources,
// <ColLightFmt as gfx::format::Formatted>::View,
// >;
/// A type representing data that can be converted to an immutable texture map
/// of ColLight data (used for texture atlases created during greedy meshing).
pub type ColLightInfo = (Vec<[u8; 4]>, Vec2<u16>);
/// Load from a GLSL file.
pub struct Glsl(String);
impl From<String> for Glsl {
fn from(s: String) -> Glsl { Glsl(s) }
}
impl assets::Asset for Glsl {
type Loader = assets::LoadFrom<String, assets::StringLoader>;
const EXTENSION: &'static str = "glsl";
}
struct Shaders {
constants: AssetHandle<Glsl>,
globals: AssetHandle<Glsl>,
sky: AssetHandle<Glsl>,
light: AssetHandle<Glsl>,
srgb: AssetHandle<Glsl>,
random: AssetHandle<Glsl>,
lod: AssetHandle<Glsl>,
shadows: AssetHandle<Glsl>,
anti_alias_none: AssetHandle<Glsl>,
anti_alias_fxaa: AssetHandle<Glsl>,
anti_alias_msaa_x4: AssetHandle<Glsl>,
anti_alias_msaa_x8: AssetHandle<Glsl>,
anti_alias_msaa_x16: AssetHandle<Glsl>,
cloud_none: AssetHandle<Glsl>,
cloud_regular: AssetHandle<Glsl>,
figure_vert: AssetHandle<Glsl>,
terrain_point_shadow_vert: AssetHandle<Glsl>,
terrain_directed_shadow_vert: AssetHandle<Glsl>,
figure_directed_shadow_vert: AssetHandle<Glsl>,
directed_shadow_frag: AssetHandle<Glsl>,
skybox_vert: AssetHandle<Glsl>,
skybox_frag: AssetHandle<Glsl>,
figure_frag: AssetHandle<Glsl>,
terrain_vert: AssetHandle<Glsl>,
terrain_frag: AssetHandle<Glsl>,
fluid_vert: AssetHandle<Glsl>,
fluid_frag_cheap: AssetHandle<Glsl>,
fluid_frag_shiny: AssetHandle<Glsl>,
sprite_vert: AssetHandle<Glsl>,
sprite_frag: AssetHandle<Glsl>,
particle_vert: AssetHandle<Glsl>,
particle_frag: AssetHandle<Glsl>,
ui_vert: AssetHandle<Glsl>,
ui_frag: AssetHandle<Glsl>,
lod_terrain_vert: AssetHandle<Glsl>,
lod_terrain_frag: AssetHandle<Glsl>,
clouds_vert: AssetHandle<Glsl>,
clouds_frag: AssetHandle<Glsl>,
postprocess_vert: AssetHandle<Glsl>,
postprocess_frag: AssetHandle<Glsl>,
player_shadow_frag: AssetHandle<Glsl>,
light_shadows_geom: AssetHandle<Glsl>,
light_shadows_frag: AssetHandle<Glsl>,
}
impl assets::Compound for Shaders {
// TODO: Taking the specifier argument as a base for shaders specifiers
// would allow to use several shaders groups easily
fn load<S: assets::source::Source>(
_: &assets::AssetCache<S>,
_: &str,
) -> Result<Shaders, assets::Error> {
Ok(Shaders {
constants: AssetExt::load("voxygen.shaders.include.constants")?,
globals: AssetExt::load("voxygen.shaders.include.globals")?,
sky: AssetExt::load("voxygen.shaders.include.sky")?,
light: AssetExt::load("voxygen.shaders.include.light")?,
srgb: AssetExt::load("voxygen.shaders.include.srgb")?,
random: AssetExt::load("voxygen.shaders.include.random")?,
lod: AssetExt::load("voxygen.shaders.include.lod")?,
shadows: AssetExt::load("voxygen.shaders.include.shadows")?,
anti_alias_none: AssetExt::load("voxygen.shaders.antialias.none")?,
anti_alias_fxaa: AssetExt::load("voxygen.shaders.antialias.fxaa")?,
anti_alias_msaa_x4: AssetExt::load("voxygen.shaders.antialias.msaa-x4")?,
anti_alias_msaa_x8: AssetExt::load("voxygen.shaders.antialias.msaa-x8")?,
anti_alias_msaa_x16: AssetExt::load("voxygen.shaders.antialias.msaa-x16")?,
cloud_none: AssetExt::load("voxygen.shaders.include.cloud.none")?,
cloud_regular: AssetExt::load("voxygen.shaders.include.cloud.regular")?,
figure_vert: AssetExt::load("voxygen.shaders.figure-vert")?,
terrain_point_shadow_vert: AssetExt::load("voxygen.shaders.light-shadows-vert")?,
terrain_directed_shadow_vert: AssetExt::load(
"voxygen.shaders.light-shadows-directed-vert",
)?,
figure_directed_shadow_vert: AssetExt::load(
"voxygen.shaders.light-shadows-figure-vert",
)?,
directed_shadow_frag: AssetExt::load("voxygen.shaders.light-shadows-directed-frag")?,
skybox_vert: AssetExt::load("voxygen.shaders.skybox-vert")?,
skybox_frag: AssetExt::load("voxygen.shaders.skybox-frag")?,
figure_frag: AssetExt::load("voxygen.shaders.figure-frag")?,
terrain_vert: AssetExt::load("voxygen.shaders.terrain-vert")?,
terrain_frag: AssetExt::load("voxygen.shaders.terrain-frag")?,
fluid_vert: AssetExt::load("voxygen.shaders.fluid-vert")?,
fluid_frag_cheap: AssetExt::load("voxygen.shaders.fluid-frag.cheap")?,
fluid_frag_shiny: AssetExt::load("voxygen.shaders.fluid-frag.shiny")?,
sprite_vert: AssetExt::load("voxygen.shaders.sprite-vert")?,
sprite_frag: AssetExt::load("voxygen.shaders.sprite-frag")?,
particle_vert: AssetExt::load("voxygen.shaders.particle-vert")?,
particle_frag: AssetExt::load("voxygen.shaders.particle-frag")?,
ui_vert: AssetExt::load("voxygen.shaders.ui-vert")?,
ui_frag: AssetExt::load("voxygen.shaders.ui-frag")?,
lod_terrain_vert: AssetExt::load("voxygen.shaders.lod-terrain-vert")?,
lod_terrain_frag: AssetExt::load("voxygen.shaders.lod-terrain-frag")?,
clouds_vert: AssetExt::load("voxygen.shaders.clouds-vert")?,
clouds_frag: AssetExt::load("voxygen.shaders.clouds-frag")?,
postprocess_vert: AssetExt::load("voxygen.shaders.postprocess-vert")?,
postprocess_frag: AssetExt::load("voxygen.shaders.postprocess-frag")?,
player_shadow_frag: AssetExt::load("voxygen.shaders.player-shadow-frag")?,
light_shadows_geom: AssetExt::load("voxygen.shaders.light-shadows-geom")?,
light_shadows_frag: AssetExt::load("voxygen.shaders.light-shadows-frag")?,
})
}
}
/// A type that holds shadow map data. Since shadow mapping may not be
/// supported on all platforms, we try to keep it separate.
pub struct ShadowMapRenderer {
// directed_encoder: gfx::Encoder<gfx_backend::Resources, gfx_backend::CommandBuffer>,
// point_encoder: gfx::Encoder<gfx_backend::Resources, gfx_backend::CommandBuffer>,
directed_depth_stencil_view: wgpu::TextureView,
directed_sampler: wgpu::Sampler,
point_depth_stencil_view: wgpu::TextureView,
point_sampler: wgpu::Sampler,
point_pipeline: wgpu::RenderPipeline,
terrain_directed_pipeline: wgpu::RenderPipeline,
figure_directed_pipeline: wgpu::RenderPipeline,
}
/// A type that encapsulates rendering state. `Renderer` is central to Voxygen's
/// rendering subsystem and contains any state necessary to interact with the
/// GPU, along with pipeline state objects (PSOs) needed to renderer different
/// kinds of models to the screen.
pub struct Renderer {
device: wgpu::Device,
queue: wgpu::Queue,
swap_chain: wgpu::SwapChain,
sc_desc: wgpu::SwapChainDescriptor,
win_depth_view: wgpu::TextureView,
tgt_color_view: wgpu::TextureView,
tgt_depth_stencil_view: wgpu::TextureView,
// TODO: rename
tgt_color_pp_view: wgpu::TextureView,
sampler: wgpu::Sampler,
shadow_map: Option<ShadowMapRenderer>,
skybox_pipeline: wgpu::RenderPipeline,
figure_pipeline: wgpu::RenderPipeline,
terrain_pipeline: wgpu::RenderPipeline,
fluid_pipeline: wgpu::RenderPipeline,
sprite_pipeline: wgpu::RenderPipeline,
particle_pipeline: wgpu::RenderPipeline,
ui_pipeline: wgpu::RenderPipeline,
lod_terrain_pipeline: wgpu::RenderPipeline,
clouds_pipeline: wgpu::RenderPipeline,
postprocess_pipeline: wgpu::RenderPipeline,
#[allow(dead_code)] //TODO: remove ?
player_shadow_pipeline: wgpu::RenderPipeline,
shaders: AssetHandle<Shaders>,
noise_tex: Texture,
mode: RenderMode,
}
impl Renderer {
/// Create a new `Renderer` from a variety of backend-specific components
/// and the window targets.
pub async fn new(
window: &winit::window::Window,
mode: RenderMode,
) -> Result<Self, RenderError> {
// Enable seamless cubemaps globally, where available--they are essentially a
// strict improvement on regular cube maps.
//
// Note that since we only have to enable this once globally, there is no point
// in doing this on rerender.
// Self::enable_seamless_cube_maps(&mut device);
let dims = window.inner_size();
let instance = wgpu::Instance::new(wgpu::BackendBit::PRIMARY | wgpu::BackendBit::SECONDARY);
// This is unsafe because the window handle must be valid, if you find a way to
// have an invalid winit::Window then you have bigger issues
#[allow(unsafe_code)]
let surface = unsafe { instance.create_surface(window) };
let adapter = instance
.request_adapter(wgpu::RequestAdapterOptionsBase {
power_preference: wgpu::PowerPreference::HighPerformance,
compatible_surface: Some(surface),
})
.await
.ok_or(RenderError::CouldNotFindAdapter)?;
use wgpu::{Features, Limits};
let (device, queue) = adapter
.request_device(
wgpu::DeviceDescriptor {
// TODO
features: Features::DEPTH_CLAMPING | Features::ADDRESS_MODE_CLAMP_TO_BORDER,
limits: Limits::default(),
shader_validation: true,
},
None,
)
.await?;
let info = device.get_info();
info!(
?info.name,
?info.vendor,
?info.backend,
?info.device,
?info.device_type,
"selected graphics device"
);
let sc_desc = wgpu::SwapChainDescriptor {
usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT,
format: wgpu::TextureFormat::Bgra8UnormSrgb,
width: dims.0,
height: dims.1,
present_mode: wgpu::PresentMode::Immediate,
};
let swap_chain = device.create_swap_chain(&surface, &sc_desc);
let shadow_views = Self::create_shadow_views(
&device,
(dims.0, dims.1),
&ShadowMapMode::try_from(mode.shadow).unwrap_or_default(),
)
.map_err(|err| {
warn!("Could not create shadow map views: {:?}", err);
})
.ok();
let shaders = Shaders::load_expect("");
let (
skybox_pipeline,
figure_pipeline,
terrain_pipeline,
fluid_pipeline,
sprite_pipeline,
particle_pipeline,
ui_pipeline,
lod_terrain_pipeline,
clouds_pipeline,
postprocess_pipeline,
player_shadow_pipeline,
point_shadow_pipeline,
terrain_directed_shadow_pipeline,
figure_directed_shadow_pipeline,
) = create_pipelines(
&device,
&mode,
shadow_views.is_some(),
)?;
let (tgt_color_view, tgt_depth_stencil_view, tgt_color_pp_view, win_depth_view) =
Self::create_rt_views(&device, (dims.0, dims.1), &mode)?;
let shadow_map = if let (
Some(point_pipeline),
Some(terrain_directed_pipeline),
Some(figure_directed_pipeline),
Some(shadow_views),
) = (
point_shadow_pipeline,
terrain_directed_shadow_pipeline,
figure_directed_shadow_pipeline,
shadow_views,
) {
let (
point_depth_stencil_view,
point_res,
point_sampler,
directed_depth_stencil_view,
directed_res,
directed_sampler,
) = shadow_views;
Some(ShadowMapRenderer {
directed_depth_stencil_view,
directed_sampler,
// point_encoder: factory.create_command_buffer().into(),
// directed_encoder: factory.create_command_buffer().into(),
point_depth_stencil_view,
point_sampler,
point_pipeline,
terrain_directed_pipeline,
figure_directed_pipeline,
})
} else {
None
};
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
label: None,
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Nearest,
compare: None,
..Default::default()
});
let noise_tex = Texture::new(
&device,
&queue,
&assets::Image::load_expect("voxygen.texture.noise").read().0,
Some(wgpu::FilterMode::Linear),
Some(wgpu::AddressMode::Repeat),
)?;
Ok(Self {
device,
queue,
swap_chain,
sc_desc,
win_depth_view,
tgt_color_view,
tgt_depth_stencil_view,
tgt_color_pp_view,
sampler,
shadow_map,
skybox_pipeline,
figure_pipeline,
terrain_pipeline,
fluid_pipeline,
sprite_pipeline,
particle_pipeline,
ui_pipeline,
lod_terrain_pipeline,
clouds_pipeline,
postprocess_pipeline,
player_shadow_pipeline,
shaders,
noise_tex,
mode,
})
}
/// Get references to the internal render target views that get rendered to
/// before post-processing.
#[allow(dead_code)]
pub fn tgt_views(&self) -> (&wgpu::TextureView, &wgpu::TextureView) {
(&self.tgt_color_view, &self.tgt_depth_stencil_view)
}
/// Get references to the internal render target views that get displayed
/// directly by the window.
#[allow(dead_code)]
pub fn win_views(&self) -> &wgpu::TextureView { &self.win_depth_view }
/// Change the render mode.
pub fn set_render_mode(&mut self, mode: RenderMode) -> Result<(), RenderError> {
self.mode = mode;
// Recreate render target
self.on_resize()?;
// Recreate pipelines with the new AA mode
self.recreate_pipelines();
Ok(())
}
/// Get the render mode.
pub fn render_mode(&self) -> &RenderMode { &self.mode }
/// Resize internal render targets to match window render target dimensions.
pub fn on_resize(&mut self) -> Result<(), RenderError> {
let dims = self.win_color_view.get_dimensions();
// Avoid panics when creating texture with w,h of 0,0.
if dims.0 != 0 && dims.1 != 0 {
let (
tgt_color_view,
tgt_depth_stencil_view,
tgt_color_pp_view,
tgt_color_res,
tgt_depth_res,
tgt_color_res_pp,
) = Self::create_rt_views(&mut self.factory, (dims.0, dims.1), &self.mode)?;
self.tgt_color_res = tgt_color_res;
self.tgt_depth_res = tgt_depth_res;
self.tgt_color_res_pp = tgt_color_res_pp;
self.tgt_color_view = tgt_color_view;
self.tgt_depth_stencil_view = tgt_depth_stencil_view;
self.tgt_color_pp_view = tgt_color_pp_view;
if let (Some(shadow_map), ShadowMode::Map(mode)) =
(self.shadow_map.as_mut(), self.mode.shadow)
{
match Self::create_shadow_views(&mut self.factory, (dims.0, dims.1), &mode) {
Ok((
point_depth_stencil_view,
point_res,
point_sampler,
directed_depth_stencil_view,
directed_res,
directed_sampler,
)) => {
shadow_map.point_depth_stencil_view = point_depth_stencil_view;
shadow_map.point_res = point_res;
shadow_map.point_sampler = point_sampler;
shadow_map.directed_depth_stencil_view = directed_depth_stencil_view;
shadow_map.directed_res = directed_res;
shadow_map.directed_sampler = directed_sampler;
},
Err(err) => {
warn!("Could not create shadow map views: {:?}", err);
},
}
}
}
Ok(())
}
fn create_rt_views(
device: &wgpu::Device,
size: (u16, u16),
mode: &RenderMode,
) -> Result<
(
wgpu::TextureView,
wgpu::TextureView,
wgpu::TextureView,
wgpu::TextureView,
),
RenderError,
> {
let upscaled = Vec2::from(size)
.map(|e: u16| (e as f32 * mode.upscale_mode.factor) as u16)
.into_tuple();
let (width, height, sample_count) = match mode.aa {
AaMode::None | AaMode::Fxaa => (upscaled.0, upscaled.1, 1),
// TODO: Ensure sampling in the shader is exactly between the 4 texels
// TODO: Figure out how to do upscaling correctly with SSAA
AaMode::MsaaX4 => (upscaled.0, upscaled.1, 4),
AaMode::MsaaX8 => (upscaled.0, upscaled.1, 8),
AaMode::MsaaX16 => (upscaled.0, upscaled.1, 16),
};
let levels = 1;
let mut color_view = || {
let tex = device.create_texture(&wgpu::TextureDescriptor {
label: None,
size: wgpu::Extent3d {
width,
height,
depth: 1,
},
mip_level_count: levels,
sample_count,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8UnormSrgb,
usage: wgpu::TextureUsage::SAMPLED | wgpu::TextureUsage::OUTPUT_ATTACHMENT,
});
tex.create_view(&wgpu::TextureViewDescriptor {
label: None,
format: Some(wgpu::TextureFormat::Rgba8UnormSrgb),
dimension: Some(wgpu::TextureViewDimension::D2),
aspect: wgpu::TextureAspect::Color,
base_mip_level: 0,
level_count: Some(levels),
base_array_layer: 0,
array_layer_count: None,
})
};
let tgt_color_view = color_view();
let tgt_color_pp_view = color_view();
let tgt_depth_stencil_tex = device.create_texture(&wgpu::TextureDescriptor {
label: None,
size: wgpu::Extent3d {
width,
height,
depth: 1,
},
mip_level_count: levels,
sample_count,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Depth24Plus,
usage: wgpu::TextureUsage::SAMPLED | wgpu::TextureUsage::OUTPUT_ATTACHMENT,
});
let tgt_depth_stencil_view =
tgt_depth_stencil_tex.create_view(&wgpu::TextureViewDescriptor {
label: None,
format: Some(wgpu::TextureFormat::Depth24Plus),
dimension: Some(wgpu::TextureViewDimension::D2),
aspect: wgpu::TextureAspect::DepthOnly,
base_mip_level: 0,
level_count: Some(levels),
base_array_layer: 0,
array_layer_count: None,
});
let win_depth_tex = device.create_texture(&wgpu::TextureDescriptor {
label: None,
size: wgpu::Extent3d {
width: size.0,
height: size.1,
depth: 1,
},
mip_level_count: levels,
sample_count,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Depth24Plus,
usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT,
});
let win_depth_view = tgt_depth_stencil_tex.create_view(&wgpu::TextureViewDescriptor {
label: None,
format: Some(wgpu::TextureFormat::Depth24Plus),
dimension: Some(wgpu::TextureViewDimension::D2),
aspect: wgpu::TextureAspect::DepthOnly,
base_mip_level: 0,
level_count: Some(levels),
base_array_layer: 0,
array_layer_count: None,
});
Ok((
tgt_color_view,
tgt_depth_stencil_view,
tgt_color_pp_view,
win_depth_view,
))
}
/// Create textures and views for shadow maps.
// This is a one-use type and the two halves are not guaranteed to remain identical, so we
// disable the type complexity lint.
#[allow(clippy::type_complexity)]
fn create_shadow_views(
device: &wgpu::Device,
size: (u16, u16),
mode: &ShadowMapMode,
) -> Result<
(
wgpu::TextureView,
wgpu::Sampler,
wgpu::TextureView,
wgpu::Sampler,
),
RenderError,
> {
// (Attempt to) apply resolution factor to shadow map resolution.
let resolution_factor = mode.resolution.clamped(0.25, 4.0);
let max_texture_size = Self::max_texture_size_raw(device);
// Limit to max texture size, rather than erroring.
let size = Vec2::new(size.0, size.1).map(|e| {
let size = f32::from(e) * resolution_factor;
// NOTE: We know 0 <= e since we clamped the resolution factor to be between
// 0.25 and 4.0.
if size <= f32::from(max_texture_size) {
size as u16
} else {
max_texture_size
}
});
let levels = 1;
// Limit to max texture size rather than erroring.
let two_size = size.map(|e| {
u16::checked_next_power_of_two(e)
.filter(|&e| e <= max_texture_size)
.unwrap_or(max_texture_size)
});
let min_size = size.reduce_min();
let max_size = size.reduce_max();
let _min_two_size = two_size.reduce_min();
let _max_two_size = two_size.reduce_max();
// For rotated shadow maps, the maximum size of a pixel along any axis is the
// size of a diagonal along that axis.
let diag_size = size.map(f64::from).magnitude();
let diag_cross_size = f64::from(min_size) / f64::from(max_size) * diag_size;
let (diag_size, _diag_cross_size) =
if 0.0 < diag_size && diag_size <= f64::from(max_texture_size) {
// NOTE: diag_cross_size must be non-negative, since it is the ratio of a
// non-negative and a positive number (if max_size were zero,
// diag_size would be 0 too). And it must be <= diag_size,
// since min_size <= max_size. Therefore, if diag_size fits in a
// u16, so does diag_cross_size.
(diag_size as u16, diag_cross_size as u16)
} else {
// Limit to max texture resolution rather than error.
(max_texture_size as u16, max_texture_size as u16)
};
let diag_two_size = u16::checked_next_power_of_two(diag_size)
.filter(|&e| e <= max_texture_size)
// Limit to max texture resolution rather than error.
.unwrap_or(max_texture_size);
let point_shadow_tex = device.create_texture(&wgpu::TextureDescriptor {
label: None,
size: wgpu::Extent3d {
width: diag_two_size / 4,
height: diag_two_size / 4,
depth: 6,
},
mip_level_count: levels,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Depth24Plus,
usage: wgpu::TextureUsage::SAMPLED | wgpu::TextureUsage::OUTPUT_ATTACHMENT,
});
let point_tgt_shadow_view = point_shadow_tex.create_view(&wgpu::TextureViewDescriptor {
label: None,
format: Some(wgpu::TextureFormat::Depth24Plus),
dimension: Some(wgpu::TextureViewDimension::Cube),
aspect: wgpu::TextureAspect::DepthOnly,
base_mip_level: 0,
level_count: Some(levels),
base_array_layer: 0,
array_layer_count: None,
});
let directed_shadow_tex = device.create_texture(&wgpu::TextureDescriptor {
label: None,
size: wgpu::Extent3d {
width: diag_two_size,
height: diag_two_size,
depth: 1,
},
mip_level_count: levels,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Depth24Plus,
usage: wgpu::TextureUsage::SAMPLED | wgpu::TextureUsage::OUTPUT_ATTACHMENT,
});
let directed_tgt_shadow_view = point_shadow_tex.create_view(&wgpu::TextureViewDescriptor {
label: None,
format: Some(wgpu::TextureFormat::Depth24Plus),
dimension: Some(wgpu::TextureViewDimension::D2),
aspect: wgpu::TextureAspect::DepthOnly,
base_mip_level: 0,
level_count: Some(levels),
base_array_layer: 0,
array_layer_count: None,
});
let sampler_info = wgpu::SamplerDescriptor {
label: None,
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Nearest,
compare: Some(wgpu::CompareFunction::LessEqual),
..Default::default()
};
let point_shadow_tex_sampler = device.create_sampler(&sampler_info);
let directed_shadow_tex_sampler = device.create_sampler(&sampler_info);
Ok((
point_tgt_shadow_view,
point_shadow_tex_sampler,
directed_tgt_shadow_view,
directed_shadow_tex_sampler,
))
}
/// Get the resolution of the render target.
/// Note: the change after a resize can be delayed so
/// don't rely on this value being constant between resize events
pub fn get_resolution(&self) -> Vec2<u16> {
Vec2::new(
self.win_color_view.get_dimensions().0,
self.win_color_view.get_dimensions().1,
)
}
/// Get the resolution of the shadow render target.
pub fn get_shadow_resolution(&self) -> (Vec2<u16>, Vec2<u16>) {
if let Some(shadow_map) = &self.shadow_map {
let point_dims = shadow_map.point_depth_stencil_view.get_dimensions();
let directed_dims = shadow_map.directed_depth_stencil_view.get_dimensions();
(
Vec2::new(point_dims.0, point_dims.1),
Vec2::new(directed_dims.0, directed_dims.1),
)
} else {
(Vec2::new(1, 1), Vec2::new(1, 1))
}
}
/// Queue the clearing of the shadow targets ready for a new frame to be
/// rendered.
pub fn clear_shadows(&mut self) {
span!(_guard, "clear_shadows", "Renderer::clear_shadows");
if !self.mode.shadow.is_map() {
return;
}
if let Some(shadow_map) = self.shadow_map.as_mut() {
// let point_encoder = &mut shadow_map.point_encoder;
let point_encoder = &mut self.encoder;
point_encoder.clear_depth(&shadow_map.point_depth_stencil_view, 1.0);
// let directed_encoder = &mut shadow_map.directed_encoder;
let directed_encoder = &mut self.encoder;
directed_encoder.clear_depth(&shadow_map.directed_depth_stencil_view, 1.0);
}
}
/// NOTE: Supported by Vulkan (by default), DirectX 10+ (it seems--it's hard
/// to find proof of this, but Direct3D 10 apparently does it by
/// default, and 11 definitely does, so I assume it's natively supported
/// by DirectX itself), OpenGL 3.2+, and Metal (done by default). While
/// there may be some GPUs that don't quite support it correctly, the
/// impact is relatively small, so there is no reason not to enable it where
/// available.
#[allow(unsafe_code)]
fn enable_seamless_cube_maps() {
todo!()
// unsafe {
// // NOTE: Currently just fail silently rather than complain if the
// computer is on // a version lower than 3.2, where
// seamless cubemaps were introduced. if !device.get_info().
// is_version_supported(3, 2) { return;
// }
// // NOTE: Safe because GL_TEXTURE_CUBE_MAP_SEAMLESS is supported
// by OpenGL 3.2+ // (see https://www.khronos.org/opengl/wiki/Cubemap_Texture#Seamless_cubemap);
// // enabling seamless cube maps should always be safe regardless
// of the state of // the OpenGL context, so no further
// checks are needed. device.with_gl(|gl| {
// gl.Enable(gfx_gl::TEXTURE_CUBE_MAP_SEAMLESS);
// });
// }
}
/// Queue the clearing of the depth target ready for a new frame to be
/// rendered.
pub fn clear(&mut self) {
span!(_guard, "clear", "Renderer::clear");
self.encoder.clear_depth(&self.tgt_depth_stencil_view, 1.0);
// self.encoder.clear_stencil(&self.tgt_depth_stencil_view, 0);
self.encoder.clear_depth(&self.win_depth_view, 1.0);
}
/// Set up shadow rendering.
pub fn start_shadows(&mut self) {
if !self.mode.shadow.is_map() {
return;
}
if let Some(_shadow_map) = self.shadow_map.as_mut() {
self.encoder.flush(&mut self.device);
Self::set_depth_clamp(&mut self.device, true);
}
}
/// Perform all queued draw calls for global.shadows.
pub fn flush_shadows(&mut self) {
if !self.mode.shadow.is_map() {
return;
}
if let Some(_shadow_map) = self.shadow_map.as_mut() {
let point_encoder = &mut self.encoder;
// let point_encoder = &mut shadow_map.point_encoder;
point_encoder.flush(&mut self.device);
// let directed_encoder = &mut shadow_map.directed_encoder;
// directed_encoder.flush(&mut self.device);
// Reset depth clamping.
Self::set_depth_clamp(&mut self.device, false);
}
}
/// Perform all queued draw calls for this frame and clean up discarded
/// items.
pub fn flush(&mut self) {
span!(_guard, "flush", "Renderer::flush");
self.encoder.flush(&mut self.device);
self.device.cleanup();
// If the shaders files were changed attempt to recreate the shaders
if self.shaders.reloaded() {
self.recreate_pipelines();
}
}
/// Recreate the pipelines
fn recreate_pipelines(&mut self) {
match create_pipelines(
&mut self.factory,
&self.shaders.read(),
&self.mode,
self.shadow_map.is_some(),
) {
Ok((
skybox_pipeline,
figure_pipeline,
terrain_pipeline,
fluid_pipeline,
sprite_pipeline,
particle_pipeline,
ui_pipeline,
lod_terrain_pipeline,
clouds_pipeline,
postprocess_pipeline,
player_shadow_pipeline,
point_shadow_pipeline,
terrain_directed_shadow_pipeline,
figure_directed_shadow_pipeline,
)) => {
self.skybox_pipeline = skybox_pipeline;
self.figure_pipeline = figure_pipeline;
self.terrain_pipeline = terrain_pipeline;
self.fluid_pipeline = fluid_pipeline;
self.sprite_pipeline = sprite_pipeline;
self.particle_pipeline = particle_pipeline;
self.ui_pipeline = ui_pipeline;
self.lod_terrain_pipeline = lod_terrain_pipeline;
self.clouds_pipeline = clouds_pipeline;
self.postprocess_pipeline = postprocess_pipeline;
self.player_shadow_pipeline = player_shadow_pipeline;
if let (
Some(point_pipeline),
Some(terrain_directed_pipeline),
Some(figure_directed_pipeline),
Some(shadow_map),
) = (
point_shadow_pipeline,
terrain_directed_shadow_pipeline,
figure_directed_shadow_pipeline,
self.shadow_map.as_mut(),
) {
shadow_map.point_pipeline = point_pipeline;
shadow_map.terrain_directed_pipeline = terrain_directed_pipeline;
shadow_map.figure_directed_pipeline = figure_directed_pipeline;
}
},
Err(e) => error!(?e, "Could not recreate shaders from assets due to an error",),
}
}
/// Create a new set of constants with the provided values.
pub fn create_consts<T: Copy + zerocopy::AsBytes>(
&mut self,
vals: &[T],
) -> Result<Consts<T>, RenderError> {
let mut consts = Consts::new(&mut self.factory, vals.len());
consts.update(&mut self.encoder, vals, 0)?;
Ok(consts)
}
/// Update a set of constants with the provided values.
pub fn update_consts<T: Copy + zerocopy::AsBytes>(
&mut self,
consts: &mut Consts<T>,
vals: &[T],
) -> Result<(), RenderError> {
consts.update(&mut self.encoder, vals, 0)
}
/// Create a new set of instances with the provided values.
pub fn create_instances<T: Copy + zerocopy::AsBytes>(
&mut self,
vals: &[T],
) -> Result<Instances<T>, RenderError> {
let mut instances = Instances::new(&mut self.factory, vals.len())?;
instances.update(&mut self.encoder, vals)?;
Ok(instances)
}
/// Create a new model from the provided mesh.
pub fn create_model<V: Vertex>(&mut self, mesh: &Mesh<V>) -> Result<Model<V>, RenderError> {
Ok(Model::new(&mut self.factory, mesh))
}
/// Create a new dynamic model with the specified size.
pub fn create_dynamic_model<V: Vertex>(
&mut self,
size: usize,
) -> Result<Model<V>, RenderError> {
Model::new(&self.device, size)
}
/// Update a dynamic model with a mesh and a offset.
pub fn update_model<V: Vertex>(
&mut self,
model: &Model<V>,
mesh: &Mesh<V>,
offset: usize,
) -> Result<(), RenderError> {
model.update(&mut self.encoder, mesh, offset)
}
/// Return the maximum supported texture size.
pub fn max_texture_size(&self) -> u16 { Self::max_texture_size_raw(&self.factory) }
/// Return the maximum supported texture size from the factory.
fn max_texture_size_raw(device: &wgpu::Device) -> u16 {
// This value is temporary as there are plans to include a way to get this in
// wgpu this is just a sane standard for now
8192
}
/// Create a new immutable texture from the provided image.
pub fn create_texture_with_data_raw(
&mut self,
texture_info: wgpu::TextureDescriptor,
sampler_info: wgpu::SamplerDescriptor,
bytes_per_row: u32,
data: &[u8],
) -> Texture {
let tex = Texture::new_raw(&self.device, texture_info, sampler_info);
tex.update(
&self.device,
&self.queue,
[0; 2],
[texture_info.size.x, texture_info.size.y],
data,
bytes_per_row,
);
tex
}
/// Create a new raw texture.
pub fn create_texture_raw(
&mut self,
texture_info: wgpu::TextureDescriptor,
sampler_info: wgpu::SamplerDescriptor,
) -> Texture {
Texture::new_raw(&self.device, texture_info, sampler_info)
}
/// Create a new texture from the provided image.
///
/// Currently only supports Rgba8Srgb
pub fn create_texture(
&mut self,
image: &image::DynamicImage,
filter_method: Option<FilterMode>,
address_mode: Option<AddressMode>,
) -> Texture {
Texture::new(
&self.device,
&self.queue,
image,
filter_method,
address_mode,
)
}
/// Create a new dynamic texture with the
/// specified dimensions.
///
/// Currently only supports Rgba8Srgb
pub fn create_dynamic_texture(&mut self, dims: Vec2<u16>) -> Texture {
Texture::new_dynamic(&mut self.factory, dims.x, dims.y)
}
/// Update a texture with the provided offset, size, and data.
///
/// Currently only supports Rgba8Srgb
pub fn update_texture(
&mut self,
texture: &Texture, /* <T> */
offset: [u16; 2],
size: [u16; 2],
// TODO
// data: &[<<T as gfx::format::Formatted>::Surface as
// gfx::format::SurfaceTyped>::DataType], ) -> Result<(), RenderError>
// where
// <T as gfx::format::Formatted>::Surface: gfx::format::TextureSurface,
// <T as gfx::format::Formatted>::Channel: gfx::format::TextureChannel,
// <<T as gfx::format::Formatted>::Surface as gfx::format::SurfaceTyped>::DataType:
// Copy, {
// texture.update(&mut self.encoder, offset, size, data)
data: &[[u8; 4]],
bytes_per_row: u32,
) {
texture.update(&mut self.encoder, offset, size, data, bytes_per_row)
}
/// Creates a download buffer, downloads the win_color_view, and converts to
/// a image::DynamicImage.
#[allow(clippy::map_clone)] // TODO: Pending review in #587
pub fn create_screenshot(&mut self) -> Result<image::DynamicImage, RenderError> {
todo!()
// let (width, height) = self.get_resolution().into_tuple();
// let download_buf = self
// .device
// .create_buffer(&wgpu::BufferDescriptor {
// label: None,
// size: width * height * 4,
// usage : wgpu::BufferUsage::COPY_DST,
// mapped_at_creation: true
// });
// let encoder =
// self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor
// {label: None});
// encoder.copy_texture_to_buffer(&wgpu::TextureCopyViewBase {
// origin: &self.wi
// }, destination, copy_size)
// self.encoder.copy_texture_to_buffer_raw(
// self.win_color_view.raw().get_texture(),
// None,
// gfx::texture::RawImageInfo {
// xoffset: 0,
// yoffset: 0,
// zoffset: 0,
// width,
// height,
// depth: 0,
// format: WinColorFmt::get_format(),
// mipmap: 0,
// },
// download.raw(),
// 0,
// )?;
// self.flush();
// // Assumes that the format is Rgba8.
// let raw_data = self
// .factory
// .read_mapping(&download)?
// .chunks_exact(width as usize)
// .rev()
// .flatten()
// .flatten()
// .map(|&e| e)
// .collect::<Vec<_>>();
// Ok(image::DynamicImage::ImageRgba8(
// // Should not fail if the dimensions are correct.
// image::ImageBuffer::from_raw(width as u32, height as u32,
// raw_data).unwrap(), ))
}
/// Queue the rendering of the provided skybox model in the upcoming frame.
pub fn render_skybox(
&mut self,
model: &Model<skybox::SkyboxPipeline>,
global: &GlobalModel,
locals: &Consts<skybox::Locals>,
lod: &lod_terrain::LodData,
) {
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&self.skybox_pipeline.pso,
&skybox::pipe::Data {
vbuf: model.vbuf.clone(),
locals: locals.buf.clone(),
globals: global.globals.buf.clone(),
noise: (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
alt: (lod.alt.srv.clone(), lod.alt.sampler.clone()),
horizon: (lod.horizon.srv.clone(), lod.horizon.sampler.clone()),
tgt_color: self.tgt_color_view.clone(),
tgt_depth_stencil: (self.tgt_depth_stencil_view.clone()/* , (1, 1) */),
},
);
}
/// Queue the rendering of the provided figure model in the upcoming frame.
pub fn render_figure(
&mut self,
model: &figure::FigureModel,
col_lights: &Texture<ColLightFmt>,
global: &GlobalModel,
locals: &Consts<figure::Locals>,
bones: &Consts<figure::BoneData>,
lod: &lod_terrain::LodData,
) {
let (point_shadow_maps, directed_shadow_maps) =
if let Some(shadow_map) = &mut self.shadow_map {
(
(
shadow_map.point_res.clone(),
shadow_map.point_sampler.clone(),
),
(
shadow_map.directed_res.clone(),
shadow_map.directed_sampler.clone(),
),
)
} else {
(
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
)
};
let model = &model.opaque;
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&self.figure_pipeline.pso,
&figure::pipe::Data {
vbuf: model.vbuf.clone(),
col_lights: (col_lights.srv.clone(), col_lights.sampler.clone()),
locals: locals.buf.clone(),
globals: global.globals.buf.clone(),
bones: bones.buf.clone(),
lights: global.lights.buf.clone(),
shadows: global.shadows.buf.clone(),
light_shadows: global.shadow_mats.buf.clone(),
point_shadow_maps,
directed_shadow_maps,
noise: (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
alt: (lod.alt.srv.clone(), lod.alt.sampler.clone()),
horizon: (lod.horizon.srv.clone(), lod.horizon.sampler.clone()),
tgt_color: self.tgt_color_view.clone(),
tgt_depth_stencil: (self.tgt_depth_stencil_view.clone()/* , (1, 1) */),
},
);
}
/// Queue the rendering of the player silhouette in the upcoming frame.
pub fn render_player_shadow(
&mut self,
_model: &figure::FigureModel,
_col_lights: &Texture<ColLightFmt>,
_global: &GlobalModel,
_bones: &Consts<figure::BoneData>,
_lod: &lod_terrain::LodData,
_locals: &Consts<shadow::Locals>,
) {
// FIXME: Consider reenabling at some point.
/* let (point_shadow_maps, directed_shadow_maps) =
if let Some(shadow_map) = &mut self.shadow_map {
(
(
shadow_map.point_res.clone(),
shadow_map.point_sampler.clone(),
),
(
shadow_map.directed_res.clone(),
shadow_map.directed_sampler.clone(),
),
)
} else {
(
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
)
};
let model = &model.opaque;
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&self.player_shadow_pipeline.pso,
&figure::pipe::Data {
vbuf: model.vbuf.clone(),
col_lights: (col_lights.srv.clone(), col_lights.sampler.clone()),
locals: locals.buf.clone(),
globals: global.globals.buf.clone(),
bones: bones.buf.clone(),
lights: global.lights.buf.clone(),
shadows: global.shadows.buf.clone(),
light_shadows: global.shadow_mats.buf.clone(),
point_shadow_maps,
directed_shadow_maps,
noise: (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
alt: (lod.alt.srv.clone(), lod.alt.sampler.clone()),
horizon: (lod.horizon.srv.clone(), lod.horizon.sampler.clone()),
tgt_color: self.tgt_color_view.clone(),
tgt_depth_stencil: (self.tgt_depth_stencil_view.clone()/* , (0, 0) */),
},
); */
}
/// Queue the rendering of the player model in the upcoming frame.
pub fn render_player(
&mut self,
model: &figure::FigureModel,
col_lights: &Texture<ColLightFmt>,
global: &GlobalModel,
locals: &Consts<figure::Locals>,
bones: &Consts<figure::BoneData>,
lod: &lod_terrain::LodData,
) {
let (point_shadow_maps, directed_shadow_maps) =
if let Some(shadow_map) = &mut self.shadow_map {
(
(
shadow_map.point_res.clone(),
shadow_map.point_sampler.clone(),
),
(
shadow_map.directed_res.clone(),
shadow_map.directed_sampler.clone(),
),
)
} else {
(
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
)
};
let model = &model.opaque;
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&self.figure_pipeline.pso,
&figure::pipe::Data {
vbuf: model.vbuf.clone(),
col_lights: (col_lights.srv.clone(), col_lights.sampler.clone()),
locals: locals.buf.clone(),
globals: global.globals.buf.clone(),
bones: bones.buf.clone(),
lights: global.lights.buf.clone(),
shadows: global.shadows.buf.clone(),
light_shadows: global.shadow_mats.buf.clone(),
point_shadow_maps,
directed_shadow_maps,
noise: (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
alt: (lod.alt.srv.clone(), lod.alt.sampler.clone()),
horizon: (lod.horizon.srv.clone(), lod.horizon.sampler.clone()),
tgt_color: self.tgt_color_view.clone(),
tgt_depth_stencil: (self.tgt_depth_stencil_view.clone()/* , (1, 1) */),
},
);
}
/// Queue the rendering of the provided terrain chunk model in the upcoming
/// frame.
pub fn render_terrain_chunk(
&mut self,
model: &Model<terrain::TerrainPipeline>,
col_lights: &Texture<ColLightFmt>,
global: &GlobalModel,
locals: &Consts<terrain::Locals>,
lod: &lod_terrain::LodData,
) {
let (point_shadow_maps, directed_shadow_maps) =
if let Some(shadow_map) = &mut self.shadow_map {
(
(
shadow_map.point_res.clone(),
shadow_map.point_sampler.clone(),
),
(
shadow_map.directed_res.clone(),
shadow_map.directed_sampler.clone(),
),
)
} else {
(
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
)
};
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&self.terrain_pipeline.pso,
&terrain::pipe::Data {
vbuf: model.vbuf.clone(),
// TODO: Consider splitting out texture atlas data into a separate vertex buffer,
// since we don't need it for things like global.shadows.
col_lights: (col_lights.srv.clone(), col_lights.sampler.clone()),
locals: locals.buf.clone(),
globals: global.globals.buf.clone(),
lights: global.lights.buf.clone(),
shadows: global.shadows.buf.clone(),
light_shadows: global.shadow_mats.buf.clone(),
point_shadow_maps,
directed_shadow_maps,
noise: (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
alt: (lod.alt.srv.clone(), lod.alt.sampler.clone()),
horizon: (lod.horizon.srv.clone(), lod.horizon.sampler.clone()),
tgt_color: self.tgt_color_view.clone(),
tgt_depth_stencil: (self.tgt_depth_stencil_view.clone()/* , (1, 1) */),
},
);
}
/// Queue the rendering of a shadow map from a point light in the upcoming
/// frame.
pub fn render_shadow_point(
&mut self,
model: &Model<terrain::TerrainPipeline>,
global: &GlobalModel,
terrain_locals: &Consts<terrain::Locals>,
locals: &Consts<shadow::Locals>,
) {
if !self.mode.shadow.is_map() {
return;
}
// NOTE: Don't render shadows if the shader is not supported.
let shadow_map = if let Some(shadow_map) = &mut self.shadow_map {
shadow_map
} else {
return;
};
// let point_encoder = &mut shadow_map.point_encoder;
let point_encoder = &mut self.encoder;
point_encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&shadow_map.point_pipeline.pso,
&shadow::pipe::Data {
// Terrain vertex stuff
vbuf: model.vbuf.clone(),
locals: terrain_locals.buf.clone(),
globals: global.globals.buf.clone(),
// Shadow stuff
light_shadows: locals.buf.clone(),
tgt_depth_stencil: shadow_map.point_depth_stencil_view.clone(),
},
);
}
/// Queue the rendering of terrain shadow map from all directional lights in
/// the upcoming frame.
pub fn render_terrain_shadow_directed(
&mut self,
model: &Model<terrain::TerrainPipeline>,
global: &GlobalModel,
terrain_locals: &Consts<terrain::Locals>,
locals: &Consts<shadow::Locals>,
) {
if !self.mode.shadow.is_map() {
return;
}
// NOTE: Don't render shadows if the shader is not supported.
let shadow_map = if let Some(shadow_map) = &mut self.shadow_map {
shadow_map
} else {
return;
};
// let directed_encoder = &mut shadow_map.directed_encoder;
let directed_encoder = &mut self.encoder;
directed_encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&shadow_map.terrain_directed_pipeline.pso,
&shadow::pipe::Data {
// Terrain vertex stuff
vbuf: model.vbuf.clone(),
locals: terrain_locals.buf.clone(),
globals: global.globals.buf.clone(),
// Shadow stuff
light_shadows: locals.buf.clone(),
tgt_depth_stencil: shadow_map.directed_depth_stencil_view.clone(),
},
);
}
/// Queue the rendering of figure shadow map from all directional lights in
/// the upcoming frame.
pub fn render_figure_shadow_directed(
&mut self,
model: &figure::FigureModel,
global: &GlobalModel,
figure_locals: &Consts<figure::Locals>,
bones: &Consts<figure::BoneData>,
locals: &Consts<shadow::Locals>,
) {
if !self.mode.shadow.is_map() {
return;
}
// NOTE: Don't render shadows if the shader is not supported.
let shadow_map = if let Some(shadow_map) = &mut self.shadow_map {
shadow_map
} else {
return;
};
let model = &model.opaque;
// let directed_encoder = &mut shadow_map.directed_encoder;
let directed_encoder = &mut self.encoder;
directed_encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&shadow_map.figure_directed_pipeline.pso,
&shadow::figure_pipe::Data {
// Terrain vertex stuff
vbuf: model.vbuf.clone(),
locals: figure_locals.buf.clone(),
bones: bones.buf.clone(),
globals: global.globals.buf.clone(),
// Shadow stuff
light_shadows: locals.buf.clone(),
tgt_depth_stencil: shadow_map.directed_depth_stencil_view.clone(),
},
);
}
/// Queue the rendering of the provided terrain chunk model in the upcoming
/// frame.
pub fn render_fluid_chunk(
&mut self,
model: &Model<fluid::FluidPipeline>,
global: &GlobalModel,
locals: &Consts<terrain::Locals>,
lod: &lod_terrain::LodData,
waves: &Texture,
) {
let (point_shadow_maps, directed_shadow_maps) =
if let Some(shadow_map) = &mut self.shadow_map {
(
(
shadow_map.point_res.clone(),
shadow_map.point_sampler.clone(),
),
(
shadow_map.directed_res.clone(),
shadow_map.directed_sampler.clone(),
),
)
} else {
(
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
)
};
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&self.fluid_pipeline.pso,
&fluid::pipe::Data {
vbuf: model.vbuf.clone(),
locals: locals.buf.clone(),
globals: global.globals.buf.clone(),
lights: global.lights.buf.clone(),
shadows: global.shadows.buf.clone(),
light_shadows: global.shadow_mats.buf.clone(),
point_shadow_maps,
directed_shadow_maps,
alt: (lod.alt.srv.clone(), lod.alt.sampler.clone()),
horizon: (lod.horizon.srv.clone(), lod.horizon.sampler.clone()),
noise: (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
waves: (waves.srv.clone(), waves.sampler.clone()),
tgt_color: self.tgt_color_view.clone(),
tgt_depth_stencil: (self.tgt_depth_stencil_view.clone()/* , (1, 1) */),
},
);
}
/// Queue the rendering of the provided terrain chunk model in the upcoming
/// frame.
pub fn render_sprites(
&mut self,
model: &Model<sprite::SpritePipeline>,
col_lights: &Texture<ColLightFmt>,
global: &GlobalModel,
terrain_locals: &Consts<terrain::Locals>,
locals: &Consts<sprite::Locals>,
instances: &Instances<sprite::Instance>,
lod: &lod_terrain::LodData,
) {
let (point_shadow_maps, directed_shadow_maps) =
if let Some(shadow_map) = &mut self.shadow_map {
(
(
shadow_map.point_res.clone(),
shadow_map.point_sampler.clone(),
),
(
shadow_map.directed_res.clone(),
shadow_map.directed_sampler.clone(),
),
)
} else {
(
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
)
};
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: Some((instances.count() as u32, 0)),
buffer: gfx::IndexBuffer::Auto,
},
&self.sprite_pipeline.pso,
&sprite::pipe::Data {
vbuf: model.vbuf.clone(),
ibuf: instances.ibuf.clone(),
col_lights: (col_lights.srv.clone(), col_lights.sampler.clone()),
terrain_locals: terrain_locals.buf.clone(),
// NOTE: It would be nice if this wasn't needed and we could use a constant buffer
// offset into the sprite data. Hopefully, when we switch to wgpu we can do this,
// as it offers the exact API we want (the equivalent can be done in OpenGL using
// glBindBufferOffset).
locals: locals.buf.clone(),
globals: global.globals.buf.clone(),
lights: global.lights.buf.clone(),
shadows: global.shadows.buf.clone(),
light_shadows: global.shadow_mats.buf.clone(),
point_shadow_maps,
directed_shadow_maps,
noise: (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
alt: (lod.alt.srv.clone(), lod.alt.sampler.clone()),
horizon: (lod.horizon.srv.clone(), lod.horizon.sampler.clone()),
tgt_color: self.tgt_color_view.clone(),
tgt_depth_stencil: (self.tgt_depth_stencil_view.clone()/* , (1, 1) */),
},
);
}
/// Queue the rendering of the provided LoD terrain model in the upcoming
/// frame.
pub fn render_lod_terrain(
&mut self,
model: &Model<lod_terrain::LodTerrainPipeline>,
global: &GlobalModel,
locals: &Consts<lod_terrain::Locals>,
lod: &lod_terrain::LodData,
) {
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&self.lod_terrain_pipeline.pso,
&lod_terrain::pipe::Data {
vbuf: model.vbuf.clone(),
locals: locals.buf.clone(),
globals: global.globals.buf.clone(),
noise: (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
map: (lod.map.srv.clone(), lod.map.sampler.clone()),
alt: (lod.alt.srv.clone(), lod.alt.sampler.clone()),
horizon: (lod.horizon.srv.clone(), lod.horizon.sampler.clone()),
tgt_color: self.tgt_color_view.clone(),
tgt_depth_stencil: (self.tgt_depth_stencil_view.clone()/* , (1, 1) */),
},
);
}
/// Queue the rendering of the provided particle in the upcoming frame.
pub fn render_particles(
&mut self,
model: &Model<particle::ParticlePipeline>,
global: &GlobalModel,
instances: &Instances<particle::Instance>,
lod: &lod_terrain::LodData,
) {
let (point_shadow_maps, directed_shadow_maps) =
if let Some(shadow_map) = &mut self.shadow_map {
(
(
shadow_map.point_res.clone(),
shadow_map.point_sampler.clone(),
),
(
shadow_map.directed_res.clone(),
shadow_map.directed_sampler.clone(),
),
)
} else {
(
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
(self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
)
};
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: Some((instances.count() as u32, 0)),
buffer: gfx::IndexBuffer::Auto,
},
&self.particle_pipeline.pso,
&particle::pipe::Data {
vbuf: model.vbuf.clone(),
ibuf: instances.ibuf.clone(),
globals: global.globals.buf.clone(),
lights: global.lights.buf.clone(),
shadows: global.shadows.buf.clone(),
light_shadows: global.shadow_mats.buf.clone(),
point_shadow_maps,
directed_shadow_maps,
noise: (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
alt: (lod.alt.srv.clone(), lod.alt.sampler.clone()),
horizon: (lod.horizon.srv.clone(), lod.horizon.sampler.clone()),
tgt_color: self.tgt_color_view.clone(),
tgt_depth_stencil: (self.tgt_depth_stencil_view.clone()/* , (1, 1) */),
},
);
}
/// Queue the rendering of the provided UI element in the upcoming frame.
pub fn render_ui_element<F: gfx::format::Formatted<View = [f32; 4]>>(
&mut self,
model: Model<ui::UiPipeline>,
tex: &Texture<F>,
scissor: Aabr<u16>,
globals: &Consts<Globals>,
locals: &Consts<ui::Locals>,
) where
F::Surface: gfx::format::TextureSurface,
F::Channel: gfx::format::TextureChannel,
<F::Surface as gfx::format::SurfaceTyped>::DataType: Copy,
{
let Aabr { min, max } = scissor;
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range.start,
end: model.vertex_range.end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&self.ui_pipeline.pso,
&ui::pipe::Data {
vbuf: model.vbuf,
scissor: gfx::Rect {
x: min.x,
y: min.y,
w: max.x - min.x,
h: max.y - min.y,
},
tex: (tex.srv.clone(), tex.sampler.clone()),
locals: locals.buf.clone(),
globals: globals.buf.clone(),
tgt_color: self.win_color_view.clone(),
tgt_depth: self.win_depth_view.clone(),
},
);
}
pub fn render_clouds(
&mut self,
model: &Model<clouds::CloudsPipeline>,
globals: &Consts<Globals>,
locals: &Consts<clouds::Locals>,
lod: &lod_terrain::LodData,
) {
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&self.clouds_pipeline.pso,
&clouds::pipe::Data {
vbuf: model.vbuf.clone(),
locals: locals.buf.clone(),
globals: globals.buf.clone(),
map: (lod.map.srv.clone(), lod.map.sampler.clone()),
alt: (lod.alt.srv.clone(), lod.alt.sampler.clone()),
horizon: (lod.horizon.srv.clone(), lod.horizon.sampler.clone()),
color_sampler: (self.tgt_color_res.clone(), self.sampler.clone()),
depth_sampler: (self.tgt_depth_res.clone(), self.sampler.clone()),
noise: (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
tgt_color: self.tgt_color_pp_view.clone(),
},
)
}
pub fn render_post_process(
&mut self,
model: &Model<postprocess::PostProcessPipeline>,
globals: &Consts<Globals>,
locals: &Consts<postprocess::Locals>,
lod: &lod_terrain::LodData,
) {
self.encoder.draw(
&gfx::Slice {
start: model.vertex_range().start,
end: model.vertex_range().end,
base_vertex: 0,
instances: None,
buffer: gfx::IndexBuffer::Auto,
},
&self.postprocess_pipeline.pso,
&postprocess::pipe::Data {
vbuf: model.vbuf.clone(),
locals: locals.buf.clone(),
globals: globals.buf.clone(),
map: (lod.map.srv.clone(), lod.map.sampler.clone()),
alt: (lod.alt.srv.clone(), lod.alt.sampler.clone()),
horizon: (lod.horizon.srv.clone(), lod.horizon.sampler.clone()),
color_sampler: (self.tgt_color_res_pp.clone(), self.sampler.clone()),
depth_sampler: (self.tgt_depth_res.clone(), self.sampler.clone()),
noise: (self.noise_tex.srv.clone(), self.noise_tex.sampler.clone()),
tgt_color: self.win_color_view.clone(),
},
)
}
}
/// Creates all the pipelines used to render.
#[allow(clippy::type_complexity)] // TODO: Pending review in #587
fn create_pipelines(
factory: &mut gfx_backend::Factory,
shaders: &Shaders,
mode: &RenderMode,
has_shadow_views: bool,
) -> Result<
(
wgpu::RenderPipeline,
wgpu::RenderPipeline,
wgpu::RenderPipeline,
wgpu::RenderPipeline,
wgpu::RenderPipeline,
wgpu::RenderPipeline,
wgpu::RenderPipeline,
wgpu::RenderPipeline,
wgpu::RenderPipeline,
wgpu::RenderPipeline,
wgpu::RenderPipeline,
Option<wgpu::RenderPipeline>,
Option<wgpu::RenderPipeline>,
Option<wgpu::RenderPipeline>,
),
RenderError,
> {
// We dynamically add extra configuration settings to the constants file.
let constants = format!(
r#"
{}
#define VOXYGEN_COMPUTATION_PREFERENCE {}
#define FLUID_MODE {}
#define CLOUD_MODE {}
#define LIGHTING_ALGORITHM {}
#define SHADOW_MODE {}
"#,
shaders.constants.read().0,
// TODO: Configurable vertex/fragment shader preference.
"VOXYGEN_COMPUTATION_PREFERENCE_FRAGMENT",
match mode.fluid {
FluidMode::Cheap => "FLUID_MODE_CHEAP",
FluidMode::Shiny => "FLUID_MODE_SHINY",
},
match mode.cloud {
CloudMode::None => "CLOUD_MODE_NONE",
CloudMode::Minimal => "CLOUD_MODE_MINIMAL",
CloudMode::Low => "CLOUD_MODE_LOW",
CloudMode::Medium => "CLOUD_MODE_MEDIUM",
CloudMode::High => "CLOUD_MODE_HIGH",
CloudMode::Ultra => "CLOUD_MODE_ULTRA",
},
match mode.lighting {
LightingMode::Ashikhmin => "LIGHTING_ALGORITHM_ASHIKHMIN",
LightingMode::BlinnPhong => "LIGHTING_ALGORITHM_BLINN_PHONG",
LightingMode::Lambertian => "LIGHTING_ALGORITHM_LAMBERTIAN",
},
match mode.shadow {
ShadowMode::None => "SHADOW_MODE_NONE",
ShadowMode::Map(_) if has_shadow_views => "SHADOW_MODE_MAP",
ShadowMode::Cheap | ShadowMode::Map(_) => "SHADOW_MODE_CHEAP",
},
);
let anti_alias = &match mode.aa {
AaMode::None => shaders.anti_alias_none,
AaMode::Fxaa => shaders.anti_alias_fxaa,
AaMode::MsaaX4 => shaders.anti_alias_msaa_x4,
AaMode::MsaaX8 => shaders.anti_alias_msaa_x8,
AaMode::MsaaX16 => shaders.anti_alias_msaa_x16,
};
let cloud = &match mode.cloud {
CloudMode::None => shaders.cloud_none,
_ => shaders.cloud_regular,
};
let mut include_ctx = IncludeContext::new();
include_ctx.include("constants.glsl", &constants);
include_ctx.include("globals.glsl", &shaders.globals.read().0);
include_ctx.include("shadows.glsl", &shaders.shadows.read().0);
include_ctx.include("sky.glsl", &shaders.sky.read().0);
include_ctx.include("light.glsl", &shaders.light.read().0);
include_ctx.include("srgb.glsl", &shaders.srgb.read().0);
include_ctx.include("random.glsl", &shaders.random.read().0);
include_ctx.include("lod.glsl", &shaders.lod.read().0);
include_ctx.include("anti-aliasing.glsl", &anti_alias.read().0);
include_ctx.include("cloud.glsl", &cloud.read().0);
// Construct a pipeline for rendering skyboxes
let skybox_pipeline = create_pipeline(
factory,
skybox::pipe::new(),
&shaders.skybox_vert.read().0,
&shaders.skybox_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
)?;
// Construct a pipeline for rendering figures
let figure_pipeline = create_pipeline(
factory,
figure::pipe::new(),
&shaders.figure_vert.read().0,
&shaders.figure_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
)?;
// Construct a pipeline for rendering terrain
let terrain_pipeline = create_pipeline(
factory,
terrain::pipe::new(),
&shaders.terrain_vert.read().0,
&shaders.terrain_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
)?;
// Construct a pipeline for rendering fluids
let fluid_pipeline = create_pipeline(
factory,
fluid::pipe::new(),
&shaders.fluid_vert.read().0,
&match mode.fluid {
FluidMode::Cheap => shaders.fluid_frag_cheap,
FluidMode::Shiny => shaders.fluid_frag_shiny,
}
.read()
.0,
&include_ctx,
gfx::state::CullFace::Nothing,
)?;
// Construct a pipeline for rendering sprites
let sprite_pipeline = create_pipeline(
factory,
sprite::pipe::new(),
&shaders.sprite_vert.read().0,
&shaders.sprite_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
)?;
// Construct a pipeline for rendering particles
let particle_pipeline = create_pipeline(
factory,
particle::pipe::new(),
&shaders.particle_vert.read().0,
&shaders.particle_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
)?;
// Construct a pipeline for rendering UI elements
let ui_pipeline = create_pipeline(
factory,
ui::pipe::new(),
&shaders.ui_vert.read().0,
&shaders.ui_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
)?;
// Construct a pipeline for rendering terrain
let lod_terrain_pipeline = create_pipeline(
factory,
lod_terrain::pipe::new(),
&shaders.lod_terrain_vert.read().0,
&shaders.lod_terrain_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
)?;
// Construct a pipeline for rendering our clouds (a kind of post-processing)
let clouds_pipeline = create_pipeline(
factory,
clouds::pipe::new(),
&shaders.clouds_vert.read().0,
&shaders.clouds_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
)?;
// Construct a pipeline for rendering our post-processing
let postprocess_pipeline = create_pipeline(
factory,
postprocess::pipe::new(),
&shaders.postprocess_vert.read().0,
&shaders.postprocess_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
)?;
// Construct a pipeline for rendering the player silhouette
let player_shadow_pipeline = create_pipeline(
factory,
figure::pipe::Init {
tgt_depth_stencil: (gfx::preset::depth::PASS_TEST/*,
Stencil::new(
Comparison::Equal,
0xff,
(StencilOp::Keep, StencilOp::Keep, StencilOp::Keep),
),*/),
..figure::pipe::new()
},
&shaders.figure_vert.read().0,
&shaders.player_shadow_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
)?;
// Construct a pipeline for rendering point light terrain shadow maps.
let point_shadow_pipeline = match create_shadow_pipeline(
factory,
shadow::pipe::new(),
&shaders.terrain_point_shadow_vert.read().0,
Some(&shaders.light_shadows_geom.read().0),
&shaders.light_shadows_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
None, // Some(gfx::state::Offset(2, 0))
) {
Ok(pipe) => Some(pipe),
Err(err) => {
warn!("Could not load point shadow map pipeline: {:?}", err);
None
},
};
// Construct a pipeline for rendering directional light terrain shadow maps.
let terrain_directed_shadow_pipeline = match create_shadow_pipeline(
factory,
shadow::pipe::new(),
&shaders.terrain_directed_shadow_vert.read().0,
None,
&shaders.directed_shadow_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
None, // Some(gfx::state::Offset(2, 1))
) {
Ok(pipe) => Some(pipe),
Err(err) => {
warn!(
"Could not load directed terrain shadow map pipeline: {:?}",
err
);
None
},
};
// Construct a pipeline for rendering directional light figure shadow maps.
let figure_directed_shadow_pipeline = match create_shadow_pipeline(
factory,
shadow::figure_pipe::new(),
&shaders.figure_directed_shadow_vert.read().0,
None,
&shaders.directed_shadow_frag.read().0,
&include_ctx,
gfx::state::CullFace::Back,
None, // Some(gfx::state::Offset(2, 1))
) {
Ok(pipe) => Some(pipe),
Err(err) => {
warn!(
"Could not load directed figure shadow map pipeline: {:?}",
err
);
None
},
};
Ok((
skybox_pipeline,
figure_pipeline,
terrain_pipeline,
fluid_pipeline,
sprite_pipeline,
particle_pipeline,
ui_pipeline,
lod_terrain_pipeline,
clouds_pipeline,
postprocess_pipeline,
player_shadow_pipeline,
point_shadow_pipeline,
terrain_directed_shadow_pipeline,
figure_directed_shadow_pipeline,
))
}
/// Create a new pipeline from the provided vertex shader and fragment shader.
fn create_pipeline<P: gfx::pso::PipelineInit>(
factory: &mut gfx_backend::Factory,
pipe: P,
vs: &str,
fs: &str,
ctx: &IncludeContext,
cull_face: gfx::state::CullFace,
) -> Result<GfxPipeline<P>, RenderError> {
let vs = ctx.expand(vs)?;
let fs = ctx.expand(fs)?;
let program = factory.link_program(vs.as_bytes(), fs.as_bytes())?;
let result = Ok(GfxPipeline {
pso: factory.create_pipeline_from_program(
&program,
gfx::Primitive::TriangleList,
gfx::state::Rasterizer {
front_face: gfx::state::FrontFace::CounterClockwise,
cull_face,
method: gfx::state::RasterMethod::Fill,
offset: None,
samples: Some(gfx::state::MultiSample),
},
pipe,
)?,
});
result
}
/// Create a new shadow map pipeline.
fn create_shadow_pipeline<P: gfx::pso::PipelineInit>(
factory: &mut gfx_backend::Factory,
pipe: P,
vs: &str,
gs: Option<&str>,
fs: &str,
ctx: &IncludeContext,
cull_face: gfx::state::CullFace,
offset: Option<gfx::state::Offset>,
) -> Result<GfxPipeline<P>, RenderError> {
let vs = ctx.expand(vs)?;
let gs = gs.map(|gs| ctx.expand(gs)).transpose()?;
let fs = ctx.expand(fs)?;
let shader_set = if let Some(gs) = gs {
factory.create_shader_set_geometry(vs.as_bytes(), gs.as_bytes(), fs.as_bytes())?
} else {
factory.create_shader_set(vs.as_bytes(), fs.as_bytes())?
};
Ok(GfxPipeline {
pso: factory.create_pipeline_state(
&shader_set,
gfx::Primitive::TriangleList,
gfx::state::Rasterizer {
front_face: gfx::state::FrontFace::CounterClockwise,
// Second-depth shadow mapping: should help reduce z-fighting provided all objects
// are "watertight" (every triangle edge is shared with at most one other
// triangle); this *should* be true for Veloren.
cull_face: match cull_face {
gfx::state::CullFace::Front => gfx::state::CullFace::Back,
gfx::state::CullFace::Back => gfx::state::CullFace::Front,
gfx::state::CullFace::Nothing => gfx::state::CullFace::Nothing,
},
method: gfx::state::RasterMethod::Fill,
offset,
samples: None,
},
pipe,
)?,
})
}