mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
23f1144fe2
Very poorly optimized
336 lines
17 KiB
GLSL
336 lines
17 KiB
GLSL
#version 330 core
|
|
|
|
#include <constants.glsl>
|
|
|
|
#define LIGHTING_TYPE (LIGHTING_TYPE_TRANSMISSION | LIGHTING_TYPE_REFLECTION)
|
|
|
|
#define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_SPECULAR
|
|
|
|
#if (FLUID_MODE == FLUID_MODE_CHEAP)
|
|
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE
|
|
#elif (FLUID_MODE == FLUID_MODE_SHINY)
|
|
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE
|
|
#endif
|
|
|
|
#define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET
|
|
|
|
#define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN
|
|
|
|
#define HAS_SHADOW_MAPS
|
|
|
|
// https://www.shadertoy.com/view/XdsyWf
|
|
|
|
#include <globals.glsl>
|
|
#include <random.glsl>
|
|
|
|
layout(location = 0) in vec3 f_pos;
|
|
layout(location = 1) flat in uint f_pos_norm;
|
|
// in vec3 f_col;
|
|
// in float f_light;
|
|
// in vec3 light_pos[2];
|
|
|
|
//struct ShadowLocals {
|
|
// mat4 shadowMatrices;
|
|
// mat4 texture_mat;
|
|
//};
|
|
//
|
|
//layout (std140)
|
|
//uniform u_light_shadows {
|
|
// ShadowLocals shadowMats[/*MAX_LAYER_FACES*/192];
|
|
//};
|
|
|
|
layout(std140, set = 3, binding = 0)
|
|
uniform u_locals {
|
|
vec3 model_offs;
|
|
float load_time;
|
|
ivec4 atlas_offs;
|
|
};
|
|
|
|
layout(set = 2, binding = 0)
|
|
uniform texture2D t_waves;
|
|
layout(set = 2, binding = 1)
|
|
uniform sampler s_waves;
|
|
|
|
layout(location = 0) out vec4 tgt_color;
|
|
|
|
#include <cloud.glsl>
|
|
#include <light.glsl>
|
|
#include <lod.glsl>
|
|
|
|
vec3 warp_normal(vec3 norm, vec3 pos, float time) {
|
|
return normalize(norm
|
|
+ smooth_rand(pos * 1.0, time * 1.0) * 0.05
|
|
+ smooth_rand(pos * 0.25, time * 0.25) * 0.1);
|
|
}
|
|
|
|
float wave_height(vec3 pos) {
|
|
float timer = tick.x * 0.75;
|
|
|
|
pos *= 0.5;
|
|
vec3 big_warp = (
|
|
texture(sampler2D(t_noise, s_noise), fract(pos.xy * 0.03 + timer * 0.01)).xyz * 0.5 +
|
|
texture(sampler2D(t_noise, s_noise), fract(pos.yx * 0.03 - timer * 0.01)).xyz * 0.5 +
|
|
vec3(0)
|
|
);
|
|
|
|
vec3 warp = (
|
|
texture(sampler2D(t_noise, s_noise), fract(pos.yx * 0.1 + timer * 0.02)).xyz * 0.3 +
|
|
texture(sampler2D(t_noise, s_noise), fract(pos.yx * 0.1 - timer * 0.02)).xyz * 0.3 +
|
|
vec3(0)
|
|
);
|
|
|
|
float height = (
|
|
(texture(sampler2D(t_noise, s_noise), (pos.xy + pos.z) * 0.03 + big_warp.xy + timer * 0.05).y - 0.5) * 1.0 +
|
|
(texture(sampler2D(t_noise, s_noise), (pos.yx + pos.z) * 0.03 + big_warp.yx - timer * 0.05).y - 0.5) * 1.0 +
|
|
(texture(sampler2D(t_noise, s_noise), (pos.xy + pos.z) * 0.1 + warp.xy + timer * 0.1).x - 0.5) * 0.5 +
|
|
(texture(sampler2D(t_noise, s_noise), (pos.yx + pos.z) * 0.1 + warp.yx - timer * 0.1).x - 0.5) * 0.5 +
|
|
(texture(sampler2D(t_noise, s_noise), (pos.yx + pos.z) * 0.3 + warp.xy * 0.5 + timer * 0.1).x - 0.5) * 0.2 +
|
|
(texture(sampler2D(t_noise, s_noise), (pos.xy + pos.z) * 0.3 + warp.yx * 0.5 - timer * 0.1).x - 0.5) * 0.2 +
|
|
(texture(sampler2D(t_noise, s_noise), (pos.yx + pos.z) * 1.0 + warp.yx * 0.0 - timer * 0.1).x - 0.5) * 0.05 +
|
|
0.0
|
|
);
|
|
|
|
return pow(abs(height), 0.5) * sign(height) * 15.0;
|
|
}
|
|
|
|
void main() {
|
|
// First 3 normals are negative, next 3 are positive
|
|
vec3 normals[6] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1));
|
|
|
|
// TODO: last 3 bits in v_pos_norm should be a number between 0 and 5, rather than 0-2 and a direction.
|
|
uint norm_axis = (f_pos_norm >> 30) & 0x3u;
|
|
// Increase array access by 3 to access positive values
|
|
uint norm_dir = ((f_pos_norm >> 29) & 0x1u) * 3u;
|
|
// Use an array to avoid conditional branching
|
|
// Temporarily assume all water faces up (this is incorrect but looks better)
|
|
vec3 f_norm = vec3(0, 0, 1);//normals[norm_axis + norm_dir];
|
|
vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz);
|
|
|
|
// vec4 light_pos[2];
|
|
//#if (SHADOW_MODE == SHADOW_MODE_MAP)
|
|
// // for (uint i = 0u; i < light_shadow_count.z; ++i) {
|
|
// // light_pos[i] = /*vec3(*/shadowMats[i].texture_mat * vec4(f_pos, 1.0)/*)*/;
|
|
// // }
|
|
// vec4 sun_pos = /*vec3(*/shadowMats[0].texture_mat * vec4(f_pos, 1.0)/*)*/;
|
|
//#elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE)
|
|
// vec4 sun_pos = vec4(0.0);
|
|
//#endif
|
|
|
|
// vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0);
|
|
// vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/);
|
|
vec3 view_dir = -cam_to_frag;
|
|
float frag_dist = length(f_pos - cam_pos.xyz);
|
|
|
|
vec3 b_norm;
|
|
if (f_norm.z > 0.0) {
|
|
b_norm = vec3(1, 0, 0);
|
|
} else if (f_norm.x > 0.0) {
|
|
b_norm = vec3(0, 1, 0);
|
|
} else {
|
|
b_norm = vec3(0, 0, 1);
|
|
}
|
|
vec3 c_norm = cross(f_norm, b_norm);
|
|
|
|
vec3 wave_pos = f_pos + focus_off.xyz;
|
|
float wave00 = wave_height(wave_pos);
|
|
float wave10 = wave_height(wave_pos + vec3(0.1, 0, 0));
|
|
float wave01 = wave_height(wave_pos + vec3(0, 0.1, 0));
|
|
|
|
// Possibility of div by zero when slope = 0,
|
|
// however this only results in no water surface appearing
|
|
// and is not likely to occur (could not find any occurrences)
|
|
float slope = abs((wave00 - wave10) * (wave00 - wave01)) + 0.001;
|
|
|
|
vec3 nmap = vec3(
|
|
-(wave10 - wave00) / 0.1,
|
|
-(wave01 - wave00) / 0.1,
|
|
0.1 / slope
|
|
);
|
|
|
|
nmap = mix(f_norm, normalize(nmap), min(1.0 / pow(frag_dist, 0.75), 1));
|
|
|
|
//float suppress_waves = max(dot(), 0);
|
|
vec3 norm = vec3(0, 0, 1) * nmap.z + b_norm * nmap.x + c_norm * nmap.y;
|
|
// vec3 norm = f_norm;
|
|
|
|
vec3 water_color = (1.0 - MU_WATER) * MU_SCATTER;
|
|
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE == FLUID_MODE_SHINY)
|
|
float f_alt = alt_at(f_pos.xy);
|
|
#elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_CHEAP)
|
|
float f_alt = f_pos.z;
|
|
#endif
|
|
|
|
float fluid_alt = mix(f_pos.z, f_alt, f_norm.z == 0);
|
|
const float alpha = 0.255/*/ / 4.0*//* / 4.0 / sqrt(2.0)*/;
|
|
const float n2 = 1.3325;
|
|
const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2);
|
|
const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2);
|
|
const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2);
|
|
const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2);
|
|
float R_s = (f_pos.z < fluid_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x);
|
|
|
|
// Water is transparent so both normals are valid.
|
|
vec3 cam_norm = faceforward(norm, norm, cam_to_frag);
|
|
vec3 reflect_ray_dir = reflect(cam_to_frag/*-view_dir*/, norm);
|
|
vec3 refract_ray_dir = refract(cam_to_frag/*-view_dir*/, norm, 1.0 / n2);
|
|
vec3 sun_view_dir = view_dir;///*sign(cam_pos.z - fluid_alt) * view_dir;*/cam_pos.z <= fluid_alt ? -view_dir : view_dir;
|
|
// vec3 sun_view_dir = cam_pos.z <= fluid_alt ? -view_dir : view_dir;
|
|
vec3 beam_view_dir = reflect_ray_dir;//cam_pos.z <= fluid_alt ? -refract_ray_dir : reflect_ray_dir;
|
|
/* vec4 reflect_ray_dir4 = view_mat * vec4(reflect_ray_dir, 1.0);
|
|
reflect_ray_dir = normalize(vec3(reflect_ray_dir4) / reflect_ray_dir4.w); */
|
|
// vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz);
|
|
// Squared to account for prior saturation.
|
|
float f_light = 1.0;// pow(f_light, 1.5);
|
|
vec3 reflect_color = get_sky_color(/*reflect_ray_dir*/beam_view_dir, time_of_day.x, f_pos, vec3(-100000), 0.125, true);
|
|
reflect_color = get_cloud_color(reflect_color, reflect_ray_dir, cam_pos.xyz, time_of_day.x, 100000.0, 0.1);
|
|
reflect_color *= f_light;
|
|
// /*const */vec3 water_color = srgb_to_linear(vec3(0.2, 0.5, 1.0));
|
|
// /*const */vec3 water_color = srgb_to_linear(vec3(0.8, 0.9, 1.0));
|
|
// NOTE: Linear RGB, attenuation coefficients for water at roughly R, G, B wavelengths.
|
|
// See https://en.wikipedia.org/wiki/Electromagnetic_absorption_by_water
|
|
// /*const */vec3 water_attenuation = MU_WATER;// vec3(0.8, 0.05, 0.01);
|
|
// /*const */vec3 water_color = vec3(0.2, 0.95, 0.99);
|
|
|
|
/* vec3 sun_dir = get_sun_dir(time_of_day.x);
|
|
vec3 moon_dir = get_moon_dir(time_of_day.x); */
|
|
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP)
|
|
vec4 f_shadow = textureBicubic(t_horizon, s_horizon, pos_to_tex(f_pos.xy));
|
|
float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
|
|
#elif (SHADOW_MODE == SHADOW_MODE_NONE)
|
|
float sun_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
|
|
#endif
|
|
float moon_shade_frac = 1.0;// horizon_at2(f_shadow, f_alt, f_pos, moon_dir);
|
|
// float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir);
|
|
// float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir);
|
|
// float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac;
|
|
|
|
// DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, light_pos);
|
|
float point_shadow = shadow_at(f_pos, f_norm);
|
|
DirectionalLight sun_info = get_sun_info(sun_dir, point_shadow * sun_shade_frac, /*sun_pos*/f_pos);
|
|
DirectionalLight moon_info = get_moon_info(moon_dir, point_shadow * moon_shade_frac/*, light_pos*/);
|
|
|
|
// Hack to determine water depth: color goes down with distance through water, so
|
|
// we assume water color absorption from this point a to some other point b is the distance
|
|
// along the the ray from a to b where it intersects with the surface plane; if it doesn't,
|
|
// then the whole segment from a to b is considered underwater.
|
|
// TODO: Consider doing for point lights.
|
|
// vec3 cam_surface_dir = faceforward(vec3(0.0, 0.0, 1.0), cam_to_frag, vec3(0.0, 0.0, 1.0));
|
|
|
|
// vec3 water_intersection_surface_camera = vec3(cam_pos);
|
|
// bool _water_intersects_surface_camera = IntersectRayPlane(f_pos, view_dir, vec3(0.0, 0.0, /*f_alt*/f_pos.z + f_light), cam_surface_dir, water_intersection_surface_camera);
|
|
// // Should work because we set it up so that if IntersectRayPlane returns false for camera, its default intersection point is cam_pos.
|
|
// float water_depth_to_camera = length(water_intersection_surface_camera - f_pos);
|
|
|
|
// vec3 water_intersection_surface_light = f_pos;
|
|
// bool _light_intersects_surface_water = IntersectRayPlane(f_pos, sun_dir.z <= 0.0 ? sun_dir : moon_dir, vec3(0.0, 0.0, /*f_alt*/f_pos.z + f_light), vec3(0.0, 0.0, 1.0), water_intersection_surface_light);
|
|
// // Should work because we set it up so that if IntersectRayPlane returns false for light, its default intersection point is f_pos--
|
|
// // i.e. if a light ray can't hit the water, it shouldn't contribute to coloring at all.
|
|
// float water_depth_to_light = length(water_intersection_surface_light - f_pos);
|
|
|
|
// // For ambient color, we just take the distance to the surface out of laziness.
|
|
// float water_depth_to_vertical = max(/*f_alt - f_pos.z*/f_light, 0.0);
|
|
|
|
// // Color goes down with distance...
|
|
// // See https://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law.
|
|
// vec3 water_color_direct = exp(-MU_WATER);//exp(-MU_WATER);//vec3(1.0);
|
|
// vec3 water_color_direct = exp(-water_attenuation * (water_depth_to_light + water_depth_to_camera));
|
|
// vec3 water_color_ambient = exp(-water_attenuation * (water_depth_to_vertical + water_depth_to_camera));
|
|
vec3 mu = MU_WATER;
|
|
// NOTE: Default intersection point is camera position, meaning if we fail to intersect we assume the whole camera is in water.
|
|
vec3 cam_attenuation = compute_attenuation_point(f_pos, -view_dir, mu, fluid_alt, cam_pos.xyz);
|
|
// float water_depth_to_vertical = max(/*f_alt - f_pos.z*/f_light, 0.0);
|
|
// For ambient color, we just take the distance to the surface out of laziness.
|
|
// See https://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law.
|
|
// float water_depth_to_vertical = max(fluid_alt - cam_pos.z/*f_light*/, 0.0);
|
|
// vec3 ambient_attenuation = exp(-mu * water_depth_to_vertical);
|
|
|
|
// For ambient reflection, we just take the water
|
|
|
|
vec3 k_a = vec3(1.0);
|
|
// Oxygen is light blue.
|
|
vec3 k_d = vec3(/*vec3(0.2, 0.9, 0.99)*/1.0);
|
|
vec3 k_s = vec3(R_s);//2.0 * reflect_color;
|
|
|
|
vec3 emitted_light, reflected_light;
|
|
// vec3 light, diffuse_light, ambient_light;
|
|
// vec3 light_frac = /*vec3(1.0);*/light_reflection_factor(f_norm/*vec3(0, 0, 1.0)*/, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(R_s), alpha);
|
|
// 0 = 100% reflection, 1 = translucent water
|
|
float passthrough = /*pow(*/dot(faceforward(norm, norm, cam_to_frag/*view_dir*/), -cam_to_frag/*view_dir*/)/*, 0.5)*/;
|
|
|
|
float max_light = 0.0;
|
|
max_light += get_sun_diffuse2(sun_info, moon_info, norm, /*time_of_day.x*/sun_view_dir, f_pos, mu, cam_attenuation, fluid_alt, k_a/* * (shade_frac * 0.5 + light_frac * 0.5)*/, vec3(k_d), /*vec3(f_light * point_shadow)*//*reflect_color*/k_s, alpha, f_norm, 1.0, emitted_light, reflected_light);
|
|
// Apply cloud layer to sky
|
|
// reflected_light *= /*water_color_direct * */reflect_color * f_light * point_shadow * shade_frac;
|
|
// emitted_light *= /*water_color_direct*//*ambient_attenuation * */f_light * point_shadow * max(shade_frac, MIN_SHADOW);
|
|
// max_light *= f_light * point_shadow * shade_frac;
|
|
// reflected_light *= /*water_color_direct * */reflect_color * f_light * point_shadow;
|
|
// emitted_light *= /*water_color_direct*//*ambient_attenuation * */f_light * point_shadow;
|
|
// max_light *= f_light * point_shadow;
|
|
|
|
// vec3 diffuse_light_point = vec3(0.0);
|
|
// max_light += lights_at(f_pos, cam_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, vec3(1.0), /*vec3(0.0)*/k_s, alpha, emitted_light, diffuse_light_point);
|
|
|
|
// vec3 dump_light = vec3(0.0);
|
|
// vec3 specular_light_point = vec3(0.0);
|
|
// lights_at(f_pos, cam_norm, view_dir, mu, cam_attenuation, fluid_alt, vec3(0.0), vec3(0.0), /*vec3(1.0)*/k_s, alpha, dump_light, specular_light_point);
|
|
// diffuse_light_point -= specular_light_point;
|
|
// max_light += lights_at(f_pos, cam_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, /*k_d*/vec3(0.0), /*vec3(0.0)*/k_s, alpha, emitted_light, /*diffuse_light*/reflected_light);
|
|
|
|
max_light += lights_at(f_pos, cam_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, /*k_d*//*vec3(0.0)*/k_d, /*vec3(0.0)*/k_s, alpha, f_norm, 1.0, emitted_light, /*diffuse_light*/reflected_light);
|
|
|
|
float reflected_light_point = length(reflected_light);///*length*/(diffuse_light_point.r) + f_light * point_shadow;
|
|
// TODO: See if we can be smarter about this using point light distances.
|
|
// reflected_light += k_d * (diffuse_light_point/* + f_light * point_shadow * shade_frac*/) + /*water_color_ambient*/specular_light_point;
|
|
|
|
/* vec3 point_light = light_at(f_pos, norm);
|
|
emitted_light += point_light;
|
|
reflected_light += point_light; */
|
|
|
|
// get_sun_diffuse(norm, time_of_day.x, light, diffuse_light, ambient_light, 0.0);
|
|
// diffuse_light *= f_light * point_shadow;
|
|
// ambient_light *= f_light * point_shadow;
|
|
// vec3 point_light = light_at(f_pos, norm);
|
|
// light += point_light;
|
|
// diffuse_light += point_light;
|
|
// reflected_light += point_light;
|
|
// vec3 surf_color = srgb_to_linear(vec3(0.2, 0.5, 1.0)) * light * diffuse_light * ambient_light;
|
|
const float REFLECTANCE = 0.5;
|
|
vec3 surf_color = illuminate(max_light, view_dir, water_color * emitted_light/* * log(1.0 - MU_WATER)*/, /*cam_attenuation * *//*water_color * */reflect_color * REFLECTANCE + water_color * reflected_light/* * log(1.0 - MU_WATER)*/);
|
|
|
|
// passthrough = pow(passthrough, 1.0 / (1.0 + water_depth_to_camera));
|
|
/* surf_color = cam_attenuation.g < 0.5 ?
|
|
vec3(1.0, 0.0, 0.0) :
|
|
vec3(0.0, 1.0, 1.0)
|
|
; */
|
|
// passthrough = passthrough * length(cam_attenuation);
|
|
|
|
// vec3 reflect_ray_dir = reflect(cam_to_frag, norm);
|
|
// Hack to prevent the reflection ray dipping below the horizon and creating weird blue spots in the water
|
|
// reflect_ray_dir.z = max(reflect_ray_dir.z, 0.01);
|
|
|
|
// vec4 _clouds;
|
|
// vec3 reflect_color = get_sky_color(reflect_ray_dir, time_of_day.x, f_pos, vec3(-100000), 0.25, false, _clouds) * f_light;
|
|
// Tint
|
|
// reflect_color = mix(reflect_color, surf_color, 0.6);
|
|
|
|
// vec4 color = mix(vec4(reflect_color * 2.0, 1.0), vec4(surf_color, 1.0 / (1.0 + /*diffuse_light*/(f_light * point_shadow + point_light) * 0.25)), passthrough);
|
|
// vec4 color = mix(vec4(reflect_color * 2.0, 1.0), vec4(surf_color, 1.0 / (1.0 + /*diffuse_light*/(/*f_light * point_shadow*/f_light * point_shadow + reflected_light_point/* + point_light*//*reflected_light*/) * 0.25)), passthrough);
|
|
// vec4 color = mix(vec4(surf_color, 1.0), vec4(surf_color, 0.0), passthrough);
|
|
//vec4 color = vec4(surf_color, 1.0);
|
|
// vec4 color = mix(vec4(reflect_color, 1.0), vec4(surf_color, 1.0 / (1.0 + /*diffuse_light*/(/*f_light * point_shadow*/reflected_light_point/* + point_light*//*reflected_light*/))), passthrough);
|
|
|
|
// float log_cam = log(min(cam_attenuation.r, min(cam_attenuation.g, cam_attenuation.b)));
|
|
float min_refl = min(emitted_light.r, min(emitted_light.g, emitted_light.b));
|
|
vec4 color = vec4(surf_color, (1.0 - passthrough) * 1.0 / (1.0 + min_refl));// * (1.0 - /*log(1.0 + cam_attenuation)*//*cam_attenuation*/1.0 / (2.0 - log_cam)));
|
|
// vec4 color = vec4(surf_color, mix(1.0, 1.0 / (1.0 + /*0.25 * *//*diffuse_light*/(/*f_light * point_shadow*/reflected_light_point)), passthrough));
|
|
// vec4 color = vec4(surf_color, mix(1.0, length(cam_attenuation), passthrough));
|
|
|
|
/* reflect_color = reflect_color * 0.5 * (diffuse_light + ambient_light);
|
|
// 0 = 100% reflection, 1 = translucent water
|
|
float passthrough = dot(faceforward(f_norm, f_norm, cam_to_frag), -cam_to_frag);
|
|
|
|
vec4 color = mix(vec4(reflect_color, 1.0), vec4(vec3(0), 1.0 / (1.0 + diffuse_light * 0.25)), passthrough); */
|
|
|
|
tgt_color = color;
|
|
}
|