veloren/assets/voxygen/shaders/figure-frag.glsl
2020-05-15 14:22:17 +02:00

139 lines
5.5 KiB
GLSL

#version 400 core
#include <constants.glsl>
#define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION
#define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE
#define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET
#define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN
#define HAS_SHADOW_MAPS
#include <globals.glsl>
in vec3 f_pos;
in vec3 f_col;
in float f_ao;
flat in vec3 f_norm;
// in float f_alt;
// in vec4 f_shadow;
layout (std140)
uniform u_locals {
mat4 model_mat;
vec4 model_col;
// bit 0 - is player
// bit 1-31 - unused
int flags;
};
struct BoneData {
mat4 bone_mat;
};
layout (std140)
uniform u_bones {
BoneData bones[16];
};
#include <sky.glsl>
#include <light.glsl>
#include <lod.glsl>
out vec4 tgt_color;
void main() {
vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz);
// vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0);
// vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/);
vec3 view_dir = -cam_to_frag;
vec3 sun_dir = get_sun_dir(time_of_day.x);
vec3 moon_dir = get_moon_dir(time_of_day.x);
// float sun_light = get_sun_brightness(sun_dir);
// float moon_light = get_moon_brightness(moon_dir);
/* float sun_shade_frac = horizon_at(f_pos, sun_dir);
float moon_shade_frac = horizon_at(f_pos, moon_dir); */
float f_alt = alt_at(f_pos.xy);
vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy));
float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
float moon_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, moon_dir);
// Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence).
// Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing).
// float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5);
// NOTE: current assumption is that moon and sun shouldn't be out at the sae time.
// This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow
// for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally).
float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac;
vec3 surf_color = /*srgb_to_linear*/(model_col.rgb * f_col);
float alpha = 1.0;
const float n2 = 1.5;
const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2);
const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2);
const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2);
const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2);
float R_s = (f_pos.z < f_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x);
vec3 k_a = vec3(1.0);
vec3 k_d = vec3(1.0);
vec3 k_s = vec3(R_s);
vec3 emitted_light, reflected_light;
float point_shadow = shadow_at(f_pos, f_norm);
// vec3 light_frac = /*vec3(1.0);*//*vec3(max(dot(f_norm, -sun_dir) * 0.5 + 0.5, 0.0));*/light_reflection_factor(f_norm, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(R_s), alpha);
// vec3 point_light = light_at(f_pos, f_norm);
// vec3 light, diffuse_light, ambient_light;
//get_sun_diffuse(f_norm, time_of_day.x, view_dir, k_a * point_shadow * (shade_frac * 0.5 + light_frac * 0.5), k_d * point_shadow * shade_frac, k_s * point_shadow * shade_frac, alpha, emitted_light, reflected_light);
float max_light = 0.0;
max_light += get_sun_diffuse2(f_norm, sun_dir, moon_dir, view_dir, k_a/* * (shade_frac * 0.5 + light_frac * 0.5)*/, k_d, k_s, alpha, emitted_light, reflected_light);
reflected_light *= point_shadow * shade_frac;
emitted_light *= point_shadow * max(shade_frac, MIN_SHADOW);
max_light *= point_shadow * shade_frac;
max_light += lights_at(f_pos, f_norm, view_dir, k_a, k_d, k_s, alpha, emitted_light, reflected_light);
float ao = /*pow(f_ao, 0.5)*/f_ao * 0.85 + 0.15;
reflected_light *= ao;
emitted_light *= ao;
/* vec3 point_light = light_at(f_pos, f_norm);
emitted_light += point_light;
reflected_light += point_light; */
// get_sun_diffuse(f_norm, time_of_day.x, cam_to_frag, surf_color * f_light * point_shadow, 0.5 * surf_color * f_light * point_shadow, 0.5 * surf_color * f_light * point_shadow, 2.0, emitted_light, reflected_light);
// get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0);
// diffuse_light *= point_shadow;
// ambient_light *= point_shadow;
// vec3 point_light = light_at(f_pos, f_norm);
// light += point_light;
// diffuse_light += point_light;
// reflected_light += point_light;
// vec3 surf_color = illuminate(srgb_to_linear(model_col.rgb * f_col), light, diffuse_light, ambient_light);
surf_color = illuminate(max_light, view_dir, surf_color * emitted_light, surf_color * reflected_light);
float fog_level = fog(f_pos.xyz, focus_pos.xyz, medium.x);
vec4 clouds;
vec3 fog_color = get_sky_color(cam_to_frag/*view_dir*/, time_of_day.x, cam_pos.xyz, f_pos, 0.5, true, clouds);
vec3 color = mix(mix(surf_color, fog_color, fog_level), clouds.rgb, clouds.a);
if ((flags & 1) == 1 && int(cam_mode) == 1) {
float distance = distance(vec3(cam_pos), vec3(model_mat * vec4(vec3(0), 1))) - 2;
float opacity = clamp(distance / distance_divider, 0, 1);
if(threshold_matrix[int(gl_FragCoord.x) % 4][int(gl_FragCoord.y) % 4] > opacity) {
discard;
return;
}
}
tgt_color = vec4(color, 1.0);
}