mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
137 lines
5.7 KiB
GLSL
137 lines
5.7 KiB
GLSL
#version 420 core
|
|
|
|
#include <constants.glsl>
|
|
|
|
#define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION
|
|
|
|
#define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY
|
|
|
|
#if (FLUID_MODE == FLUID_MODE_CHEAP)
|
|
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE
|
|
#elif (FLUID_MODE == FLUID_MODE_SHINY)
|
|
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE
|
|
#endif
|
|
|
|
#define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET
|
|
|
|
#define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN
|
|
|
|
#include <globals.glsl>
|
|
|
|
layout(location = 0) in vec3 f_pos;
|
|
layout(location = 1) in vec3 f_norm;
|
|
layout(location = 2) in vec4 f_col;
|
|
layout(location = 3) in vec3 model_pos;
|
|
layout(location = 4) in float snow_cover;
|
|
|
|
layout(location = 0) out vec4 tgt_color;
|
|
|
|
#include <sky.glsl>
|
|
#include <light.glsl>
|
|
#include <lod.glsl>
|
|
|
|
const float FADE_DIST = 32.0;
|
|
|
|
void main() {
|
|
#ifdef EXPERIMENTAL_BAREMINIMUM
|
|
tgt_color = vec4(simple_lighting(f_pos.xyz, f_col.rgb, 1.0), 1);
|
|
return;
|
|
#endif
|
|
|
|
vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz);
|
|
vec3 view_dir = -cam_to_frag;
|
|
|
|
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE == FLUID_MODE_SHINY)
|
|
float f_alt = alt_at(f_pos.xy);
|
|
#elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_CHEAP)
|
|
float f_alt = f_pos.z;
|
|
#endif
|
|
|
|
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP)
|
|
vec4 f_shadow = textureBicubic(t_horizon, s_horizon, pos_to_tex(f_pos.xy));
|
|
float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
|
|
#elif (SHADOW_MODE == SHADOW_MODE_NONE)
|
|
float sun_shade_frac = 1.0;
|
|
#endif
|
|
float moon_shade_frac = 1.0;
|
|
|
|
DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, f_pos);
|
|
DirectionalLight moon_info = get_moon_info(moon_dir, moon_shade_frac);
|
|
|
|
vec3 surf_color = f_col.rgb;
|
|
float alpha = 1.0;
|
|
const float n2 = 1.5;
|
|
const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2);
|
|
const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2);
|
|
const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2);
|
|
const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2);
|
|
float R_s = (f_pos.z < f_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x);
|
|
|
|
vec3 k_a = vec3(1.0);
|
|
vec3 k_d = vec3(1.0);
|
|
vec3 k_s = vec3(R_s);
|
|
|
|
vec3 my_norm = vec3(f_norm.xy, abs(f_norm.z));
|
|
vec3 voxel_norm;
|
|
float my_alt = f_pos.z + focus_off.z;
|
|
float f_ao = 1.0;
|
|
const float VOXELIZE_DIST = 2000;
|
|
float voxelize_factor = clamp(1.0 - (distance(focus_pos.xy, f_pos.xy) - view_distance.x) / VOXELIZE_DIST, 0, 0.65);
|
|
vec3 cam_dir = normalize(cam_pos.xyz - f_pos.xyz);
|
|
vec3 side_norm = normalize(vec3(my_norm.xy, 0));
|
|
vec3 top_norm = vec3(0, 0, 1);
|
|
float side_factor = 1.0 - my_norm.z;
|
|
// min(dot(vec3(0, -sign(cam_dir.y), 0), -cam_dir), dot(vec3(-sign(cam_dir.x), 0, 0), -cam_dir))
|
|
if (max(abs(my_norm.x), abs(my_norm.y)) < 0.01 || fract(my_alt) * clamp(dot(normalize(vec3(cam_dir.xy, 0)), side_norm), 0, 1) < cam_dir.z / my_norm.z) {
|
|
f_ao *= mix(1.0, clamp(fract(my_alt) / length(my_norm.xy) + clamp(dot(side_norm, -cam_dir), 0, 1), 0, 1), voxelize_factor);
|
|
voxel_norm = top_norm;
|
|
} else {
|
|
f_ao *= mix(1.0, clamp(pow(fract(my_alt), 0.5), 0, 1), voxelize_factor);
|
|
|
|
if (fract(f_pos.x) * abs(my_norm.y / cam_dir.x) < fract(f_pos.y) * abs(my_norm.x / cam_dir.y)) {
|
|
voxel_norm = vec3(sign(cam_dir.x), 0, 0);
|
|
} else {
|
|
voxel_norm = vec3(0, sign(cam_dir.y), 0);
|
|
}
|
|
}
|
|
f_ao = min(f_ao, max(f_norm.z * 0.5 + 0.5, 0.0));
|
|
voxel_norm = mix(my_norm, voxel_norm == vec3(0.0) ? f_norm : voxel_norm, voxelize_factor);
|
|
|
|
vec3 emitted_light, reflected_light;
|
|
|
|
// This is a bit of a hack. Because we can't find the volumetric lighting of each particle (they don't talk to the
|
|
// CPU) we need to some how find an approximation of how much the sun is blocked. We do this by fading out the sun
|
|
// as the particle moves underground. This isn't perfect, but it does at least mean that particles don't look like
|
|
// they're exposed to the sun when in dungeons
|
|
const float SUN_FADEOUT_DIST = 20.0;
|
|
sun_info.block *= clamp((f_pos.z - f_alt) / SUN_FADEOUT_DIST + 1, 0, 1);
|
|
|
|
// To account for prior saturation.
|
|
float max_light = 0.0;
|
|
|
|
vec3 cam_attenuation = vec3(1);
|
|
float fluid_alt = max(f_pos.z + 1, floor(f_alt + 1));
|
|
vec3 mu = medium.x == MEDIUM_WATER ? MU_WATER : vec3(0.0);
|
|
//#if (FLUID_MODE == FLUID_MODE_SHINY)
|
|
// cam_attenuation =
|
|
// medium.x == MEDIUM_WATER ? compute_attenuation_point(cam_pos.xyz, view_dir, MU_WATER, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/f_pos)
|
|
// : compute_attenuation_point(f_pos, -view_dir, vec3(0), fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/cam_pos.xyz);
|
|
//#endif
|
|
|
|
max_light += get_sun_diffuse2(sun_info, moon_info, voxel_norm, view_dir, f_pos, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, voxel_norm, 1.0, emitted_light, reflected_light);
|
|
|
|
emitted_light *= f_ao;
|
|
reflected_light *= f_ao;
|
|
|
|
//max_light += lights_at(f_pos, voxel_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, voxel_norm, 1.0, emitted_light, reflected_light);
|
|
|
|
vec3 side_color = mix(surf_color, vec3(1), snow_cover);
|
|
vec3 top_color = mix(surf_color, surf_color * 0.3, 0.5 + snow_cover * 0.5);
|
|
surf_color = mix(side_color, top_color, 1.0 - pow(fract(model_pos.z * 0.1), 2.0));
|
|
|
|
surf_color = illuminate(max_light, view_dir, surf_color * emitted_light, surf_color * reflected_light);
|
|
|
|
// Temporarily disable particle transparency to avoid artifacts
|
|
tgt_color = vec4(surf_color, 1.0 /*f_col.a*/);
|
|
}
|