veloren/common/src/state.rs

438 lines
15 KiB
Rust

use crate::{
comp,
event::{EventBus, LocalEvent, ServerEvent},
metrics::SysMetrics,
region::RegionMap,
sync::WorldSyncExt,
sys,
terrain::{Block, TerrainChunk, TerrainGrid},
time::DayPeriod,
vol::{ReadVol, WriteVol},
};
use hashbrown::{HashMap, HashSet};
use rayon::{ThreadPool, ThreadPoolBuilder};
use serde::{Deserialize, Serialize};
use specs::{
shred::{Fetch, FetchMut},
storage::{MaskedStorage as EcsMaskedStorage, Storage as EcsStorage},
Component, DispatcherBuilder, Entity as EcsEntity, WorldExt,
};
use std::{sync::Arc, time::Duration};
use vek::*;
/// How much faster should an in-game day be compared to a real day?
// TODO: Don't hard-code this.
const DAY_CYCLE_FACTOR: f64 = 24.0 * 2.0;
/// A resource that stores the time of day.
#[derive(Copy, Clone, Debug, Serialize, Deserialize)]
pub struct TimeOfDay(pub f64);
/// A resource that stores the tick (i.e: physics) time.
#[derive(Copy, Clone, Debug, Default, Serialize, Deserialize)]
pub struct Time(pub f64);
/// A resource that stores the time since the previous tick.
#[derive(Default)]
pub struct DeltaTime(pub f32);
/// At what point should we stop speeding up physics to compensate for lag? If
/// we speed physics up too fast, we'd skip important physics events like
/// collisions. This constant determines the upper limit. If delta time exceeds
/// this value, the game's physics will begin to produce time lag. Ideally, we'd
/// avoid such a situation.
const MAX_DELTA_TIME: f32 = 1.0;
const HUMANOID_JUMP_ACCEL: f32 = 16.0;
#[derive(Default)]
pub struct BlockChange {
blocks: HashMap<Vec3<i32>, Block>,
}
impl BlockChange {
pub fn set(&mut self, pos: Vec3<i32>, block: Block) { self.blocks.insert(pos, block); }
pub fn try_set(&mut self, pos: Vec3<i32>, block: Block) -> Option<()> {
if !self.blocks.contains_key(&pos) {
self.blocks.insert(pos, block);
Some(())
} else {
None
}
}
pub fn clear(&mut self) { self.blocks.clear(); }
}
#[derive(Default)]
pub struct TerrainChanges {
pub new_chunks: HashSet<Vec2<i32>>,
pub modified_chunks: HashSet<Vec2<i32>>,
pub removed_chunks: HashSet<Vec2<i32>>,
pub modified_blocks: HashMap<Vec3<i32>, Block>,
}
impl TerrainChanges {
pub fn clear(&mut self) {
self.new_chunks.clear();
self.modified_chunks.clear();
self.removed_chunks.clear();
}
}
/// A type used to represent game state stored on both the client and the
/// server. This includes things like entity components, terrain data, and
/// global states like weather, time of day, etc.
pub struct State {
ecs: specs::World,
// Avoid lifetime annotation by storing a thread pool instead of the whole dispatcher
thread_pool: Arc<ThreadPool>,
}
impl Default for State {
/// Create a new `State`.
fn default() -> Self {
Self {
ecs: Self::setup_ecs_world(),
thread_pool: Arc::new(ThreadPoolBuilder::new().build().unwrap()),
}
}
}
impl State {
/// Creates ecs world and registers all the common components and resources
// TODO: Split up registering into server and client (e.g. move
// EventBus<ServerEvent> to the server)
fn setup_ecs_world() -> specs::World {
let mut ecs = specs::World::new();
// Uids for sync
ecs.register_sync_marker();
// Register server -> all clients synced components.
ecs.register::<comp::Loadout>();
ecs.register::<comp::Body>();
ecs.register::<comp::Player>();
ecs.register::<comp::Stats>();
ecs.register::<comp::Energy>();
ecs.register::<comp::CanBuild>();
ecs.register::<comp::LightEmitter>();
ecs.register::<comp::Item>();
ecs.register::<comp::Scale>();
ecs.register::<comp::Mounting>();
ecs.register::<comp::MountState>();
ecs.register::<comp::Mass>();
ecs.register::<comp::Collider>();
ecs.register::<comp::Sticky>();
ecs.register::<comp::Gravity>();
ecs.register::<comp::CharacterState>();
ecs.register::<comp::Object>();
ecs.register::<comp::Group>();
ecs.register::<comp::Shockwave>();
ecs.register::<comp::Beam>();
// Register components send from clients -> server
ecs.register::<comp::Controller>();
// Register components send directly from server -> all but one client
ecs.register::<comp::PhysicsState>();
// Register components synced from client -> server -> all other clients
ecs.register::<comp::Pos>();
ecs.register::<comp::Vel>();
ecs.register::<comp::Ori>();
ecs.register::<comp::Inventory>();
// Register client-local components
// TODO: only register on the client
ecs.register::<comp::LightAnimation>();
// Register server-local components
// TODO: only register on the server
ecs.register::<comp::Last<comp::Pos>>();
ecs.register::<comp::Last<comp::Vel>>();
ecs.register::<comp::Last<comp::Ori>>();
ecs.register::<comp::Alignment>();
ecs.register::<comp::Agent>();
ecs.register::<comp::WaypointArea>();
ecs.register::<comp::ForceUpdate>();
ecs.register::<comp::InventoryUpdate>();
ecs.register::<comp::Admin>();
ecs.register::<comp::Waypoint>();
ecs.register::<comp::Projectile>();
ecs.register::<comp::Attacking>();
ecs.register::<comp::ItemDrop>();
ecs.register::<comp::ChatMode>();
ecs.register::<comp::Faction>();
ecs.register::<comp::group::Invite>();
ecs.register::<comp::group::PendingInvites>();
// Register synced resources used by the ECS.
ecs.insert(TimeOfDay(0.0));
// Register unsynced resources used by the ECS.
ecs.insert(Time(0.0));
ecs.insert(DeltaTime(0.0));
ecs.insert(TerrainGrid::new().unwrap());
ecs.insert(BlockChange::default());
ecs.insert(TerrainChanges::default());
ecs.insert(EventBus::<LocalEvent>::default());
// TODO: only register on the server
ecs.insert(EventBus::<ServerEvent>::default());
ecs.insert(comp::group::GroupManager::default());
ecs.insert(RegionMap::new());
ecs.insert(SysMetrics::default());
ecs
}
/// Register a component with the state's ECS.
pub fn with_component<T: Component>(mut self) -> Self
where
<T as Component>::Storage: Default,
{
self.ecs.register::<T>();
self
}
/// Write a component attributed to a particular entity.
pub fn write_component<C: Component>(&mut self, entity: EcsEntity, comp: C) {
let _ = self.ecs.write_storage().insert(entity, comp);
}
/// Delete a component attributed to a particular entity.
pub fn delete_component<C: Component>(&mut self, entity: EcsEntity) -> Option<C> {
self.ecs.write_storage().remove(entity)
}
/// Read a component attributed to a particular entity.
pub fn read_component_cloned<C: Component + Clone>(&self, entity: EcsEntity) -> Option<C> {
self.ecs.read_storage().get(entity).cloned()
}
/// Read a component attributed to a particular entity.
pub fn read_component_copied<C: Component + Copy>(&self, entity: EcsEntity) -> Option<C> {
self.ecs.read_storage().get(entity).copied()
}
/// Get a read-only reference to the storage of a particular component type.
pub fn read_storage<C: Component>(&self) -> EcsStorage<C, Fetch<EcsMaskedStorage<C>>> {
self.ecs.read_storage::<C>()
}
/// Get a reference to the internal ECS world.
pub fn ecs(&self) -> &specs::World { &self.ecs }
/// Get a mutable reference to the internal ECS world.
pub fn ecs_mut(&mut self) -> &mut specs::World { &mut self.ecs }
/// Get a reference to the `TerrainChanges` structure of the state. This
/// contains information about terrain state that has changed since the
/// last game tick.
pub fn terrain_changes(&self) -> Fetch<TerrainChanges> { self.ecs.read_resource() }
/// Get the current in-game time of day.
///
/// Note that this should not be used for physics, animations or other such
/// localised timings.
pub fn get_time_of_day(&self) -> f64 { self.ecs.read_resource::<TimeOfDay>().0 }
/// Get the current in-game day period (period of the day/night cycle)
pub fn get_day_period(&self) -> DayPeriod {
let tod = self.get_time_of_day().rem_euclid(60.0 * 60.0 * 24.0);
if tod < 60.0 * 60.0 * 4.0 {
DayPeriod::Night
} else if tod < 60.0 * 60.0 * 10.0 {
DayPeriod::Morning
} else if tod < 60.0 * 60.0 * 16.0 {
DayPeriod::Noon
} else if tod < 60.0 * 60.0 * 20.0 {
DayPeriod::Evening
} else {
DayPeriod::Night
}
}
/// Get the current in-game time.
///
/// Note that this does not correspond to the time of day.
pub fn get_time(&self) -> f64 { self.ecs.read_resource::<Time>().0 }
/// Get the current delta time.
pub fn get_delta_time(&self) -> f32 { self.ecs.read_resource::<DeltaTime>().0 }
/// Get a reference to this state's terrain.
pub fn terrain(&self) -> Fetch<TerrainGrid> { self.ecs.read_resource() }
/// Get a writable reference to this state's terrain.
pub fn terrain_mut(&self) -> FetchMut<TerrainGrid> { self.ecs.write_resource() }
/// Get a block in this state's terrain.
pub fn get_block(&self, pos: Vec3<i32>) -> Option<Block> {
self.terrain().get(pos).ok().copied()
}
/// Set a block in this state's terrain.
pub fn set_block(&mut self, pos: Vec3<i32>, block: Block) {
self.ecs.write_resource::<BlockChange>().set(pos, block);
}
/// Check if the block at given position `pos` has already been modified
/// this tick.
pub fn can_set_block(&mut self, pos: Vec3<i32>) -> bool {
!self
.ecs
.write_resource::<BlockChange>()
.blocks
.contains_key(&pos)
}
/// Removes every chunk of the terrain.
pub fn clear_terrain(&mut self) {
let removed_chunks = &mut self.ecs.write_resource::<TerrainChanges>().removed_chunks;
self.terrain_mut().drain().for_each(|(key, _)| {
removed_chunks.insert(key);
});
}
/// Insert the provided chunk into this state's terrain.
pub fn insert_chunk(&mut self, key: Vec2<i32>, chunk: TerrainChunk) {
if self
.ecs
.write_resource::<TerrainGrid>()
.insert(key, Arc::new(chunk))
.is_some()
{
self.ecs
.write_resource::<TerrainChanges>()
.modified_chunks
.insert(key);
} else {
self.ecs
.write_resource::<TerrainChanges>()
.new_chunks
.insert(key);
}
}
/// Remove the chunk with the given key from this state's terrain, if it
/// exists.
pub fn remove_chunk(&mut self, key: Vec2<i32>) {
if self
.ecs
.write_resource::<TerrainGrid>()
.remove(key)
.is_some()
{
self.ecs
.write_resource::<TerrainChanges>()
.removed_chunks
.insert(key);
}
}
// Run RegionMap tick to update entity region occupancy
pub fn update_region_map(&self) {
self.ecs.write_resource::<RegionMap>().tick(
self.ecs.read_storage::<comp::Pos>(),
self.ecs.read_storage::<comp::Vel>(),
self.ecs.entities(),
);
}
// Apply terrain changes
pub fn apply_terrain_changes(&self) {
let mut terrain = self.ecs.write_resource::<TerrainGrid>();
let mut modified_blocks =
std::mem::take(&mut self.ecs.write_resource::<BlockChange>().blocks);
// Apply block modifications
// Only include in `TerrainChanges` if successful
modified_blocks.retain(|pos, block| terrain.set(*pos, *block).is_ok());
self.ecs.write_resource::<TerrainChanges>().modified_blocks = modified_blocks;
}
/// Execute a single tick, simulating the game state by the given duration.
pub fn tick(
&mut self,
dt: Duration,
add_foreign_systems: impl Fn(&mut DispatcherBuilder),
update_terrain_and_regions: bool,
) {
// Change the time accordingly.
self.ecs.write_resource::<TimeOfDay>().0 += dt.as_secs_f64() * DAY_CYCLE_FACTOR;
self.ecs.write_resource::<Time>().0 += dt.as_secs_f64();
// Update delta time.
// Beyond a delta time of MAX_DELTA_TIME, start lagging to avoid skipping
// important physics events.
self.ecs.write_resource::<DeltaTime>().0 = dt.as_secs_f32().min(MAX_DELTA_TIME);
if update_terrain_and_regions {
self.update_region_map();
}
// Run systems to update the world.
// Create and run a dispatcher for ecs systems.
let mut dispatch_builder =
DispatcherBuilder::new().with_pool(Arc::clone(&self.thread_pool));
sys::add_local_systems(&mut dispatch_builder);
// TODO: Consider alternative ways to do this
add_foreign_systems(&mut dispatch_builder);
// This dispatches all the systems in parallel.
dispatch_builder.build().dispatch(&self.ecs);
self.ecs.maintain();
if update_terrain_and_regions {
self.apply_terrain_changes();
}
// Process local events
let events = self.ecs.read_resource::<EventBus<LocalEvent>>().recv_all();
for event in events {
let mut velocities = self.ecs.write_storage::<comp::Vel>();
let mut controllers = self.ecs.write_storage::<comp::Controller>();
match event {
LocalEvent::Jump(entity) => {
if let Some(vel) = velocities.get_mut(entity) {
vel.0.z = HUMANOID_JUMP_ACCEL;
}
},
LocalEvent::ApplyImpulse { entity, impulse } => {
if let Some(vel) = velocities.get_mut(entity) {
vel.0 = impulse;
}
},
LocalEvent::WallLeap { entity, wall_dir } => {
if let (Some(vel), Some(_controller)) =
(velocities.get_mut(entity), controllers.get_mut(entity))
{
let hspeed = Vec2::<f32>::from(vel.0).magnitude();
if hspeed > 0.001 && hspeed < 0.5 {
vel.0 += vel.0.normalized()
* Vec3::new(1.0, 1.0, 0.0)
* HUMANOID_JUMP_ACCEL
* 1.5
- wall_dir * 0.03;
vel.0.z = HUMANOID_JUMP_ACCEL * 0.5;
}
}
},
LocalEvent::Boost {
entity,
vel: extra_vel,
} => {
if let Some(vel) = velocities.get_mut(entity) {
vel.0 += extra_vel;
}
},
}
}
}
/// Clean up the state after a tick.
pub fn cleanup(&mut self) {
// Clean up data structures from the last tick.
self.ecs.write_resource::<TerrainChanges>().clear();
}
}