veloren/assets/voxygen/shaders/include/cloud/regular.glsl

246 lines
11 KiB
GLSL

#include <random.glsl>
#include <lod.glsl>
float falloff(float x) {
return pow(max(x > 0.577 ? (0.3849 / x - 0.1) : (0.9 - x * x), 0.0), 4);
}
float emission_strength = clamp((sin(time_of_day.x / (3600 * 24)) - 0.8) / 0.1, 0, 1);
// Return the 'broad' density of the cloud at a position. This gets refined later with extra noise, but is important
// for computing light access.
float cloud_broad(vec3 pos) {
return 0.0
+ 2 * (noise_3d(pos / vec3(vec2(30000.0), 20000.0) / cloud_scale + 1000.0) - 0.5)
;
}
// Returns vec4(r, g, b, density)
vec4 cloud_at(vec3 pos, float dist, out vec3 emission) {
// Natural attenuation of air (air naturally attenuates light that passes through it)
// Simulate the atmosphere thinning as you get higher. Not physically accurate, but then
// it can't be since Veloren's world is flat, not spherical.
float atmosphere_alt = CLOUD_AVG_ALT + 40000.0;
// Veloren's world is flat. This is, to put it mildly, somewhat non-physical. With the earth as an infinitely-big
// plane, the atmosphere is therefore capable of scattering 100% of any light source at the horizon, no matter how
// bright, because it has to travel through an infinite amount of atmosphere. This doesn't happen in reality
// because the earth has curvature and so there is an upper bound on the amount of atmosphere that a sunset must
// travel through. We 'simulate' this by fading out the atmosphere density with distance.
float flat_earth_hack = 1.0 / (1.0 + dist * 0.0001);
float air = 0.025 * clamp((atmosphere_alt - pos.z) / 20000, 0, 1) * flat_earth_hack;
float alt = alt_at(pos.xy - focus_off.xy);
// Mist sits close to the ground in valleys (TODO: use base_alt to put it closer to water)
float mist_min_alt = 0.5;
#if (CLOUD_MODE >= CLOUD_MODE_MEDIUM)
mist_min_alt = (textureLod(sampler2D(t_noise, s_noise), pos.xy / 50000.0, 0).x - 0.5) * 1.5 + 0.5;
#endif
mist_min_alt = view_distance.z * 1.5 * (1.0 + mist_min_alt * 0.5) + alt * 0.5 + 250;
const float MIST_FADE_HEIGHT = 1000;
float mist = 0.01 * pow(clamp(1.0 - (pos.z - mist_min_alt) / MIST_FADE_HEIGHT, 0.0, 1), 10.0) * flat_earth_hack;
vec3 wind_pos = vec3(pos.xy + wind_offset, pos.z + noise_2d(pos.xy / 20000) * 500);
// Clouds
float cloud_tendency = cloud_tendency_at(pos.xy);
float cloud = 0;
if (mist > 0.0) {
mist *= 0.5
#if (CLOUD_MODE >= CLOUD_MODE_LOW)
+ 1.0 * (noise_2d(wind_pos.xy / 5000) - 0.5)
#endif
#if (CLOUD_MODE >= CLOUD_MODE_MEDIUM)
+ 0.25 * (noise_3d(wind_pos / 1000) - 0.5)
#endif
;
}
//vec2 cloud_attr = get_cloud_heights(wind_pos.xy);
float sun_access = 0.0;
float moon_access = 0.0;
float cloud_sun_access = 0.0;
float cloud_moon_access = 0.0;
float cloud_broad_a = 0.0;
float cloud_broad_b = 0.0;
// This is a silly optimisation but it actually nets us a fair few fps by skipping quite a few expensive calcs
if ((pos.z < CLOUD_AVG_ALT + 15000.0 && cloud_tendency > 0.0)) {
// Turbulence (small variations in clouds/mist)
const float turb_speed = -1.0; // Turbulence goes the opposite way
vec3 turb_offset = vec3(1, 1, 0) * time_of_day.x * turb_speed;
float CLOUD_DEPTH = (view_distance.w - view_distance.z) * 0.8;
const float CLOUD_DENSITY = 10000.0;
const float CLOUD_ALT_VARI_WIDTH = 100000.0;
const float CLOUD_ALT_VARI_SCALE = 5000.0;
float cloud_alt = CLOUD_AVG_ALT + alt * 0.5;
cloud_broad_a = cloud_broad(wind_pos + sun_dir.xyz * 250);
cloud_broad_b = cloud_broad(wind_pos - sun_dir.xyz * 250);
cloud = cloud_tendency + (0.0
+ 24 * (cloud_broad_a + cloud_broad_b) * 0.5
#if (CLOUD_MODE >= CLOUD_MODE_MINIMAL)
+ 4 * (noise_3d((wind_pos + turb_offset) / 2000.0 / cloud_scale) - 0.5)
#endif
#if (CLOUD_MODE >= CLOUD_MODE_LOW)
+ 0.75 * (noise_3d((wind_pos + turb_offset * 0.5) / 750.0 / cloud_scale) - 0.5)
#endif
#if (CLOUD_MODE >= CLOUD_MODE_HIGH)
+ 0.75 * (noise_3d(wind_pos / 500.0 / cloud_scale) - 0.5)
#endif
) * 0.01;
cloud = pow(max(cloud, 0), 3) * sign(cloud);
cloud *= CLOUD_DENSITY * sqrt(cloud_tendency) * falloff(abs(pos.z - cloud_alt) / CLOUD_DEPTH);
// What proportion of sunlight is *not* being blocked by nearby cloud? (approximation)
// Basically, just throw together a few values that roughly approximate this term and come up with an average
cloud_sun_access = exp((
// Cloud density gradient
0.25 * (cloud_broad_a - cloud_broad_b + (0.25 * (noise_3d(wind_pos / 4000 / cloud_scale) - 0.5) + 0.1 * (noise_3d(wind_pos / 1000 / cloud_scale) - 0.5)))
#if (CLOUD_MODE >= CLOUD_MODE_HIGH)
// More noise
+ 0.01 * (noise_3d(wind_pos / 500) / cloud_scale - 0.5)
#endif
) * 15.0 - 1.5) * 1.5;
// Since we're assuming the sun/moon is always above (not always correct) it's the same for the moon
cloud_moon_access = 1.0 - cloud_sun_access;
}
// Keeping this because it's something I'm likely to reenable later
/*
#if (CLOUD_MODE >= CLOUD_MODE_HIGH)
// Try to calculate a reasonable approximation of the cloud normal
float cloud_tendency_x = cloud_tendency_at(pos.xy + vec2(100, 0));
float cloud_tendency_y = cloud_tendency_at(pos.xy + vec2(0, 100));
vec3 cloud_norm = vec3(
(cloud_tendency - cloud_tendency_x) * 4,
(cloud_tendency - cloud_tendency_y) * 4,
(pos.z - cloud_attr.x) / cloud_attr.y + 0.5
);
cloud_sun_access = mix(max(dot(-sun_dir.xyz, cloud_norm) - 1.0, 0.025), cloud_sun_access, 0.25);
cloud_moon_access = mix(max(dot(-moon_dir.xyz, cloud_norm) - 0.6, 0.025), cloud_moon_access, 0.25);
#endif
*/
float mist_sun_access = exp(mist);
float mist_moon_access = mist_sun_access;
sun_access = mix(cloud_sun_access, mist_sun_access, clamp(mist * 20000, 0, 1));
moon_access = mix(cloud_moon_access, mist_moon_access, clamp(mist * 20000, 0, 1));
// Prevent mist (i.e: vapour beneath clouds) being accessible to the sun to avoid visual problems
//float suppress_mist = clamp((pos.z - cloud_attr.x + cloud_attr.y) / 300, 0, 1);
//sun_access *= suppress_mist;
//moon_access *= suppress_mist;
// Prevent clouds and mist appearing underground (but fade them out gently)
float not_underground = clamp(1.0 - (alt - (pos.z - focus_off.z)) / 80.0 + dist * 0.001, 0, 1);
sun_access *= not_underground;
moon_access *= not_underground;
float vapor_density = (mist + cloud) * not_underground;
if (emission_strength <= 0.0) {
emission = vec3(0);
} else {
float emission_alt = CLOUD_AVG_ALT * 2.0 + (noise_3d(vec3(wind_pos.xy * 0.0001 + cloud_tendency * 0.2, time_of_day.x * 0.0002)) - 0.5) * 6000;
#if (CLOUD_MODE >= CLOUD_MODE_MEDIUM)
emission_alt += (noise_3d(vec3(wind_pos.xy * 0.0005 + cloud_tendency * 0.2, emission_alt * 0.0001 + time_of_day.x * 0.001)) - 0.5) * 1000;
#endif
float tail = (textureLod(sampler2D(t_noise, s_noise), wind_pos.xy * 0.00005).x - 0.5, 0) * 4 + (pos.z - emission_alt) * 0.0001;
vec3 emission_col = vec3(0.8 + tail * 1.5, 0.5 - tail * 0.2, 0.3 + tail * 0.2);
float emission_nz = max(pow(textureLod(sampler2D(t_noise, s_noise), wind_pos.xy * 0.000015, 0).x, 8), 0.01) * 0.25 / (10.0 + abs(pos.z - emission_alt) / 80);
emission = emission_col * emission_nz * emission_strength * max(sun_dir.z, 0) * 500000 / (1000.0 + abs(pos.z - emission_alt) * 0.1);
}
// We track vapor density and air density separately. Why? Because photons will ionize particles in air
// leading to rayleigh scattering, but water vapor will not. Tracking these indepedently allows us to
// get more correct colours.
return vec4(sun_access, moon_access, vapor_density, air);
}
float atan2(in float y, in float x) {
bool s = (abs(x) > abs(y));
return mix(PI/2.0 - atan(x,y), atan(y,x), s);
}
const float DIST_CAP = 50000;
#if (CLOUD_MODE == CLOUD_MODE_ULTRA)
const uint QUALITY = 200u;
#elif (CLOUD_MODE == CLOUD_MODE_HIGH)
const uint QUALITY = 40u;
#elif (CLOUD_MODE == CLOUD_MODE_MEDIUM)
const uint QUALITY = 18u;
#elif (CLOUD_MODE == CLOUD_MODE_LOW)
const uint QUALITY = 6u;
#elif (CLOUD_MODE == CLOUD_MODE_MINIMAL)
const uint QUALITY = 2u;
#endif
const float STEP_SCALE = DIST_CAP / (10.0 * float(QUALITY));
float step_to_dist(float step, float quality) {
return pow(step, 2) * STEP_SCALE / quality;
}
float dist_to_step(float dist, float quality) {
return pow(dist / STEP_SCALE * quality, 0.5);
}
vec3 get_cloud_color(vec3 surf_color, vec3 dir, vec3 origin, const float time_of_day, float max_dist, const float quality) {
// Limit the marching distance to reduce maximum jumps
max_dist = min(max_dist, DIST_CAP);
origin.xyz += focus_off.xyz;
// This hack adds a little direction-dependent noise to clouds. It's not correct, but it very cheaply
// improves visual quality for low cloud settings
float splay = 1.0;
#if (CLOUD_MODE == CLOUD_MODE_MINIMAL)
splay += (textureLod(sampler2D(t_noise, s_noise), vec2(atan2(dir.x, dir.y) * 2 / PI, dir.z) * 5.0 - time_of_day * 0.00005, 0).x - 0.5) * 0.025 / (1.0 + pow(dir.z, 2) * 10);
#endif
/* const float RAYLEIGH = 0.25; */
const vec3 RAYLEIGH = vec3(0.025, 0.1, 0.5);
// Proportion of sunlight that get scattered back into the camera by clouds
float sun_scatter = dot(-dir, sun_dir.xyz) * 0.5 + 0.7;
float moon_scatter = dot(-dir, moon_dir.xyz) * 0.5 + 0.7;
float net_light = get_sun_brightness() + get_moon_brightness();
vec3 sky_color = RAYLEIGH * net_light;
vec3 sky_light = get_sky_light(dir, time_of_day, false);
float cdist = max_dist;
float ldist = cdist;
// i is an emergency brake
float min_dist = clamp(max_dist / 4, 0.25, 24);
for (int i = 0; cdist > min_dist && i < 250; i ++) {
ldist = cdist;
cdist = step_to_dist(trunc(dist_to_step(cdist - 0.25, quality)), quality);
vec3 emission;
// `sample` is a reserved keyword
vec4 sample_ = cloud_at(origin + dir * ldist * splay, ldist, emission);
vec2 density_integrals = max(sample_.zw, vec2(0));
float sun_access = max(sample_.x, 0);
float moon_access = max(sample_.y, 0);
float cloud_scatter_factor = density_integrals.x;
float global_scatter_factor = density_integrals.y;
float cloud_darken = pow(1.0 / (1.0 + cloud_scatter_factor), (ldist - cdist) * 0.01);
float global_darken = pow(1.0 / (1.0 + global_scatter_factor), (ldist - cdist) * 0.01);
surf_color =
// Attenuate light passing through the clouds
surf_color * cloud_darken * global_darken +
// Add the directed light light scattered into the camera by the clouds and the atmosphere (global illumination)
get_sun_color() * sun_scatter * get_sun_brightness() * (sun_access * (1.0 - cloud_darken) /*+ sky_color * global_scatter_factor*/) +
get_moon_color() * moon_scatter * get_moon_brightness() * (moon_access * (1.0 - cloud_darken) /*+ sky_color * global_scatter_factor*/) +
sky_light * (1.0 - global_darken) +
emission * density_integrals.y;
}
return surf_color;
}