veloren/voxygen/src/scene/terrain.rs
2023-04-05 00:11:26 +02:00

1802 lines
74 KiB
Rust

mod watcher;
pub use self::watcher::{BlocksOfInterest, FireplaceType, Interaction};
use crate::{
mesh::{
greedy::{GreedyMesh, SpriteAtlasAllocator},
segment::generate_mesh_base_vol_sprite,
terrain::{generate_mesh, SUNLIGHT, SUNLIGHT_INV},
},
render::{
pipelines::{self, ColLights},
AltIndices, ColLightInfo, CullingMode, FirstPassDrawer, FluidVertex, GlobalModel,
Instances, LodData, Mesh, Model, RenderError, Renderer, SpriteGlobalsBindGroup,
SpriteInstance, SpriteVertex, SpriteVerts, TerrainLocals, TerrainShadowDrawer,
TerrainVertex, SPRITE_VERT_PAGE_SIZE,
},
};
use super::{
camera::{self, Camera},
math, SceneData, RAIN_THRESHOLD,
};
use common::{
assets::{self, AssetExt, DotVoxAsset},
figure::Segment,
spiral::Spiral2d,
terrain::{Block, SpriteKind, TerrainChunk},
vol::{BaseVol, ReadVol, RectRasterableVol, SampleVol},
volumes::vol_grid_2d::{VolGrid2d, VolGrid2dError},
};
use common_base::{prof_span, span};
use core::{f32, fmt::Debug, marker::PhantomData, time::Duration};
use crossbeam_channel as channel;
use guillotiere::AtlasAllocator;
use hashbrown::HashMap;
use serde::Deserialize;
use std::sync::{
atomic::{AtomicU64, Ordering},
Arc,
};
use strum::IntoEnumIterator;
use tracing::warn;
use treeculler::{BVol, Frustum, AABB};
use vek::*;
const SPRITE_SCALE: Vec3<f32> = Vec3::new(1.0 / 11.0, 1.0 / 11.0, 1.0 / 11.0);
const SPRITE_LOD_LEVELS: usize = 5;
// For rain occlusion we only need to render the closest chunks.
/// How many chunks are maximally rendered for rain occlusion.
pub const RAIN_OCCLUSION_CHUNKS: usize = 25;
#[derive(Clone, Copy, Debug)]
struct Visibility {
in_range: bool,
in_frustum: bool,
}
impl Visibility {
/// Should the chunk actually get rendered?
fn is_visible(&self) -> bool {
// Currently, we don't take into account in_range to allow all chunks to do
// pop-in. This isn't really a problem because we no longer have VD mist
// or anything like that. Also, we don't load chunks outside of the VD
// anyway so this literally just controls which chunks get actually
// rendered.
/* self.in_range && */
self.in_frustum
}
}
/// Type of closure used for light mapping.
type LightMapFn = Arc<dyn Fn(Vec3<i32>) -> f32 + Send + Sync>;
pub struct TerrainChunkData {
// GPU data
load_time: f32,
opaque_model: Option<Model<TerrainVertex>>,
fluid_model: Option<Model<FluidVertex>>,
/// If this is `None`, this texture is not allocated in the current atlas,
/// and therefore there is no need to free its allocation.
col_lights_alloc: Option<guillotiere::AllocId>,
/// The actual backing texture for this chunk. Use this for rendering
/// purposes. The texture is reference-counted, so it will be
/// automatically freed when no chunks are left that need it (though
/// shadow chunks will still keep it alive; we could deal with this by
/// making this an `Option`, but it probably isn't worth it since they
/// shouldn't be that much more nonlocal than regular chunks).
col_lights: Arc<ColLights<pipelines::terrain::Locals>>,
light_map: LightMapFn,
glow_map: LightMapFn,
sprite_instances: [(Instances<SpriteInstance>, AltIndices); SPRITE_LOD_LEVELS],
locals: pipelines::terrain::BoundLocals,
pub blocks_of_interest: BlocksOfInterest,
visible: Visibility,
can_shadow_point: bool,
can_shadow_sun: bool,
z_bounds: (f32, f32),
sun_occluder_z_bounds: (f32, f32),
frustum_last_plane_index: u8,
alt_indices: AltIndices,
}
/// The depth at which the intermediate zone between underground and surface
/// begins
pub const SHALLOW_ALT: f32 = 24.0;
/// The depth at which the intermediate zone between underground and surface
/// ends
pub const DEEP_ALT: f32 = 96.0;
/// The depth below the surface altitude at which the camera switches from
/// displaying surface elements to underground elements
pub const UNDERGROUND_ALT: f32 = (SHALLOW_ALT + DEEP_ALT) * 0.5;
// The distance (in chunks) within which all levels of the chunks will be drawn
// to minimise cull-related popping.
const NEVER_CULL_DIST: i32 = 3;
#[derive(Copy, Clone)]
struct ChunkMeshState {
pos: Vec2<i32>,
started_tick: u64,
is_worker_active: bool,
// If this is set, we skip the actual meshing part of the update.
skip_remesh: bool,
}
/// Just the mesh part of a mesh worker response.
pub struct MeshWorkerResponseMesh {
z_bounds: (f32, f32),
sun_occluder_z_bounds: (f32, f32),
opaque_mesh: Mesh<TerrainVertex>,
fluid_mesh: Mesh<FluidVertex>,
col_lights_info: ColLightInfo,
light_map: LightMapFn,
glow_map: LightMapFn,
alt_indices: AltIndices,
}
/// A type produced by mesh worker threads corresponding to the position and
/// mesh of a chunk.
struct MeshWorkerResponse {
pos: Vec2<i32>,
sprite_instances: [(Vec<SpriteInstance>, AltIndices); SPRITE_LOD_LEVELS],
/// If None, this update was requested without meshing.
mesh: Option<MeshWorkerResponseMesh>,
started_tick: u64,
blocks_of_interest: BlocksOfInterest,
}
#[derive(Deserialize)]
/// Configuration data for an individual sprite model.
struct SpriteModelConfig<Model> {
/// Data for the .vox model associated with this sprite.
model: Model,
/// Sprite model center (as an offset from 0 in the .vox file).
offset: (f32, f32, f32),
/// LOD axes (how LOD gets applied along each axis, when we switch
/// to an LOD model).
lod_axes: (f32, f32, f32),
}
#[derive(Deserialize)]
/// Configuration data for a group of sprites (currently associated with a
/// particular SpriteKind).
struct SpriteConfig<Model> {
/// All possible model variations for this sprite.
// NOTE: Could make constant per sprite type, but eliminating this indirection and
// allocation is probably not that important considering how sprites are used.
variations: Vec<SpriteModelConfig<Model>>,
/// The extent to which the sprite sways in the window.
///
/// 0.0 is normal.
wind_sway: f32,
}
// TODO: reduce llvm IR lines from this
/// Configuration data for all sprite models.
///
/// NOTE: Model is an asset path to the appropriate sprite .vox model.
#[derive(Deserialize)]
#[serde(try_from = "HashMap<SpriteKind, Option<SpriteConfig<String>>>")]
struct SpriteSpec([Option<SpriteConfig<String>>; 256]);
impl SpriteSpec {
fn get(&self, kind: SpriteKind) -> Option<&SpriteConfig<String>> {
const _: () = assert!(core::mem::size_of::<SpriteKind>() == 1);
// NOTE: This will never be out of bounds since `SpriteKind` is `repr(u8)`
self.0[kind as usize].as_ref()
}
}
/// Conversion of SpriteSpec from a hashmap failed because some sprites were
/// missing.
struct SpritesMissing(Vec<SpriteKind>);
use core::fmt;
impl fmt::Display for SpritesMissing {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(
f,
"Missing entries in the sprite manifest for these sprites: {:?}",
&self.0,
)
}
}
// Here we ensure all variants have an entry in the config.
impl TryFrom<HashMap<SpriteKind, Option<SpriteConfig<String>>>> for SpriteSpec {
type Error = SpritesMissing;
fn try_from(
mut map: HashMap<SpriteKind, Option<SpriteConfig<String>>>,
) -> Result<Self, Self::Error> {
let mut array = [(); 256].map(|()| None);
let sprites_missing = SpriteKind::iter()
.filter(|kind| match map.remove(kind) {
Some(config) => {
array[*kind as usize] = config;
false
},
None => true,
})
.collect::<Vec<_>>();
if sprites_missing.is_empty() {
Ok(Self(array))
} else {
Err(SpritesMissing(sprites_missing))
}
}
}
impl assets::Asset for SpriteSpec {
type Loader = assets::RonLoader;
const EXTENSION: &'static str = "ron";
}
/// Function executed by worker threads dedicated to chunk meshing.
/// skip_remesh is either None (do the full remesh, including recomputing the
/// light map), or Some((light_map, glow_map)).
fn mesh_worker(
pos: Vec2<i32>,
z_bounds: (f32, f32),
skip_remesh: Option<(LightMapFn, LightMapFn)>,
started_tick: u64,
volume: <VolGrid2d<TerrainChunk> as SampleVol<Aabr<i32>>>::Sample,
max_texture_size: u16,
chunk: Arc<TerrainChunk>,
range: Aabb<i32>,
sprite_data: &HashMap<(SpriteKind, usize), [SpriteData; SPRITE_LOD_LEVELS]>,
sprite_config: &SpriteSpec,
) -> MeshWorkerResponse {
span!(_guard, "mesh_worker");
let blocks_of_interest = BlocksOfInterest::from_chunk(&chunk);
let mesh;
let (light_map, glow_map) = if let Some((light_map, glow_map)) = &skip_remesh {
mesh = None;
(&**light_map, &**glow_map)
} else {
let (
opaque_mesh,
fluid_mesh,
_shadow_mesh,
(bounds, col_lights_info, light_map, glow_map, alt_indices, sun_occluder_z_bounds),
) = generate_mesh(
&volume,
(
range,
Vec2::new(max_texture_size, max_texture_size),
&blocks_of_interest,
),
);
mesh = Some(MeshWorkerResponseMesh {
// TODO: Take sprite bounds into account somehow?
z_bounds: (bounds.min.z, bounds.max.z),
sun_occluder_z_bounds,
opaque_mesh,
fluid_mesh,
col_lights_info,
light_map,
glow_map,
alt_indices,
});
// Pointer juggling so borrows work out.
let mesh = mesh.as_ref().unwrap();
(&*mesh.light_map, &*mesh.glow_map)
};
MeshWorkerResponse {
pos,
// Extract sprite locations from volume
sprite_instances: {
prof_span!("extract sprite_instances");
let mut instances = [(); SPRITE_LOD_LEVELS].map(|()| {
(
Vec::new(), // Deep
Vec::new(), // Shallow
Vec::new(), // Surface
)
});
let (underground_alt, deep_alt) = volume
.get_key(volume.pos_key((range.min + range.max) / 2))
.map_or((0.0, 0.0), |c| {
(c.meta().alt() - SHALLOW_ALT, c.meta().alt() - DEEP_ALT)
});
for x in 0..TerrainChunk::RECT_SIZE.x as i32 {
for y in 0..TerrainChunk::RECT_SIZE.y as i32 {
for z in z_bounds.0 as i32..z_bounds.1 as i32 + 1 {
let rel_pos = Vec3::new(x, y, z);
let wpos = Vec3::from(pos * TerrainChunk::RECT_SIZE.map(|e: u32| e as i32))
+ rel_pos;
let block = if let Ok(block) = volume.get(wpos) {
block
} else {
continue;
};
let sprite = if let Some(sprite) = block.get_sprite() {
sprite
} else {
continue;
};
if let Some(cfg) = sprite_config.get(sprite) {
let seed = wpos.x as u64 * 3
+ wpos.y as u64 * 7
+ wpos.x as u64 * wpos.y as u64; // Awful PRNG
let ori = (block.get_ori().unwrap_or((seed % 4) as u8 * 2)) & 0b111;
let variation = seed as usize % cfg.variations.len();
let key = (sprite, variation);
// NOTE: Safe because we called sprite_config_for already.
// NOTE: Safe because 0 ≤ ori < 8
let light = light_map(wpos);
let glow = glow_map(wpos);
for ((deep_level, shallow_level, surface_level), sprite_data) in
instances.iter_mut().zip(&sprite_data[&key])
{
let mat = Mat4::identity()
// Scaling for different LOD resolutions
.scaled_3d(sprite_data.scale)
// Offset
.translated_3d(sprite_data.offset)
.scaled_3d(SPRITE_SCALE)
.rotated_z(f32::consts::PI * 0.25 * ori as f32)
.translated_3d(
rel_pos.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0)
);
// Add an instance for each page in the sprite model
for page in sprite_data.vert_pages.clone() {
// TODO: could be more efficient to create once and clone while
// modifying vert_page
let instance = SpriteInstance::new(
mat,
cfg.wind_sway,
sprite_data.scale.z,
rel_pos,
ori,
light,
glow,
page,
matches!(sprite, SpriteKind::Door | SpriteKind::DoorDark),
);
if (wpos.z as f32) < deep_alt {
deep_level.push(instance);
} else if wpos.z as f32 > underground_alt {
surface_level.push(instance);
} else {
shallow_level.push(instance);
}
}
}
}
}
}
}
instances.map(|(deep_level, shallow_level, surface_level)| {
let deep_end = deep_level.len();
let alt_indices = AltIndices {
deep_end,
underground_end: deep_end + shallow_level.len(),
};
(
deep_level
.into_iter()
.chain(shallow_level.into_iter())
.chain(surface_level.into_iter())
.collect(),
alt_indices,
)
})
},
mesh,
blocks_of_interest,
started_tick,
}
}
struct SpriteData {
// Sprite vert page ranges that need to be drawn
vert_pages: core::ops::Range<u32>,
// Scale
scale: Vec3<f32>,
// Offset
offset: Vec3<f32>,
}
pub struct Terrain<V: RectRasterableVol = TerrainChunk> {
/// This is always the *current* atlas into which data is being allocated.
/// Once an atlas is too full to allocate the next texture, we always
/// allocate a fresh texture and start allocating into that. Trying to
/// keep more than one texture available for allocation doesn't seem
/// worth it, because our allocation patterns are heavily spatial (so all
/// data allocated around the same time should have a very similar lifetime,
/// even in pathological cases). As a result, fragmentation effects
/// should be minimal.
///
/// TODO: Consider "moving GC" style allocation to deal with spatial
/// fragmentation effects due to odd texture sizes, which in some cases
/// might significantly reduce the number of textures we need for
/// particularly difficult locations.
atlas: AtlasAllocator,
/// FIXME: This could possibly become an `AssetHandle<SpriteSpec>`, to get
/// hot-reloading for free, but I am not sure if sudden changes of this
/// value would break something
sprite_config: Arc<SpriteSpec>,
chunks: HashMap<Vec2<i32>, TerrainChunkData>,
/// Temporary storage for dead chunks that might still be shadowing chunks
/// in view. We wait until either the chunk definitely cannot be
/// shadowing anything the player can see, the chunk comes back into
/// view, or for daylight to end, before removing it (whichever comes
/// first).
///
/// Note that these chunks are not complete; for example, they are missing
/// texture data (they still currently hold onto a reference to their
/// backing texture, but it generally can't be trusted for rendering
/// purposes).
shadow_chunks: Vec<(Vec2<i32>, TerrainChunkData)>,
/* /// Secondary index into the terrain chunk table, used to sort through chunks by z index from
/// the top down.
z_index_down: BTreeSet<Vec3<i32>>,
/// Secondary index into the terrain chunk table, used to sort through chunks by z index from
/// the bottom up.
z_index_up: BTreeSet<Vec3<i32>>, */
// The mpsc sender and receiver used for talking to meshing worker threads.
// We keep the sender component for no reason other than to clone it and send it to new
// workers.
mesh_send_tmp: channel::Sender<MeshWorkerResponse>,
mesh_recv: channel::Receiver<MeshWorkerResponse>,
mesh_todo: HashMap<Vec2<i32>, ChunkMeshState>,
mesh_todos_active: Arc<AtomicU64>,
mesh_recv_overflow: f32,
// GPU data
// Maps sprite kind + variant to data detailing how to render it
sprite_data: Arc<HashMap<(SpriteKind, usize), [SpriteData; SPRITE_LOD_LEVELS]>>,
sprite_globals: SpriteGlobalsBindGroup,
sprite_col_lights: Arc<ColLights<pipelines::sprite::Locals>>,
/// As stated previously, this is always the very latest texture into which
/// we allocate. Code cannot assume that this is the assigned texture
/// for any particular chunk; look at the `texture` field in
/// `TerrainChunkData` for that.
col_lights: Arc<ColLights<pipelines::terrain::Locals>>,
phantom: PhantomData<V>,
}
impl TerrainChunkData {
pub fn can_shadow_sun(&self) -> bool { self.visible.is_visible() || self.can_shadow_sun }
}
#[derive(Clone)]
pub struct SpriteRenderContext {
sprite_config: Arc<SpriteSpec>,
// Maps sprite kind + variant to data detailing how to render it
sprite_data: Arc<HashMap<(SpriteKind, usize), [SpriteData; SPRITE_LOD_LEVELS]>>,
sprite_col_lights: Arc<ColLights<pipelines::sprite::Locals>>,
sprite_verts_buffer: Arc<SpriteVerts>,
}
pub type SpriteRenderContextLazy = Box<dyn FnMut(&mut Renderer) -> SpriteRenderContext>;
impl SpriteRenderContext {
pub fn new(renderer: &mut Renderer) -> SpriteRenderContextLazy {
let max_texture_size = renderer.max_texture_size();
struct SpriteWorkerResponse {
sprite_config: Arc<SpriteSpec>,
sprite_data: HashMap<(SpriteKind, usize), [SpriteData; SPRITE_LOD_LEVELS]>,
sprite_col_lights: ColLightInfo,
sprite_mesh: Mesh<SpriteVertex>,
}
let join_handle = std::thread::spawn(move || {
prof_span!("mesh all sprites");
// Load all the sprite config data.
let sprite_config =
Arc::<SpriteSpec>::load_expect("voxygen.voxel.sprite_manifest").cloned();
let max_size = Vec2::from(u16::try_from(max_texture_size).unwrap_or(u16::MAX));
let mut greedy = GreedyMesh::<SpriteAtlasAllocator>::new(
max_size,
crate::mesh::greedy::sprite_config(),
);
let mut sprite_mesh = Mesh::new();
// NOTE: Tracks the start vertex of the next model to be meshed.
let sprite_data: HashMap<(SpriteKind, usize), _> = SpriteKind::iter()
.filter_map(|kind| Some((kind, sprite_config.get(kind)?)))
.flat_map(|(kind, sprite_config)| {
sprite_config.variations.iter().enumerate().map(
move |(
variation,
SpriteModelConfig {
model,
offset,
lod_axes,
},
)| {
let scaled = [1.0, 0.8, 0.6, 0.4, 0.2];
let offset = Vec3::from(*offset);
let lod_axes = Vec3::from(*lod_axes);
let model = DotVoxAsset::load_expect(model);
let zero = Vec3::zero();
let model_size = model
.read()
.0
.models
.first()
.map(
|&dot_vox::Model {
size: dot_vox::Size { x, y, z },
..
}| Vec3::new(x, y, z),
)
.unwrap_or(zero);
let max_model_size = Vec3::new(31.0, 31.0, 63.0);
let model_scale =
max_model_size.map2(model_size, |max_sz: f32, cur_sz| {
let scale = max_sz / max_sz.max(cur_sz as f32);
if scale < 1.0 && (cur_sz as f32 * scale).ceil() > max_sz {
scale - 0.001
} else {
scale
}
});
move |greedy: &mut GreedyMesh<SpriteAtlasAllocator>,
sprite_mesh: &mut Mesh<SpriteVertex>| {
prof_span!("mesh sprite");
let lod_sprite_data = scaled.map(|lod_scale_orig| {
let lod_scale = model_scale
* if lod_scale_orig == 1.0 {
Vec3::broadcast(1.0)
} else {
lod_axes * lod_scale_orig
+ lod_axes.map(|e| if e == 0.0 { 1.0 } else { 0.0 })
};
// Get starting page count of opaque mesh
let start_page_num = sprite_mesh.vertices().len()
/ SPRITE_VERT_PAGE_SIZE as usize;
// Mesh generation exclusively acts using side effects; it
// has no interesting return value, but updates the mesh.
generate_mesh_base_vol_sprite(
Segment::from_vox_model_index(&model.read().0, 0)
.scaled_by(lod_scale),
(greedy, sprite_mesh, false),
offset.map(|e: f32| e.floor()) * lod_scale,
);
// Get the number of pages after the model was meshed
let end_page_num = (sprite_mesh.vertices().len()
+ SPRITE_VERT_PAGE_SIZE as usize
- 1)
/ SPRITE_VERT_PAGE_SIZE as usize;
// Fill the current last page up with degenerate verts
sprite_mesh.vertices_mut_vec().resize_with(
end_page_num * SPRITE_VERT_PAGE_SIZE as usize,
SpriteVertex::default,
);
let sprite_scale = Vec3::one() / lod_scale;
SpriteData {
vert_pages: start_page_num as u32..end_page_num as u32,
scale: sprite_scale,
offset: offset.map(|e| e.rem_euclid(1.0)),
}
});
((kind, variation), lod_sprite_data)
}
},
)
})
.map(|f| f(&mut greedy, &mut sprite_mesh))
.collect();
let sprite_col_lights = {
prof_span!("finalize");
greedy.finalize()
};
SpriteWorkerResponse {
sprite_config,
sprite_data,
sprite_col_lights,
sprite_mesh,
}
});
let init = core::cell::OnceCell::new();
let mut join_handle = Some(join_handle);
let mut closure = move |renderer: &mut Renderer| {
// The second unwrap can only fail if the sprite meshing thread panics, which
// implies that our sprite assets either were not found or did not
// satisfy the size requirements for meshing, both of which are
// considered invariant violations.
let SpriteWorkerResponse {
sprite_config,
sprite_data,
sprite_col_lights,
sprite_mesh,
} = join_handle
.take()
.expect(
"Closure should only be called once (in a `OnceCell::get_or_init`) in the \
absence of caught panics!",
)
.join()
.unwrap();
let sprite_col_lights =
pipelines::shadow::create_col_lights(renderer, &sprite_col_lights);
let sprite_col_lights = renderer.sprite_bind_col_light(sprite_col_lights);
// Write sprite model to a 1D texture
let sprite_verts_buffer = renderer.create_sprite_verts(sprite_mesh);
Self {
// TODO: these are all Arcs, would it makes sense to factor out the Arc?
sprite_config: Arc::clone(&sprite_config),
sprite_data: Arc::new(sprite_data),
sprite_col_lights: Arc::new(sprite_col_lights),
sprite_verts_buffer: Arc::new(sprite_verts_buffer),
}
};
Box::new(move |renderer| init.get_or_init(|| closure(renderer)).clone())
}
}
impl<V: RectRasterableVol> Terrain<V> {
pub fn new(
renderer: &mut Renderer,
global_model: &GlobalModel,
lod_data: &LodData,
sprite_render_context: SpriteRenderContext,
) -> Self {
// Create a new mpsc (Multiple Produced, Single Consumer) pair for communicating
// with worker threads that are meshing chunks.
let (send, recv) = channel::unbounded();
let (atlas, col_lights) =
Self::make_atlas(renderer).expect("Failed to create atlas texture");
Self {
atlas,
sprite_config: sprite_render_context.sprite_config,
chunks: HashMap::default(),
shadow_chunks: Vec::default(),
mesh_send_tmp: send,
mesh_recv: recv,
mesh_todo: HashMap::default(),
mesh_todos_active: Arc::new(AtomicU64::new(0)),
mesh_recv_overflow: 0.0,
sprite_data: sprite_render_context.sprite_data,
sprite_col_lights: sprite_render_context.sprite_col_lights,
sprite_globals: renderer.bind_sprite_globals(
global_model,
lod_data,
&sprite_render_context.sprite_verts_buffer,
),
col_lights: Arc::new(col_lights),
phantom: PhantomData,
}
}
fn make_atlas(
renderer: &mut Renderer,
) -> Result<(AtlasAllocator, ColLights<pipelines::terrain::Locals>), RenderError> {
span!(_guard, "make_atlas", "Terrain::make_atlas");
let max_texture_size = renderer.max_texture_size();
let atlas_size = guillotiere::Size::new(max_texture_size as i32, max_texture_size as i32);
let atlas = AtlasAllocator::with_options(atlas_size, &guillotiere::AllocatorOptions {
// TODO: Verify some good empirical constants.
small_size_threshold: 128,
large_size_threshold: 1024,
..guillotiere::AllocatorOptions::default()
});
let texture = renderer.create_texture_raw(
&wgpu::TextureDescriptor {
label: Some("Atlas texture"),
size: wgpu::Extent3d {
width: max_texture_size,
height: max_texture_size,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8Unorm,
usage: wgpu::TextureUsage::COPY_DST | wgpu::TextureUsage::SAMPLED,
},
&wgpu::TextureViewDescriptor {
label: Some("Atlas texture view"),
format: Some(wgpu::TextureFormat::Rgba8Unorm),
dimension: Some(wgpu::TextureViewDimension::D2),
aspect: wgpu::TextureAspect::All,
base_mip_level: 0,
mip_level_count: None,
base_array_layer: 0,
array_layer_count: None,
},
&wgpu::SamplerDescriptor {
label: Some("Atlas sampler"),
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Nearest,
..Default::default()
},
);
let col_light = renderer.terrain_bind_col_light(texture);
Ok((atlas, col_light))
}
fn remove_chunk_meta(&mut self, _pos: Vec2<i32>, chunk: &TerrainChunkData) {
// No need to free the allocation if the chunk is not allocated in the current
// atlas, since we don't bother tracking it at that point.
if let Some(col_lights) = chunk.col_lights_alloc {
self.atlas.deallocate(col_lights);
}
/* let (zmin, zmax) = chunk.z_bounds;
self.z_index_up.remove(Vec3::from(zmin, pos.x, pos.y));
self.z_index_down.remove(Vec3::from(zmax, pos.x, pos.y)); */
}
fn insert_chunk(&mut self, pos: Vec2<i32>, chunk: TerrainChunkData) {
if let Some(old) = self.chunks.insert(pos, chunk) {
self.remove_chunk_meta(pos, &old);
}
/* let (zmin, zmax) = chunk.z_bounds;
self.z_index_up.insert(Vec3::from(zmin, pos.x, pos.y));
self.z_index_down.insert(Vec3::from(zmax, pos.x, pos.y)); */
}
fn remove_chunk(&mut self, pos: Vec2<i32>) {
if let Some(chunk) = self.chunks.remove(&pos) {
self.remove_chunk_meta(pos, &chunk);
// Temporarily remember dead chunks for shadowing purposes.
self.shadow_chunks.push((pos, chunk));
}
if let Some(_todo) = self.mesh_todo.remove(&pos) {
//Do nothing on todo mesh removal.
}
}
/// Find the light level (sunlight) at the given world position.
pub fn light_at_wpos(&self, wpos: Vec3<i32>) -> f32 {
let chunk_pos = Vec2::from(wpos).map2(TerrainChunk::RECT_SIZE, |e: i32, sz| {
e.div_euclid(sz as i32)
});
self.chunks
.get(&chunk_pos)
.map(|c| (c.light_map)(wpos))
.unwrap_or(1.0)
}
/// Determine whether a given block change actually require remeshing.
///
/// Returns (skip_color, skip_lights) where
///
/// skip_color means no textures were recolored (i.e. this was a sprite only
/// change).
///
/// skip_lights means no remeshing or relighting was required
/// (i.e. the block opacity / lighting info / block kind didn't change).
fn skip_remesh(old_block: Block, new_block: Block) -> (bool, bool) {
let same_mesh =
// Both blocks are of the same opacity and same liquidity (since these are what we use
// to determine mesh boundaries).
new_block.is_liquid() == old_block.is_liquid() &&
new_block.is_opaque() == old_block.is_opaque();
let skip_lights = same_mesh &&
// Block glow and sunlight handling are the same (so we don't have to redo
// lighting).
new_block.get_glow() == old_block.get_glow() &&
new_block.get_max_sunlight() == old_block.get_max_sunlight();
let skip_color = same_mesh &&
// Both blocks are uncolored
!new_block.has_color() && !old_block.has_color();
(skip_color, skip_lights)
}
/// Find the glow level (light from lamps) at the given world position.
pub fn glow_at_wpos(&self, wpos: Vec3<i32>) -> f32 {
let chunk_pos = Vec2::from(wpos).map2(TerrainChunk::RECT_SIZE, |e: i32, sz| {
e.div_euclid(sz as i32)
});
self.chunks
.get(&chunk_pos)
.map(|c| (c.glow_map)(wpos))
.unwrap_or(0.0)
}
pub fn glow_normal_at_wpos(&self, wpos: Vec3<f32>) -> (Vec3<f32>, f32) {
let wpos_chunk = wpos.xy().map2(TerrainChunk::RECT_SIZE, |e: f32, sz| {
(e as i32).div_euclid(sz as i32)
});
const AMBIANCE: f32 = 0.15; // 0-1, the proportion of light that should illuminate the rear of an object
let (bias, total) = Spiral2d::new()
.take(9)
.flat_map(|rpos| {
let chunk_pos = wpos_chunk + rpos;
self.chunks
.get(&chunk_pos)
.into_iter()
.flat_map(|c| c.blocks_of_interest.lights.iter())
.filter_map(move |(lpos, level)| {
if (*lpos - wpos_chunk).map(|e| e.abs()).reduce_min() < SUNLIGHT as i32 + 2
{
Some((
Vec3::<i32>::from(
chunk_pos * TerrainChunk::RECT_SIZE.map(|e| e as i32),
) + *lpos,
level,
))
} else {
None
}
})
})
.fold(
(Vec3::broadcast(0.001), 0.0),
|(bias, total), (lpos, level)| {
let rpos = lpos.map(|e| e as f32 + 0.5) - wpos;
let level = (*level as f32 - rpos.magnitude()).max(0.0) * SUNLIGHT_INV;
(
bias + rpos.try_normalized().unwrap_or_else(Vec3::zero) * level,
total + level,
)
},
);
let bias_factor = bias.magnitude() * (1.0 - AMBIANCE) / total.max(0.001);
(
bias.try_normalized().unwrap_or_else(Vec3::zero) * bias_factor.powf(0.5),
self.glow_at_wpos(wpos.map(|e| e.floor() as i32)),
)
}
/// Maintain terrain data. To be called once per tick.
///
/// The returned visible bounding volumes take into account the current
/// camera position (i.e: when underground, surface structures will be
/// culled from the volume).
pub fn maintain(
&mut self,
renderer: &mut Renderer,
scene_data: &SceneData,
focus_pos: Vec3<f32>,
loaded_distance: f32,
camera: &Camera,
) -> (
Aabb<f32>,
Vec<math::Vec3<f32>>,
math::Aabr<f32>,
Vec<math::Vec3<f32>>,
math::Aabr<f32>,
) {
let camera::Dependents {
view_mat,
proj_mat_treeculler,
cam_pos,
..
} = camera.dependents();
// Remove any models for chunks that have been recently removed.
// Note: Does this before adding to todo list just in case removed chunks were
// replaced with new chunks (although this would probably be recorded as
// modified chunks)
for &pos in &scene_data.state.terrain_changes().removed_chunks {
self.remove_chunk(pos);
// Remove neighbors from meshing todo
for i in -1..2 {
for j in -1..2 {
if i != 0 || j != 0 {
self.mesh_todo.remove(&(pos + Vec2::new(i, j)));
}
}
}
}
span!(_guard, "maintain", "Terrain::maintain");
let current_tick = scene_data.tick;
let current_time = scene_data.state.get_time();
// The visible bounding box of all chunks, not including culled regions
let mut visible_bounding_box: Option<Aabb<f32>> = None;
// Add any recently created or changed chunks to the list of chunks to be
// meshed.
span!(guard, "Add new/modified chunks to mesh todo list");
for (modified, pos) in scene_data
.state
.terrain_changes()
.modified_chunks
.iter()
.map(|c| (true, c))
.chain(
scene_data
.state
.terrain_changes()
.new_chunks
.iter()
.map(|c| (false, c)),
)
{
// TODO: ANOTHER PROBLEM HERE!
// What happens if the block on the edge of a chunk gets modified? We need to
// spawn a mesh worker to remesh its neighbour(s) too since their
// ambient occlusion and face elision information changes too!
for i in -1..2 {
for j in -1..2 {
let pos = pos + Vec2::new(i, j);
if !(self.chunks.contains_key(&pos) || self.mesh_todo.contains_key(&pos))
|| modified
{
let mut neighbours = true;
for i in -1..2 {
for j in -1..2 {
neighbours &= scene_data
.state
.terrain()
.contains_key_real(pos + Vec2::new(i, j));
}
}
if neighbours {
self.mesh_todo.insert(pos, ChunkMeshState {
pos,
started_tick: current_tick,
is_worker_active: false,
skip_remesh: false,
});
}
}
}
}
}
drop(guard);
// Add the chunks belonging to recently changed blocks to the list of chunks to
// be meshed
span!(guard, "Add chunks with modified blocks to mesh todo list");
// TODO: would be useful if modified blocks were grouped by chunk
for (&pos, &old_block) in scene_data.state.terrain_changes().modified_blocks.iter() {
// terrain_changes() are both set and applied during the same tick on the
// client, so the current state is the new state and modified_blocks
// stores the old state.
let new_block = scene_data.state.get_block(pos);
let (skip_color, skip_lights) = if let Some(new_block) = new_block {
Self::skip_remesh(old_block, new_block)
} else {
// The block coordinates of a modified block should be in bounds, since they are
// only retained if setting the block was successful during the state tick in
// client. So this is definitely a bug, but we can recover safely by just
// conservatively doing a full remesh in this case, rather than crashing the
// game.
warn!(
"Invariant violation: pos={:?} should be a valid block position. This is a \
bug; please contact the developers if you see this error message!",
pos
);
(false, false)
};
// Currently, we can only skip remeshing if both lights and
// colors don't need to be reworked.
let skip_remesh = skip_color && skip_lights;
// TODO: Be cleverer about this to avoid remeshing all neighbours. There are a
// few things that can create an 'effect at a distance'. These are
// as follows:
// - A glowing block is added or removed, thereby causing a lighting
// recalculation proportional to its glow radius.
// - An opaque block that was blocking sunlight from entering a cavity is
// removed (or added) thereby
// changing the way that sunlight propagates into the cavity.
//
// We can and should be cleverer about this, but it's non-trivial. For now, we
// don't remesh if only a block color changed or a sprite was
// altered in a way that doesn't affect its glow, but we make no
// attempt to do smarter cavity checking (to see if altering the
// block changed the sunlight neighbors could get).
// let block_effect_radius = block.get_glow().unwrap_or(0).max(1);
let block_effect_radius = crate::mesh::terrain::MAX_LIGHT_DIST;
// Handle block changes on chunk borders
// Remesh all neighbours because we have complex lighting now
// TODO: if lighting is on the server this can be updated to only remesh when
// lighting changes in that neighbouring chunk or if the block
// change was on the border
for x in -1..2 {
for y in -1..2 {
let neighbour_pos = pos + Vec3::new(x, y, 0) * block_effect_radius;
let neighbour_chunk_pos = scene_data.state.terrain().pos_key(neighbour_pos);
if skip_lights && !(x == 0 && y == 0) {
// We don't need to remesh neighboring chunks if this block change doesn't
// require relighting.
continue;
}
// Only remesh if this chunk has all its neighbors
let mut neighbours = true;
for i in -1..2 {
for j in -1..2 {
neighbours &= scene_data
.state
.terrain()
.contains_key_real(neighbour_chunk_pos + Vec2::new(i, j));
}
}
if neighbours {
let todo =
self.mesh_todo
.entry(neighbour_chunk_pos)
.or_insert(ChunkMeshState {
pos: neighbour_chunk_pos,
started_tick: current_tick,
is_worker_active: false,
skip_remesh,
});
// Make sure not to skip remeshing a chunk if it already had to be
// fully meshed for other reasons. Even if the mesh is currently active
// (so relighting would be redundant), we currently have to remesh
// everything unless the previous mesh was also able to skip remeshing,
// since otherwise the active remesh is computing new lighting values
// that we don't have yet.
todo.skip_remesh &= skip_remesh;
todo.is_worker_active = false;
todo.started_tick = current_tick;
}
}
}
}
drop(guard);
// Limit ourselves to u16::MAX even if larger textures are supported.
let max_texture_size = renderer.max_texture_size();
let meshing_cores = match num_cpus::get() as u64 {
n if n < 4 => 1,
n if n < 8 => n - 3,
n => n - 4,
};
span!(guard, "Queue meshing from todo list");
let mesh_focus_pos = focus_pos.map(|e| e.trunc()).xy().as_::<i64>();
//TODO: this is actually no loop, it just runs for a single entry because of
// the `min_by_key`. Evaluate actually looping here
while let Some((todo, chunk)) = self
.mesh_todo
.values_mut()
.filter(|todo| !todo.is_worker_active)
.min_by_key(|todo| ((todo.pos.as_::<i64>() * TerrainChunk::RECT_SIZE.as_::<i64>()).distance_squared(mesh_focus_pos), todo.started_tick))
// Find a reference to the actual `TerrainChunk` we're meshing
.and_then(|todo| {
let pos = todo.pos;
Some((todo, scene_data.state
.terrain()
.get_key_arc(pos)
.cloned()
.or_else(|| {
warn!("Invariant violation: a chunk whose neighbors have not been fetched was found in the todo list,
which could halt meshing entirely.");
None
})?))
})
{
if self.mesh_todos_active.load(Ordering::Relaxed) > meshing_cores {
break;
}
// like ambient occlusion and edge elision, we also need the borders
// of the chunk's neighbours too (hence the `- 1` and `+ 1`).
let aabr = Aabr {
min: todo
.pos
.map2(VolGrid2d::<V>::chunk_size(), |e, sz| e * sz as i32 - 1),
max: todo.pos.map2(VolGrid2d::<V>::chunk_size(), |e, sz| {
(e + 1) * sz as i32 + 1
}),
};
// Copy out the chunk data we need to perform the meshing. We do this by taking
// a sample of the terrain that includes both the chunk we want and
// its neighbours.
let volume = match scene_data.state.terrain().sample(aabr) {
Ok(sample) => sample, /* TODO: Ensure that all of the chunk's neighbours still
* exist to avoid buggy shadow borders */
// Either this chunk or its neighbours doesn't yet exist, so we keep it in the
// queue to be processed at a later date when we have its neighbours.
Err(VolGrid2dError::NoSuchChunk) => {
continue;
},
_ => panic!("Unhandled edge case"),
};
// The region to actually mesh
let min_z = volume
.iter()
.fold(i32::MAX, |min, (_, chunk)| chunk.get_min_z().min(min));
let max_z = volume
.iter()
.fold(i32::MIN, |max, (_, chunk)| chunk.get_max_z().max(max));
let aabb = Aabb {
min: Vec3::from(aabr.min) + Vec3::unit_z() * (min_z - 2),
max: Vec3::from(aabr.max) + Vec3::unit_z() * (max_z + 2),
};
// Clone various things so that they can be moved into the thread.
let send = self.mesh_send_tmp.clone();
let pos = todo.pos;
let chunks = &self.chunks;
let skip_remesh = todo
.skip_remesh
.then_some(())
.and_then(|_| chunks.get(&pos))
.map(|chunk| (Arc::clone(&chunk.light_map), Arc::clone(&chunk.glow_map)));
// Queue the worker thread.
let started_tick = todo.started_tick;
let sprite_data = Arc::clone(&self.sprite_data);
let sprite_config = Arc::clone(&self.sprite_config);
let cnt = Arc::clone(&self.mesh_todos_active);
cnt.fetch_add(1, Ordering::Relaxed);
scene_data
.state
.slow_job_pool()
.spawn("TERRAIN_MESHING", move || {
let sprite_data = sprite_data;
let _ = send.send(mesh_worker(
pos,
(min_z as f32, max_z as f32),
skip_remesh,
started_tick,
volume,
max_texture_size as u16,
chunk,
aabb,
&sprite_data,
&sprite_config,
));
cnt.fetch_sub(1, Ordering::Relaxed);
});
todo.is_worker_active = true;
}
drop(guard);
// Receive a chunk mesh from a worker thread and upload it to the GPU, then
// store it. Vary the rate at which we pull items out to correlate with the
// framerate, preventing tail latency.
span!(guard, "Get/upload meshed chunk");
const CHUNKS_PER_SECOND: f32 = 240.0;
let recv_count =
scene_data.state.get_delta_time() * CHUNKS_PER_SECOND + self.mesh_recv_overflow;
self.mesh_recv_overflow = recv_count.fract();
let incoming_chunks =
std::iter::from_fn(|| self.mesh_recv.recv_timeout(Duration::new(0, 0)).ok())
.take(recv_count.floor() as usize)
.collect::<Vec<_>>(); // Avoid ownership issue
for response in incoming_chunks {
match self.mesh_todo.get(&response.pos) {
// It's the mesh we want, insert the newly finished model into the terrain model
// data structure (convert the mesh to a model first of course).
Some(todo) if response.started_tick <= todo.started_tick => {
let started_tick = todo.started_tick;
let sprite_instances =
response.sprite_instances.map(|(instances, alt_indices)| {
(
renderer
.create_instances(&instances)
.expect("Failed to upload chunk sprite instances to the GPU!"),
alt_indices,
)
});
if let Some(mesh) = response.mesh {
// Full update, insert the whole chunk.
let load_time = self
.chunks
.get(&response.pos)
.map(|chunk| chunk.load_time)
.unwrap_or(current_time as f32);
// TODO: Allocate new atlas on allocation failure.
let (tex, tex_size) = mesh.col_lights_info;
let atlas = &mut self.atlas;
let chunks = &mut self.chunks;
let col_lights = &mut self.col_lights;
let alloc_size =
guillotiere::Size::new(i32::from(tex_size.x), i32::from(tex_size.y));
let allocation = atlas.allocate(alloc_size).unwrap_or_else(|| {
// Atlas allocation failure: try allocating a new texture and atlas.
let (new_atlas, new_col_lights) =
Self::make_atlas(renderer).expect("Failed to create atlas texture");
// We reset the atlas and clear allocations from existing chunks,
// even though we haven't yet
// checked whether the new allocation can fit in
// the texture. This is reasonable because we don't have a fallback
// if a single chunk can't fit in an empty atlas of maximum size.
//
// TODO: Consider attempting defragmentation first rather than just
// always moving everything into the new chunk.
chunks.iter_mut().for_each(|(_, chunk)| {
chunk.col_lights_alloc = None;
});
*atlas = new_atlas;
*col_lights = Arc::new(new_col_lights);
atlas
.allocate(alloc_size)
.expect("Chunk data does not fit in a texture of maximum size.")
});
// NOTE: Cast is safe since the origin was a u16.
let atlas_offs = Vec2::new(
allocation.rectangle.min.x as u32,
allocation.rectangle.min.y as u32,
);
renderer.update_texture(
&col_lights.texture,
atlas_offs.into_array(),
tex_size.map(u32::from).into_array(),
&tex,
);
self.insert_chunk(response.pos, TerrainChunkData {
load_time,
opaque_model: renderer.create_model(&mesh.opaque_mesh),
fluid_model: renderer.create_model(&mesh.fluid_mesh),
col_lights_alloc: Some(allocation.id),
col_lights: Arc::clone(&self.col_lights),
light_map: mesh.light_map,
glow_map: mesh.glow_map,
sprite_instances,
locals: renderer.create_terrain_bound_locals(&[TerrainLocals::new(
Vec3::from(
response.pos.map2(VolGrid2d::<V>::chunk_size(), |e, sz| {
e as f32 * sz as f32
}),
),
atlas_offs,
load_time,
)]),
visible: Visibility {
in_range: false,
in_frustum: false,
},
can_shadow_point: false,
can_shadow_sun: false,
blocks_of_interest: response.blocks_of_interest,
z_bounds: mesh.z_bounds,
sun_occluder_z_bounds: mesh.sun_occluder_z_bounds,
frustum_last_plane_index: 0,
alt_indices: mesh.alt_indices,
});
} else if let Some(chunk) = self.chunks.get_mut(&response.pos) {
// There was an update that didn't require a remesh (probably related to
// non-glowing sprites) so we just update those.
chunk.sprite_instances = sprite_instances;
chunk.blocks_of_interest = response.blocks_of_interest;
}
if response.started_tick == started_tick {
self.mesh_todo.remove(&response.pos);
}
},
// Chunk must have been removed, or it was spawned on an old tick. Drop the mesh
// since it's either out of date or no longer needed.
Some(_todo) => {},
None => {},
}
}
drop(guard);
// Construct view frustum
span!(guard, "Construct view frustum");
let focus_off = focus_pos.map(|e| e.trunc());
let frustum = Frustum::from_modelview_projection(
(proj_mat_treeculler * view_mat * Mat4::translation_3d(-focus_off)).into_col_arrays(),
);
drop(guard);
// Update chunk visibility
span!(guard, "Update chunk visibility");
let chunk_sz = V::RECT_SIZE.x as f32;
for (pos, chunk) in &mut self.chunks {
let chunk_pos = pos.as_::<f32>() * chunk_sz;
chunk.can_shadow_sun = false;
// Limit focus_pos to chunk bounds and ensure the chunk is within the fog
// boundary
let nearest_in_chunk = Vec2::from(focus_pos).clamped(chunk_pos, chunk_pos + chunk_sz);
let distance_2 = Vec2::<f32>::from(focus_pos).distance_squared(nearest_in_chunk);
let in_range = distance_2 < loaded_distance.powi(2);
chunk.visible.in_range = in_range;
// Ensure the chunk is within the view frustum
let chunk_min = [chunk_pos.x, chunk_pos.y, chunk.z_bounds.0];
let chunk_max = [
chunk_pos.x + chunk_sz,
chunk_pos.y + chunk_sz,
chunk.sun_occluder_z_bounds.1,
];
let (in_frustum, last_plane_index) = AABB::new(chunk_min, chunk_max)
.coherent_test_against_frustum(&frustum, chunk.frustum_last_plane_index);
chunk.frustum_last_plane_index = last_plane_index;
chunk.visible.in_frustum = in_frustum;
let chunk_area = Aabr {
min: chunk_pos,
max: chunk_pos + chunk_sz,
};
if in_frustum {
let visible_box = Aabb {
min: chunk_area.min.with_z(chunk.sun_occluder_z_bounds.0),
max: chunk_area.max.with_z(chunk.sun_occluder_z_bounds.1),
};
visible_bounding_box = visible_bounding_box
.map(|e| e.union(visible_box))
.or(Some(visible_box));
}
// FIXME: Hack that only works when only the lantern casts point shadows
// (and hardcodes the shadow distance). Should ideally exist per-light, too.
chunk.can_shadow_point = distance_2 < (128.0 * 128.0);
}
drop(guard);
span!(guard, "Shadow magic");
// PSRs: potential shadow receivers
let visible_bounding_box = visible_bounding_box.unwrap_or(Aabb {
min: focus_pos - 2.0,
max: focus_pos + 2.0,
});
let inv_proj_view =
math::Mat4::from_col_arrays((proj_mat_treeculler * view_mat).into_col_arrays())
.as_::<f64>()
.inverted();
// PSCs: Potential shadow casters
let ray_direction = scene_data.get_sun_dir();
let collides_with_aabr = |a: math::Aabb<f32>, b: math::Aabr<f32>| {
let min = math::Vec4::new(a.min.x, a.min.y, b.min.x, b.min.y);
let max = math::Vec4::new(b.max.x, b.max.y, a.max.x, a.max.y);
#[cfg(feature = "simd")]
return min.partial_cmple_simd(max).reduce_and();
#[cfg(not(feature = "simd"))]
return min.partial_cmple(&max).reduce_and();
};
let (visible_light_volume, visible_psr_bounds) = if ray_direction.z < 0.0
&& renderer.pipeline_modes().shadow.is_map()
{
let visible_bounding_box = math::Aabb::<f32> {
min: math::Vec3::from(visible_bounding_box.min - focus_off),
max: math::Vec3::from(visible_bounding_box.max - focus_off),
};
let focus_off = math::Vec3::from(focus_off);
let visible_bounds_fine = visible_bounding_box.as_::<f64>();
let ray_direction = math::Vec3::<f32>::from(ray_direction);
// NOTE: We use proj_mat_treeculler here because
// calc_focused_light_volume_points makes the assumption that the
// near plane lies before the far plane.
let visible_light_volume = math::calc_focused_light_volume_points(
inv_proj_view,
ray_direction.as_::<f64>(),
visible_bounds_fine,
1e-6,
)
.map(|v| v.as_::<f32>())
.collect::<Vec<_>>();
let up: math::Vec3<f32> = { math::Vec3::unit_y() };
let cam_pos = math::Vec3::from(cam_pos);
let ray_mat = math::Mat4::look_at_rh(cam_pos, cam_pos + ray_direction, up);
let visible_bounds = math::Aabr::from(math::fit_psr(
ray_mat,
visible_light_volume.iter().copied(),
|p| p,
));
let ray_mat = ray_mat * math::Mat4::translation_3d(-focus_off);
let can_shadow_sun = |pos: Vec2<i32>, chunk: &TerrainChunkData| {
let chunk_pos = pos.as_::<f32>() * chunk_sz;
// Ensure the chunk is within the PSR set.
let chunk_box = math::Aabb {
min: math::Vec3::new(chunk_pos.x, chunk_pos.y, chunk.z_bounds.0),
max: math::Vec3::new(
chunk_pos.x + chunk_sz,
chunk_pos.y + chunk_sz,
chunk.z_bounds.1,
),
};
let chunk_from_light = math::fit_psr(
ray_mat,
math::aabb_to_points(chunk_box).iter().copied(),
|p| p,
);
collides_with_aabr(chunk_from_light, visible_bounds)
};
// Handle potential shadow casters (chunks that aren't visible, but are still in
// range) to see if they could cast shadows.
self.chunks.iter_mut()
// NOTE: We deliberately avoid doing this computation for chunks we already know
// are visible, since by definition they'll always intersect the visible view
// frustum.
.filter(|chunk| !chunk.1.visible.in_frustum)
.for_each(|(&pos, chunk)| {
chunk.can_shadow_sun = can_shadow_sun(pos, chunk);
});
// Handle dead chunks that we kept around only to make sure shadows don't blink
// out when a chunk disappears.
//
// If the sun can currently cast shadows, we retain only those shadow chunks
// that both: 1. have not been replaced by a real chunk instance,
// and 2. are currently potential shadow casters (as witnessed by
// `can_shadow_sun` returning true).
//
// NOTE: Please make sure this runs *after* any code that could insert a chunk!
// Otherwise we may end up with multiple instances of the chunk trying to cast
// shadows at the same time.
let chunks = &self.chunks;
self.shadow_chunks
.retain(|(pos, chunk)| !chunks.contains_key(pos) && can_shadow_sun(*pos, chunk));
(visible_light_volume, visible_bounds)
} else {
// There's no daylight or no shadows, so there's no reason to keep any
// shadow chunks around.
self.shadow_chunks.clear();
(Vec::new(), math::Aabr {
min: math::Vec2::zero(),
max: math::Vec2::zero(),
})
};
drop(guard);
span!(guard, "Rain occlusion magic");
// Check if there is rain near the camera
let max_weather = scene_data
.state
.max_weather_near(focus_off.xy() + cam_pos.xy());
let (visible_occlusion_volume, visible_por_bounds) = if max_weather.rain > RAIN_THRESHOLD {
let visible_bounding_box = math::Aabb::<f32> {
min: math::Vec3::from(visible_bounding_box.min - focus_off),
max: math::Vec3::from(visible_bounding_box.max - focus_off),
};
let visible_bounds_fine = math::Aabb {
min: visible_bounding_box.min.as_::<f64>(),
max: visible_bounding_box.max.as_::<f64>(),
};
let weather = scene_data.state.weather_at(focus_off.xy() + cam_pos.xy());
let ray_direction = math::Vec3::<f32>::from(weather.rain_vel().normalized());
// NOTE: We use proj_mat_treeculler here because
// calc_focused_light_volume_points makes the assumption that the
// near plane lies before the far plane.
let visible_volume = math::calc_focused_light_volume_points(
inv_proj_view,
ray_direction.as_::<f64>(),
visible_bounds_fine,
1e-6,
)
.map(|v| v.as_::<f32>())
.collect::<Vec<_>>();
let cam_pos = math::Vec3::from(cam_pos);
let ray_mat =
math::Mat4::look_at_rh(cam_pos, cam_pos + ray_direction, math::Vec3::unit_y());
let visible_bounds = math::Aabr::from(math::fit_psr(
ray_mat,
visible_volume.iter().copied(),
|p| p,
));
(visible_volume, visible_bounds)
} else {
(Vec::new(), math::Aabr::default())
};
drop(guard);
(
visible_bounding_box,
visible_light_volume,
visible_psr_bounds,
visible_occlusion_volume,
visible_por_bounds,
)
}
pub fn get(&self, chunk_key: Vec2<i32>) -> Option<&TerrainChunkData> {
self.chunks.get(&chunk_key)
}
pub fn chunk_count(&self) -> usize { self.chunks.len() }
pub fn visible_chunk_count(&self) -> usize {
self.chunks
.iter()
.filter(|(_, c)| c.visible.is_visible())
.count()
}
pub fn shadow_chunk_count(&self) -> usize { self.shadow_chunks.len() }
pub fn render_shadows<'a>(
&'a self,
drawer: &mut TerrainShadowDrawer<'_, 'a>,
focus_pos: Vec3<f32>,
culling_mode: CullingMode,
) {
span!(_guard, "render_shadows", "Terrain::render_shadows");
let focus_chunk = Vec2::from(focus_pos).map2(TerrainChunk::RECT_SIZE, |e: f32, sz| {
(e as i32).div_euclid(sz as i32)
});
let chunk_iter = Spiral2d::new()
.filter_map(|rpos| {
let pos = focus_chunk + rpos;
self.chunks.get(&pos)
})
.take(self.chunks.len());
// Directed shadows
//
// NOTE: We also render shadows for dead chunks that were found to still be
// potential shadow casters, to avoid shadows suddenly disappearing at
// very steep sun angles (e.g. sunrise / sunset).
chunk_iter
.filter(|chunk| chunk.can_shadow_sun())
.chain(self.shadow_chunks.iter().map(|(_, chunk)| chunk))
.filter_map(|chunk| {
Some((
chunk.opaque_model.as_ref()?,
&chunk.locals,
&chunk.alt_indices,
))
})
.for_each(|(model, locals, alt_indices)| {
drawer.draw(model, locals, alt_indices, culling_mode)
});
}
pub fn render_rain_occlusion<'a>(
&'a self,
drawer: &mut TerrainShadowDrawer<'_, 'a>,
focus_pos: Vec3<f32>,
) {
span!(_guard, "render_occlusion", "Terrain::render_occlusion");
let focus_chunk = Vec2::from(focus_pos).map2(TerrainChunk::RECT_SIZE, |e: f32, sz| {
(e as i32).div_euclid(sz as i32)
});
let chunk_iter = Spiral2d::new()
.filter_map(|rpos| {
let pos = focus_chunk + rpos;
self.chunks.get(&pos)
})
.take(self.chunks.len().min(RAIN_OCCLUSION_CHUNKS));
chunk_iter
// Find a way to keep this?
// .filter(|chunk| chunk.can_shadow_sun())
.filter_map(|chunk| Some((
chunk
.opaque_model
.as_ref()?,
&chunk.locals,
&chunk.alt_indices,
)))
.for_each(|(model, locals, alt_indices)| drawer.draw(model, locals, alt_indices, CullingMode::None));
}
pub fn chunks_for_point_shadows(
&self,
focus_pos: Vec3<f32>,
) -> impl Clone
+ Iterator<
Item = (
&Model<pipelines::terrain::Vertex>,
&pipelines::terrain::BoundLocals,
),
> {
let focus_chunk = Vec2::from(focus_pos).map2(TerrainChunk::RECT_SIZE, |e: f32, sz| {
(e as i32).div_euclid(sz as i32)
});
let chunk_iter = Spiral2d::new()
.filter_map(move |rpos| {
let pos = focus_chunk + rpos;
self.chunks.get(&pos)
})
.take(self.chunks.len());
// Point shadows
//
// NOTE: We don't bother retaining chunks unless they cast sun shadows, so we
// don't use `shadow_chunks` here.
chunk_iter
.filter(|chunk| chunk.can_shadow_point)
.filter_map(|chunk| {
chunk
.opaque_model
.as_ref()
.map(|model| (model, &chunk.locals))
})
}
pub fn render<'a>(
&'a self,
drawer: &mut FirstPassDrawer<'a>,
focus_pos: Vec3<f32>,
culling_mode: CullingMode,
) {
span!(_guard, "render", "Terrain::render");
let mut drawer = drawer.draw_terrain();
let focus_chunk = Vec2::from(focus_pos).map2(TerrainChunk::RECT_SIZE, |e: f32, sz| {
(e as i32).div_euclid(sz as i32)
});
Spiral2d::new()
.filter_map(|rpos| {
let pos = focus_chunk + rpos;
Some((rpos, self.chunks.get(&pos)?))
})
.take(self.chunks.len())
.filter(|(_, chunk)| chunk.visible.is_visible())
.filter_map(|(rpos, chunk)| {
Some((
rpos,
chunk.opaque_model.as_ref()?,
&chunk.col_lights,
&chunk.locals,
&chunk.alt_indices,
))
})
.for_each(|(rpos, model, col_lights, locals, alt_indices)| {
// Always draw all of close chunks to avoid terrain 'popping'
let culling_mode = if rpos.magnitude_squared() < NEVER_CULL_DIST.pow(2) {
CullingMode::None
} else {
culling_mode
};
drawer.draw(model, col_lights, locals, alt_indices, culling_mode)
});
}
pub fn render_translucent<'a>(
&'a self,
drawer: &mut FirstPassDrawer<'a>,
focus_pos: Vec3<f32>,
cam_pos: Vec3<f32>,
sprite_render_distance: f32,
culling_mode: CullingMode,
) {
span!(_guard, "render_translucent", "Terrain::render_translucent");
let focus_chunk = Vec2::from(focus_pos).map2(TerrainChunk::RECT_SIZE, |e: f32, sz| {
(e as i32).div_euclid(sz as i32)
});
// Avoid switching textures
let chunk_iter = Spiral2d::new()
.filter_map(|rpos| {
let pos = focus_chunk + rpos;
Some((rpos, pos, self.chunks.get(&pos)?))
})
.take(self.chunks.len());
// Terrain sprites
// TODO: move to separate functions
span!(guard, "Terrain sprites");
let chunk_size = V::RECT_SIZE.map(|e| e as f32);
let sprite_low_detail_distance = sprite_render_distance * 0.75;
let sprite_mid_detail_distance = sprite_render_distance * 0.5;
let sprite_hid_detail_distance = sprite_render_distance * 0.35;
let sprite_high_detail_distance = sprite_render_distance * 0.15;
let mut sprite_drawer = drawer.draw_sprites(&self.sprite_globals, &self.sprite_col_lights);
chunk_iter
.clone()
.filter(|(_, _, c)| c.visible.is_visible())
.for_each(|(rpos, pos, chunk)| {
// Skip chunk if it has no sprites
if chunk.sprite_instances[0].0.count() == 0 {
return;
}
let chunk_center = pos.map2(chunk_size, |e, sz| (e as f32 + 0.5) * sz);
let focus_dist_sqrd = Vec2::from(focus_pos).distance_squared(chunk_center);
let dist_sqrd = Aabr {
min: chunk_center - chunk_size * 0.5,
max: chunk_center + chunk_size * 0.5,
}
.projected_point(cam_pos.xy())
.distance_squared(cam_pos.xy());
if focus_dist_sqrd < sprite_render_distance.powi(2) {
let lod_level = if dist_sqrd < sprite_high_detail_distance.powi(2) {
0
} else if dist_sqrd < sprite_hid_detail_distance.powi(2) {
1
} else if dist_sqrd < sprite_mid_detail_distance.powi(2) {
2
} else if dist_sqrd < sprite_low_detail_distance.powi(2) {
3
} else {
4
};
// Always draw all of close chunks to avoid terrain 'popping'
let culling_mode = if rpos.magnitude_squared() < NEVER_CULL_DIST.pow(2) {
CullingMode::None
} else {
culling_mode
};
sprite_drawer.draw(
&chunk.locals,
&chunk.sprite_instances[lod_level].0,
&chunk.sprite_instances[lod_level].1,
culling_mode,
);
}
});
drop(sprite_drawer);
drop(guard);
// Translucent
span!(guard, "Fluid chunks");
let mut fluid_drawer = drawer.draw_fluid();
chunk_iter
.filter(|(_, _, chunk)| chunk.visible.is_visible())
.filter_map(|(_, _, chunk)| {
chunk
.fluid_model
.as_ref()
.map(|model| (model, &chunk.locals))
})
.collect::<Vec<_>>()
.into_iter()
.rev() // Render back-to-front
.for_each(|(model, locals)| {
fluid_drawer.draw(
model,
locals,
)
});
drop(fluid_drawer);
drop(guard);
}
}