mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
154 lines
4.8 KiB
GLSL
154 lines
4.8 KiB
GLSL
#version 420 core
|
|
|
|
#include <constants.glsl>
|
|
|
|
#define FIGURE_SHADER
|
|
|
|
#define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION
|
|
|
|
#define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY
|
|
|
|
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE
|
|
|
|
#define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET
|
|
|
|
#define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN
|
|
|
|
#include <globals.glsl>
|
|
#include <lod.glsl>
|
|
|
|
layout(location = 0) in uint v_pos_norm;
|
|
layout(location = 1) in uint v_atlas_pos;
|
|
|
|
// in vec3 v_norm;
|
|
/* in uint v_col;
|
|
// out vec3 light_pos[2];
|
|
in uint v_ao_bone; */
|
|
|
|
layout (std140, set = 3, binding = 0)
|
|
uniform u_locals {
|
|
mat4 model_mat;
|
|
vec4 highlight_col;
|
|
vec4 model_light;
|
|
vec4 model_glow;
|
|
ivec4 atlas_offs;
|
|
vec3 model_pos;
|
|
// bit 0 - is player
|
|
// bit 1-31 - unused
|
|
int flags;
|
|
};
|
|
|
|
struct BoneData {
|
|
mat4 bone_mat;
|
|
// This is actually a matrix, but we explicitly rely on being able to index into it
|
|
// in column major order, and some shader compilers seem to transpose the matrix to
|
|
// a different format when it's copied out of the array. So we shouldn't put it in
|
|
// a local variable (I think explicitly marking it as a vec4[4] works, but I'm not
|
|
// sure whether it optimizes the same, and in any case the fact that there's a
|
|
// format change suggests an actual wasteful copy is happening).
|
|
mat4 normals_mat;
|
|
};
|
|
|
|
layout (std140, set = 3, binding = 1)
|
|
uniform u_bones {
|
|
// Warning: might not actually be 16 elements long. Don't index out of bounds!
|
|
BoneData bones[16];
|
|
};
|
|
|
|
//struct ShadowLocals {
|
|
// mat4 shadowMatrices;
|
|
// mat4 texture_mat;
|
|
//};
|
|
//
|
|
//layout (std140)
|
|
//uniform u_light_shadows {
|
|
// ShadowLocals shadowMats[/*MAX_LAYER_FACES*/192];
|
|
//};
|
|
|
|
layout(location = 0) out vec3 f_pos;
|
|
// flat out uint f_pos_norm;
|
|
layout(location = 1) flat out vec3 f_norm;
|
|
// float dummy;
|
|
/*centroid */layout(location = 2) out vec2 f_uv_pos;
|
|
// out vec3 f_col;
|
|
// out float f_ao;
|
|
// out float f_alt;
|
|
// out vec4 f_shadow;
|
|
|
|
// #if (SHADOW_MODE == SHADOW_MODE_MAP)
|
|
// out vec4 sun_pos;
|
|
// #endif
|
|
|
|
void main() {
|
|
// Pre-calculate bone matrix
|
|
/* uint bone_idx = (v_ao_bone >> 2) & 0x3Fu; */
|
|
uint bone_idx = (v_pos_norm >> 27) & 0xFu;
|
|
|
|
// mat4 combined_mat = model_mat * bone_mat;
|
|
|
|
vec3 pos = (vec3((uvec3(v_pos_norm) >> uvec3(0, 9, 18)) & uvec3(0x1FFu)) - 256.0) / 2.0;
|
|
|
|
// vec4 bone_pos = bones[bone_idx].bone_mat * vec4(pos, 1);
|
|
|
|
f_pos = (
|
|
bones[bone_idx].bone_mat *
|
|
vec4(pos, 1.0)
|
|
).xyz + (model_pos - focus_off.xyz);
|
|
|
|
#ifdef EXPERIMENTAL_CURVEDWORLD
|
|
f_pos.z -= pow(distance(f_pos.xy + focus_off.xy, focus_pos.xy + focus_off.xy) * 0.05, 2);
|
|
#endif
|
|
|
|
/* f_pos.z -= 25.0 * pow(distance(focus_pos.xy, f_pos.xy) / view_distance.x, 20.0); */
|
|
|
|
f_uv_pos = vec2((uvec2(v_atlas_pos) >> uvec2(2, 17)) & uvec2(0x7FFFu, 0x7FFFu));
|
|
|
|
// f_col = srgb_to_linear(vec3((uvec3(v_col) >> uvec3(0, 8, 16)) & uvec3(0xFFu)) / 255.0);
|
|
// f_col = vec3(1.0);
|
|
|
|
// f_ao = float(v_ao_bone & 0x3u) / 4.0;
|
|
// f_ao = 1.0;
|
|
/* for (uint i = 0u; i < light_shadow_count.z; ++i) {
|
|
light_pos[i] = vec3(shadowMats[i].texture_mat * vec4(f_pos, 1.0));
|
|
} */
|
|
|
|
// First 3 normals are negative, next 3 are positive
|
|
// uint normal_idx = ((v_atlas_pos & 3u) << 1u) | (v_pos_norm >> 31u);
|
|
// const vec3 normals[6] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1));
|
|
// vec3 norm = normals[normal_idx];
|
|
uint axis_idx = v_atlas_pos & 3u;
|
|
|
|
vec3 norm = bones[bone_idx].normals_mat[axis_idx].xyz;
|
|
// norm = normalize(norm);
|
|
// vec3 norm = norm_mat * vec4(uvec3(1 << axis_idx) & uvec3(0x1u, 0x3u, 0x7u), 1);
|
|
|
|
// // Calculate normal here rather than for each pixel in the fragment shader
|
|
// f_norm = normalize((
|
|
// combined_mat *
|
|
// vec4(norm, 0)
|
|
// ).xyz);
|
|
f_norm = mix(-norm, norm, v_pos_norm >> 31u);
|
|
|
|
// #if (SHADOW_MODE == SHADOW_MODE_MAP)
|
|
// // for (uint i = 0u; i < light_shadow_count.z; ++i) {
|
|
// // light_pos[i] = /*vec3(*/shadowMats[i].texture_mat * vec4(f_pos, 1.0)/*)*/;
|
|
// // }
|
|
// sun_pos = /*vec3(*/shadowMats[0].texture_mat * vec4(f_pos, 1.0)/*)*/;
|
|
// // #elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE)
|
|
// // vec4 sun_pos = vec4(0.0);
|
|
// #endif
|
|
|
|
// f_pos_norm = v_pos_norm;
|
|
|
|
// Also precalculate shadow texture and estimated terrain altitude.
|
|
// f_alt = alt_at(f_pos.xy);
|
|
// f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy));
|
|
|
|
gl_Position = all_mat/*shadowMats[0].shadowMatrices*/ * vec4(f_pos, 1);
|
|
// gl_Position.z = -gl_Position.z / 100.0 / gl_Position.w;
|
|
// gl_Position.z = -gl_Position.z / 100.0;
|
|
// gl_Position.z = gl_Position.z / 100.0;
|
|
// gl_Position.z = -gl_Position.z;
|
|
// gl_Position.z = -1000.0 / (gl_Position.z + 10000.0);
|
|
}
|