veloren/assets/voxygen/shaders/include/light.glsl
2020-04-27 13:13:23 +02:00

146 lines
4.8 KiB
GLSL

#include <srgb.glsl>
struct Light {
vec4 light_pos;
vec4 light_col;
};
layout (std140)
uniform u_lights {
Light lights[32];
};
struct Shadow {
vec4 shadow_pos_radius;
};
layout (std140)
uniform u_shadows {
Shadow shadows[24];
};
float attenuation_strength(vec3 rpos) {
// This is not how light attenuation works at all, but it produces visually pleasing and mechanically useful properties
float d2 = rpos.x * rpos.x + rpos.y * rpos.y + rpos.z * rpos.z;
return max(2.0 / pow(d2 + 10, 0.35) - pow(d2 / 50000.0, 0.8), 0.0);
}
vec3 light_at(vec3 wpos, vec3 wnorm) {
const float LIGHT_AMBIENCE = 0.025;
vec3 light = vec3(0);
for (uint i = 0u; i < light_shadow_count.x; i ++) {
// Only access the array once
Light L = lights[i];
vec3 light_pos = L.light_pos.xyz;
// Pre-calculate difference between light and fragment
vec3 difference = light_pos - wpos;
float strength = attenuation_strength(difference);
// Multiply the vec3 only once
vec3 color = srgb_to_linear(L.light_col.rgb) * (strength * L.light_col.a);
light += color * (max(0, max(dot(normalize(difference), wnorm), 0.15)) + LIGHT_AMBIENCE);
}
return light;
}
float shadow_at(vec3 wpos, vec3 wnorm) {
float shadow = 1.0;
for (uint i = 0u; i < light_shadow_count.y; i ++) {
// Only access the array once
Shadow S = shadows[i];
vec3 shadow_pos = S.shadow_pos_radius.xyz;
float radius = S.shadow_pos_radius.w;
vec3 diff = shadow_pos - wpos;
if (diff.z >= 0.0) {
diff.z = -sign(diff.z) * diff.z * 0.1;
}
float shade = max(pow(diff.x * diff.x + diff.y * diff.y + diff.z * diff.z, 0.25) / pow(radius * radius * 0.5, 0.25), 0.5);
shadow = min(shadow, shade);
}
// NOTE: Squared to compenate for prior saturation.
return min(shadow * shadow, 1.0);
}
// Returns computed maximum intensity.
float lights_at(vec3 wpos, vec3 wnorm, vec3 cam_to_frag, vec3 k_a, vec3 k_d, vec3 k_s, float alpha, inout vec3 emitted_light, inout vec3 reflected_light/*, out float shadow*/) {
// shadow = 0.0;
vec3 ambient_light = vec3(0.0);
vec3 directed_light = vec3(0.0);
vec3 max_light = vec3(0.0);
const float LIGHT_AMBIENCE = 0.5;
for (uint i = 0u; i < light_shadow_count.x; i ++) {
// Only access the array once
Light L = lights[i];
vec3 light_pos = L.light_pos.xyz;
// Pre-calculate difference between light and fragment
vec3 difference = light_pos - wpos;
float distance_2 = dot(difference, difference);
// float strength = attenuation_strength(difference);// pow(attenuation_strength(difference), 0.6);
// // NOTE: This normalizes strength to 1.0 at the center of the point source.
// float strength = 1.0 / (1.0 + distance_2);
float strength = 1.0 / distance_2;
// Multiply the vec3 only once
const float PI = 3.1415926535897932384626433832795;
const float PI_2 = 2 * PI;
float square_factor = /*2.0 * PI_2 * */2.0 * L.light_col.a;
vec3 color = /*srgb_to_linear*/L.light_col.rgb;
// // Only access the array once
// Shadow S = shadows[i];
// vec3 shadow_pos = S.shadow_pos_radius.xyz;
// float radius = S.shadow_pos_radius.w;
// vec3 diff = shadow_pos - wpos;
// if (diff.z >= 0.0) {
// diff.z = -sign(diff.z) * diff.z * 0.1;
// }
// float shade = max(pow(diff.x * diff.x + diff.y * diff.y + diff.z * diff.z, 0.25) / pow(radius * radius * 0.5, 0.25), /*0.5*/0.0);
// shadow = min(shadow, shade);
// Compute reflectance.
vec3 light_dir = -difference / sqrt(distance_2); // normalize(-difference);
// light_dir = faceforward(light_dir, wnorm, light_dir);
bool is_direct = dot(-light_dir, wnorm) > 0.0;
// reflected_light += color * (distance_2 == 0.0 ? vec3(1.0) : light_reflection_factor(wnorm, cam_to_frag, light_dir, k_d, k_s, alpha));
vec3 direct_light = color * strength * square_factor * light_reflection_factor(wnorm, cam_to_frag, is_direct ? light_dir : -light_dir, k_d, k_s, alpha);
directed_light += is_direct ? direct_light * square_factor : vec3(0.0);
ambient_light += is_direct ? vec3(0.0) : direct_light * LIGHT_AMBIENCE;
max_light += square_factor * square_factor * color;
// light += color * (max(0, max(dot(normalize(difference), wnorm), 0.15)) + LIGHT_AMBIENCE);
// Compute emiittance.
// float ambient_sides = clamp(mix(0.15, 0.0, abs(dot(wnorm, light_dir)) * 10000.0), 0.0, 0.15);
// float ambient_sides = 0.0;// max(dot(wnorm, light_dir) - 0.15, 0.15);
// // float ambient_sides = 0.0;
// ambient_light += color * (ambient_sides + LIGHT_AMBIENCE);
}
// shadow = shadow_at(wpos, wnorm);
// float shadow = shadow_at(wpos, wnorm);
reflected_light += directed_light;
emitted_light += k_a * ambient_light/* * shadow*/;// min(shadow, 1.0);
return /*rel_luminance(ambient_light + directed_light)*/rel_luminance(max_light);//ambient_light;
}