veloren/common/src/vol.rs

321 lines
9.4 KiB
Rust

use crate::{ray::Ray, volumes::scaled::Scaled};
use std::fmt::Debug;
use vek::*;
/// Used to specify a volume's compile-time size. This exists as a substitute
/// until const generics are implemented.
pub trait VolSize: Clone {
const SIZE: Vec3<u32>;
}
pub trait RectVolSize: Clone {
const RECT_SIZE: Vec2<u32>;
}
/// A voxel.
pub trait Vox: Sized + Clone + PartialEq {
fn empty() -> Self;
fn is_empty(&self) -> bool;
fn or(self, other: Self) -> Self { if self.is_empty() { other } else { self } }
}
/// A volume that contains voxel data.
pub trait BaseVol {
type Vox;
type Error: Debug;
fn scaled_by(self, scale: Vec3<f32>) -> Scaled<Self>
where
Self: Sized,
{
Scaled { inner: self, scale }
}
}
/// Implementing `BaseVol` for any `&'a BaseVol` makes it possible to implement
/// `IntoVolIterator` for references.
impl<'a, T: BaseVol> BaseVol for &'a T {
type Error = T::Error;
type Vox = T::Vox;
}
// Utility types
/// A volume that is a cuboid.
pub trait SizedVol: BaseVol {
/// Returns the (inclusive) lower bound of the volume.
fn lower_bound(&self) -> Vec3<i32>;
/// Returns the (exclusive) upper bound of the volume.
fn upper_bound(&self) -> Vec3<i32>;
/// Returns the size of the volume.
fn size(&self) -> Vec3<u32> { (self.upper_bound() - self.lower_bound()).map(|e| e as u32) }
}
/// A volume that is compile-time sized and has its lower bound at `(0, 0, 0)`.
/// The name `RasterableVol` was chosen because such a volume can be used with
/// `VolGrid3d`.
pub trait RasterableVol: BaseVol {
const SIZE: Vec3<u32>;
}
impl<V: RasterableVol> SizedVol for V {
fn lower_bound(&self) -> Vec3<i32> { Vec3::zero() }
fn upper_bound(&self) -> Vec3<i32> { V::SIZE.map(|e| e as i32) }
}
/// A volume whose cross section with the XY-plane is a rectangle.
pub trait RectSizedVol: BaseVol {
fn lower_bound_xy(&self) -> Vec2<i32>;
fn upper_bound_xy(&self) -> Vec2<i32>;
fn size_xy(&self) -> Vec2<u32> {
(self.upper_bound_xy() - self.lower_bound_xy()).map(|e| e as u32)
}
}
/// A volume that is compile-time sized in x and y direction and has its lower
/// bound at `(0, 0, z)`. In z direction there's no restriction on the lower
/// or upper bound. The name `RectRasterableVol` was chosen because such a
/// volume can be used with `VolGrid2d`.
pub trait RectRasterableVol: BaseVol {
const RECT_SIZE: Vec2<u32>;
}
impl<V: RectRasterableVol> RectSizedVol for V {
fn lower_bound_xy(&self) -> Vec2<i32> { Vec2::zero() }
fn upper_bound_xy(&self) -> Vec2<i32> { V::RECT_SIZE.map(|e| e as i32) }
}
/// A volume that provides read access to its voxel data.
pub trait ReadVol: BaseVol {
/// Get a reference to the voxel at the provided position in the volume.
fn get(&self, pos: Vec3<i32>) -> Result<&Self::Vox, Self::Error>;
#[allow(clippy::type_complexity)] // TODO: Pending review in #587
/// NOTE: By default, this ray will simply run from `from` to `to` without
/// stopping. To make something interesting happen, call `until` or
/// `for_each`.
fn ray(
&self,
from: Vec3<f32>,
to: Vec3<f32>,
) -> Ray<Self, fn(&Self::Vox) -> bool, fn(&Self::Vox, Vec3<i32>)>
where
Self: Sized,
{
Ray::new(self, from, to, |_| true)
}
/// Call provided closure with each block in the supplied Aabb
/// Portions of the Aabb outside the volume are ignored
//#[inline]
fn for_each_in(&self, aabb: Aabb<i32>, mut f: impl FnMut(Vec3<i32>, Self::Vox))
where
Self::Vox: Copy,
{
(aabb.min.x..=aabb.max.x)
.map(|x| {
(aabb.min.y..=aabb.max.y)
.map(move |y| (aabb.min.z..=aabb.max.z).map(move |z| Vec3::new(x, y, z)))
})
.flatten()
.flatten()
.for_each(|pos| {
if let Ok(vox) = self.get(pos) {
f(pos, *vox);
}
});
}
}
/// A volume that provides the ability to sample (i.e., clone a section of) its
/// voxel data.
///
/// TODO (haslersn): Do we still need this now that we have `IntoVolIterator`?
pub trait SampleVol<I>: BaseVol {
type Sample: BaseVol + ReadVol;
/// Take a sample of the volume by cloning voxels within the provided range.
///
/// Note that value and accessibility of voxels outside the bounds of the
/// sample is implementation-defined and should not be used.
///
/// Note that the resultant volume has a coordinate space relative to the
/// sample, not the original volume.
fn sample(&self, range: I) -> Result<Self::Sample, Self::Error>;
}
/// A volume that provides write access to its voxel data.
pub trait WriteVol: BaseVol {
/// Set the voxel at the provided position in the volume to the provided
/// value.
fn set(&mut self, pos: Vec3<i32>, vox: Self::Vox) -> Result<Self::Vox, Self::Error>;
/// Map a voxel to another using the provided function.
// TODO: Is `map` the right name? Implies a change in type.
fn map<F: FnOnce(Self::Vox) -> Self::Vox>(
&mut self,
pos: Vec3<i32>,
f: F,
) -> Result<Self::Vox, Self::Error>
where
Self: ReadVol,
Self::Vox: Clone,
{
// This is *deliberately* not using a get_mut since this might trigger a
// repr change of the underlying volume
self.set(pos, f(self.get(pos)?.clone()))
}
}
/// A volume (usually rather a reference to a volume) that is convertible into
/// an iterator to a cuboid subsection of the volume.
pub trait IntoVolIterator<'a>: BaseVol
where
Self::Vox: 'a,
{
type IntoIter: Iterator<Item = (Vec3<i32>, &'a Self::Vox)>;
fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> Self::IntoIter;
}
pub trait IntoPosIterator: BaseVol {
type IntoIter: Iterator<Item = Vec3<i32>>;
fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> Self::IntoIter;
}
// Helpers
/// A volume (usually rather a reference to a volume) that is convertible into
/// an iterator.
pub trait IntoFullVolIterator<'a>: BaseVol
where
Self::Vox: 'a,
{
type IntoIter: Iterator<Item = (Vec3<i32>, &'a Self::Vox)>;
fn full_vol_iter(self) -> Self::IntoIter;
}
/// For any `&'a SizedVol: IntoVolIterator` we implement `IntoFullVolIterator`.
/// Unfortunately we can't just implement `IntoIterator` in this generic way
/// because it's defined in another crate. That's actually the only reason why
/// the trait `IntoFullVolIterator` exists.
// TODO: See whether relaxed orphan rules permit this to be replaced now
impl<'a, T: 'a + SizedVol> IntoFullVolIterator<'a> for &'a T
where
Self: IntoVolIterator<'a>,
{
type IntoIter = <Self as IntoVolIterator<'a>>::IntoIter;
fn full_vol_iter(self) -> Self::IntoIter {
self.vol_iter(self.lower_bound(), self.upper_bound())
}
}
pub trait IntoFullPosIterator: BaseVol {
type IntoIter: Iterator<Item = Vec3<i32>>;
fn full_pos_iter(self) -> Self::IntoIter;
}
impl<'a, T: 'a + SizedVol> IntoFullPosIterator for &'a T
where
Self: IntoPosIterator,
{
type IntoIter = <Self as IntoPosIterator>::IntoIter;
fn full_pos_iter(self) -> Self::IntoIter {
self.pos_iter(self.lower_bound(), self.upper_bound())
}
}
// Defaults
/// Convenience iterator type that can be used to quickly implement
/// `IntoPosIterator`.
pub struct DefaultPosIterator {
current: Vec3<i32>,
begin: Vec2<i32>,
end: Vec3<i32>,
}
impl DefaultPosIterator {
pub fn new(lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> Self {
debug_assert!(lower_bound.map2(upper_bound, |l, u| l <= u).reduce_and());
let end = if lower_bound.map2(upper_bound, |l, u| l < u).reduce_and() {
upper_bound
} else {
// Special case because our implementation doesn't handle empty ranges for x or
// y:
lower_bound
};
Self {
current: lower_bound,
begin: From::from(lower_bound),
end,
}
}
}
impl Iterator for DefaultPosIterator {
type Item = Vec3<i32>;
fn next(&mut self) -> Option<Vec3<i32>> {
if self.current.z == self.end.z {
return None;
}
let ret = self.current;
self.current.x += 1;
if self.current.x == self.end.x {
self.current.x = self.begin.x;
self.current.y += 1;
if self.current.y == self.end.y {
self.current.y = self.begin.y;
self.current.z += 1;
}
}
Some(ret)
}
}
/// Convenience iterator type that can be used to quickly implement
/// `IntoVolIterator`.
pub struct DefaultVolIterator<'a, T: ReadVol> {
vol: &'a T,
pos_iter: DefaultPosIterator,
}
impl<'a, T: ReadVol> DefaultVolIterator<'a, T> {
pub fn new(vol: &'a T, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> Self {
Self {
vol,
pos_iter: DefaultPosIterator::new(lower_bound, upper_bound),
}
}
}
impl<'a, T: ReadVol> Iterator for DefaultVolIterator<'a, T> {
type Item = (Vec3<i32>, &'a T::Vox);
fn next(&mut self) -> Option<(Vec3<i32>, &'a T::Vox)> {
for pos in &mut self.pos_iter {
if let Ok(vox) = self.vol.get(pos) {
return Some((pos, vox));
}
}
None
}
}
impl<'b, T: ReadVol> ReadVol for &'b T {
#[inline(always)]
fn get(&self, pos: Vec3<i32>) -> Result<&'_ Self::Vox, Self::Error> { (*self).get(pos) }
}