veloren/common/systems/src/phys.rs
2022-05-27 17:19:52 +00:00

2148 lines
87 KiB
Rust

use common::{
comp::{
body::ship::figuredata::{VoxelCollider, VOXEL_COLLIDER_MANIFEST},
fluid_dynamics::{Fluid, LiquidKind, Wings},
inventory::item::armor::Friction,
Body, CharacterState, Collider, Density, Immovable, Mass, Ori, PhysicsState, Pos,
PosVelOriDefer, PreviousPhysCache, Projectile, Scale, Stats, Sticky, Vel,
},
consts::{AIR_DENSITY, FRIC_GROUND, GRAVITY},
event::{EventBus, ServerEvent},
link::Is,
mounting::Rider,
outcome::Outcome,
resources::DeltaTime,
states,
terrain::{Block, BlockKind, TerrainGrid},
uid::Uid,
util::{Projection, SpatialGrid},
vol::{BaseVol, ReadVol},
};
use common_base::{prof_span, span};
use common_ecs::{Job, Origin, ParMode, Phase, PhysicsMetrics, System};
use rayon::iter::ParallelIterator;
use specs::{
shred::{ResourceId, World},
Entities, Entity, Join, ParJoin, Read, ReadExpect, ReadStorage, SystemData, Write, WriteExpect,
WriteStorage,
};
use std::ops::Range;
use vek::*;
/// The density of the fluid as a function of submersion ratio in given fluid
/// where it is assumed that any unsubmersed part is is air.
// TODO: Better suited partial submersion curve?
fn fluid_density(height: f32, fluid: &Fluid) -> Density {
// If depth is less than our height (partial submersion), remove
// fluid density based on the ratio of displacement to full volume.
let immersion = fluid
.depth()
.map_or(1.0, |depth| (depth / height).clamp(0.0, 1.0));
Density(fluid.density().0 * immersion + AIR_DENSITY * (1.0 - immersion))
}
fn integrate_forces(
dt: &DeltaTime,
mut vel: Vel,
(body, wings): (&Body, Option<&Wings>),
density: &Density,
mass: &Mass,
fluid: &Fluid,
gravity: f32,
) -> Vel {
let dim = body.dimensions();
let height = dim.z;
let rel_flow = fluid.relative_flow(&vel);
let fluid_density = fluid_density(height, fluid);
debug_assert!(mass.0 > 0.0);
debug_assert!(density.0 > 0.0);
// Aerodynamic/hydrodynamic forces
if !rel_flow.0.is_approx_zero() {
debug_assert!(!rel_flow.0.map(|a| a.is_nan()).reduce_or());
let impulse = dt.0 * body.aerodynamic_forces(&rel_flow, fluid_density.0, wings);
debug_assert!(!impulse.map(|a| a.is_nan()).reduce_or());
if !impulse.is_approx_zero() {
let new_v = vel.0 + impulse / mass.0;
// If the new velocity is in the opposite direction, it's because the forces
// involved are too high for the current tick to handle. We deal with this by
// removing the component of our velocity vector along the direction of force.
// This way we can only ever lose velocity and will never experience a reverse
// in direction from events such as falling into water at high velocities.
if new_v.dot(vel.0) < 0.0 {
// Multiply by a factor to prevent full stop,
// as this can cause things to get stuck in high-density medium
vel.0 -= vel.0.projected(&impulse) * 0.9;
} else {
vel.0 = new_v;
}
};
debug_assert!(!vel.0.map(|a| a.is_nan()).reduce_or());
};
// Hydrostatic/aerostatic forces
// modify gravity to account for the effective density as a result of buoyancy
let down_force = dt.0 * gravity * (density.0 - fluid_density.0) / density.0;
vel.0.z -= down_force;
vel
}
fn calc_z_limit(char_state_maybe: Option<&CharacterState>, collider: &Collider) -> (f32, f32) {
let modifier = if char_state_maybe.map_or(false, |c_s| c_s.is_dodge() || c_s.is_glide()) {
0.5
} else {
1.0
};
collider.get_z_limits(modifier)
}
/// This system applies forces and calculates new positions and velocities.
#[derive(Default)]
pub struct Sys;
#[derive(SystemData)]
pub struct PhysicsRead<'a> {
entities: Entities<'a>,
uids: ReadStorage<'a, Uid>,
terrain: ReadExpect<'a, TerrainGrid>,
dt: Read<'a, DeltaTime>,
event_bus: Read<'a, EventBus<ServerEvent>>,
scales: ReadStorage<'a, Scale>,
stickies: ReadStorage<'a, Sticky>,
immovables: ReadStorage<'a, Immovable>,
masses: ReadStorage<'a, Mass>,
colliders: ReadStorage<'a, Collider>,
is_ridings: ReadStorage<'a, Is<Rider>>,
projectiles: ReadStorage<'a, Projectile>,
char_states: ReadStorage<'a, CharacterState>,
bodies: ReadStorage<'a, Body>,
character_states: ReadStorage<'a, CharacterState>,
densities: ReadStorage<'a, Density>,
stats: ReadStorage<'a, Stats>,
}
#[derive(SystemData)]
pub struct PhysicsWrite<'a> {
physics_metrics: WriteExpect<'a, PhysicsMetrics>,
cached_spatial_grid: Write<'a, common::CachedSpatialGrid>,
physics_states: WriteStorage<'a, PhysicsState>,
positions: WriteStorage<'a, Pos>,
velocities: WriteStorage<'a, Vel>,
pos_vel_ori_defers: WriteStorage<'a, PosVelOriDefer>,
orientations: WriteStorage<'a, Ori>,
previous_phys_cache: WriteStorage<'a, PreviousPhysCache>,
outcomes: Read<'a, EventBus<Outcome>>,
}
#[derive(SystemData)]
pub struct PhysicsData<'a> {
read: PhysicsRead<'a>,
write: PhysicsWrite<'a>,
}
impl<'a> PhysicsData<'a> {
/// Add/reset physics state components
fn reset(&mut self) {
span!(_guard, "Add/reset physics state components");
for (entity, _, _, _, _) in (
&self.read.entities,
&self.read.colliders,
&self.write.positions,
&self.write.velocities,
&self.write.orientations,
)
.join()
{
let _ = self
.write
.physics_states
.entry(entity)
.map(|e| e.or_insert_with(Default::default));
}
}
fn maintain_pushback_cache(&mut self) {
span!(_guard, "Maintain pushback cache");
// Add PreviousPhysCache for all relevant entities
for entity in (
&self.read.entities,
&self.read.colliders,
&self.write.velocities,
&self.write.positions,
!&self.write.previous_phys_cache,
)
.join()
.map(|(e, _, _, _, _)| e)
.collect::<Vec<_>>()
{
let _ = self
.write
.previous_phys_cache
.insert(entity, PreviousPhysCache {
velocity_dt: Vec3::zero(),
center: Vec3::zero(),
collision_boundary: 0.0,
scale: 0.0,
scaled_radius: 0.0,
neighborhood_radius: 0.0,
origins: None,
pos: None,
ori: Quaternion::identity(),
});
}
// Update PreviousPhysCache
for (_, vel, position, ori, mut phys_cache, collider, scale, cs) in (
&self.read.entities,
&self.write.velocities,
&self.write.positions,
&self.write.orientations,
&mut self.write.previous_phys_cache,
&self.read.colliders,
self.read.scales.maybe(),
self.read.char_states.maybe(),
)
.join()
{
let scale = scale.map(|s| s.0).unwrap_or(1.0);
let z_limits = calc_z_limit(cs, collider);
let (z_min, z_max) = z_limits;
let (z_min, z_max) = (z_min * scale, z_max * scale);
let half_height = (z_max - z_min) / 2.0;
phys_cache.velocity_dt = vel.0 * self.read.dt.0;
let entity_center = position.0 + Vec3::new(0.0, 0.0, z_min + half_height);
let flat_radius = collider.bounding_radius() * scale;
let radius = (flat_radius.powi(2) + half_height.powi(2)).sqrt();
// Move center to the middle between OLD and OLD+VEL_DT
// so that we can reduce the collision_boundary.
phys_cache.center = entity_center + phys_cache.velocity_dt / 2.0;
phys_cache.collision_boundary = radius + (phys_cache.velocity_dt / 2.0).magnitude();
phys_cache.scale = scale;
phys_cache.scaled_radius = flat_radius;
let neighborhood_radius = match collider {
Collider::CapsulePrism { radius, .. } => radius * scale,
Collider::Voxel { .. } | Collider::Volume(_) | Collider::Point => flat_radius,
};
phys_cache.neighborhood_radius = neighborhood_radius;
let ori = ori.to_quat();
let origins = match collider {
Collider::CapsulePrism { p0, p1, .. } => {
let a = p1 - p0;
let len = a.magnitude();
// If origins are close enough, our capsule prism is cylinder
// with one origin which we don't even need to rotate.
//
// Other advantage of early-return is that we don't
// later divide by zero and return NaN
if len < f32::EPSILON * 10.0 {
Some((*p0, *p0))
} else {
// Apply orientation to origins of prism.
//
// We do this by building line between them,
// rotate it and then split back to origins.
// (Otherwise we will need to do the same with each
// origin).
//
// Cast it to 3d and then convert it back to 2d
// to apply quaternion.
let a = a.with_z(0.0);
let a = ori * a;
let a = a.xy();
// Previous operation could shrink x and y coordinates
// if orientation had Z parameter.
// Make sure we have the same length as before
// (and scale it, while we on it).
let a = a.normalized() * scale * len;
let p0 = -a / 2.0;
let p1 = a / 2.0;
Some((p0, p1))
}
},
Collider::Voxel { .. } | Collider::Volume(_) | Collider::Point => None,
};
phys_cache.origins = origins;
phys_cache.ori = ori;
}
}
fn construct_spatial_grid(&mut self) -> SpatialGrid {
span!(_guard, "Construct spatial grid");
let PhysicsData {
ref read,
ref write,
} = self;
// NOTE: i32 places certain constraints on how far out collision works
// NOTE: uses the radius of the entity and their current position rather than
// the radius of their bounding sphere for the current frame of movement
// because the nonmoving entity is what is collided against in the inner
// loop of the pushback collision code
// TODO: maintain frame to frame? (requires handling deletion)
// TODO: if not maintaining frame to frame consider counting entities to
// preallocate?
// TODO: assess parallelizing (overhead might dominate here? would need to merge
// the vecs in each hashmap)
let lg2_cell_size = 5;
let lg2_large_cell_size = 6;
let radius_cutoff = 8;
let mut spatial_grid = SpatialGrid::new(lg2_cell_size, lg2_large_cell_size, radius_cutoff);
for (entity, pos, phys_cache, _, _) in (
&read.entities,
&write.positions,
&write.previous_phys_cache,
write.velocities.mask(),
!&read.projectiles, // Not needed because they are skipped in the inner loop below
)
.join()
{
// Note: to not get too fine grained we use a 2D grid for now
let radius_2d = phys_cache.scaled_radius.ceil() as u32;
let pos_2d = pos.0.xy().map(|e| e as i32);
const POS_TRUNCATION_ERROR: u32 = 1;
spatial_grid.insert(pos_2d, radius_2d + POS_TRUNCATION_ERROR, entity);
}
spatial_grid
}
fn apply_pushback(&mut self, job: &mut Job<Sys>, spatial_grid: &SpatialGrid) {
span!(_guard, "Apply pushback");
job.cpu_stats.measure(ParMode::Rayon);
let PhysicsData {
ref read,
ref mut write,
} = self;
let (positions, previous_phys_cache) = (&write.positions, &write.previous_phys_cache);
let metrics = (
&read.entities,
positions,
&mut write.velocities,
previous_phys_cache,
&read.masses,
&read.colliders,
read.is_ridings.maybe(),
read.stickies.maybe(),
read.immovables.maybe(),
&mut write.physics_states,
// TODO: if we need to avoid collisions for other things consider
// moving whether it should interact into the collider component
// or into a separate component.
read.projectiles.maybe(),
read.char_states.maybe(),
)
.par_join()
.map_init(
|| {
prof_span!(guard, "physics e<>e rayon job");
guard
},
|_guard,
(
entity,
pos,
vel,
previous_cache,
mass,
collider,
is_riding,
sticky,
immovable,
physics,
projectile,
char_state_maybe,
)| {
let is_sticky = sticky.is_some();
let is_immovable = immovable.is_some();
let is_mid_air = physics.on_surface().is_none();
let mut entity_entity_collision_checks = 0;
let mut entity_entity_collisions = 0;
// TODO: quick fix for bad performance. At extrememly high
// velocities use oriented rectangles at some threshold of
// displacement/radius to query the spatial grid and limit
// max displacement per tick somehow.
if previous_cache.collision_boundary > 128.0 {
return PhysicsMetrics {
entity_entity_collision_checks,
entity_entity_collisions,
};
}
let z_limits = calc_z_limit(char_state_maybe, collider);
// Resets touch_entities in physics
physics.touch_entities.clear();
let is_projectile = projectile.is_some();
let mut vel_delta = Vec3::zero();
let query_center = previous_cache.center.xy();
let query_radius = previous_cache.collision_boundary;
spatial_grid
.in_circle_aabr(query_center, query_radius)
.filter_map(|entity| {
let uid = read.uids.get(entity)?;
let pos = positions.get(entity)?;
let previous_cache = previous_phys_cache.get(entity)?;
let mass = read.masses.get(entity)?;
let collider = read.colliders.get(entity)?;
Some((
entity,
uid,
pos,
previous_cache,
mass,
collider,
read.char_states.get(entity),
read.is_ridings.get(entity),
))
})
.for_each(
|(
entity_other,
other,
pos_other,
previous_cache_other,
mass_other,
collider_other,
char_state_other_maybe,
other_is_riding_maybe,
)| {
let collision_boundary = previous_cache.collision_boundary
+ previous_cache_other.collision_boundary;
if previous_cache
.center
.distance_squared(previous_cache_other.center)
> collision_boundary.powi(2)
|| entity == entity_other
{
return;
}
let z_limits_other =
calc_z_limit(char_state_other_maybe, collider_other);
entity_entity_collision_checks += 1;
const MIN_COLLISION_DIST: f32 = 0.3;
let increments = ((previous_cache.velocity_dt
- previous_cache_other.velocity_dt)
.magnitude()
/ MIN_COLLISION_DIST)
.max(1.0)
.ceil()
as usize;
let step_delta = 1.0 / increments as f32;
let mut collision_registered = false;
for i in 0..increments {
let factor = i as f32 * step_delta;
// We are not interested if collision succeed
// or no as of now.
// Collision reaction is done inside.
let _ = resolve_e2e_collision(
// utility variables for our entity
&mut collision_registered,
&mut entity_entity_collisions,
factor,
physics,
char_state_maybe,
&mut vel_delta,
step_delta,
// physics flags
is_mid_air,
is_sticky,
is_immovable,
is_projectile,
// entity we colliding with
*other,
// symetrical collider context
ColliderData {
pos,
previous_cache,
z_limits,
collider,
mass: *mass,
},
ColliderData {
pos: pos_other,
previous_cache: previous_cache_other,
z_limits: z_limits_other,
collider: collider_other,
mass: *mass_other,
},
vel,
is_riding.is_some() || other_is_riding_maybe.is_some(),
);
}
},
);
// Change velocity
vel.0 += vel_delta * read.dt.0;
// Metrics
PhysicsMetrics {
entity_entity_collision_checks,
entity_entity_collisions,
}
},
)
.reduce(PhysicsMetrics::default, |old, new| PhysicsMetrics {
entity_entity_collision_checks: old.entity_entity_collision_checks
+ new.entity_entity_collision_checks,
entity_entity_collisions: old.entity_entity_collisions
+ new.entity_entity_collisions,
});
write.physics_metrics.entity_entity_collision_checks =
metrics.entity_entity_collision_checks;
write.physics_metrics.entity_entity_collisions = metrics.entity_entity_collisions;
}
fn construct_voxel_collider_spatial_grid(&mut self) -> SpatialGrid {
span!(_guard, "Construct voxel collider spatial grid");
let PhysicsData {
ref read,
ref write,
} = self;
let voxel_colliders_manifest = VOXEL_COLLIDER_MANIFEST.read();
// NOTE: i32 places certain constraints on how far out collision works
// NOTE: uses the radius of the entity and their current position rather than
// the radius of their bounding sphere for the current frame of movement
// because the nonmoving entity is what is collided against in the inner
// loop of the pushback collision code
// TODO: optimize these parameters (especially radius cutoff)
let lg2_cell_size = 7; // 128
let lg2_large_cell_size = 8; // 256
let radius_cutoff = 64;
let mut spatial_grid = SpatialGrid::new(lg2_cell_size, lg2_large_cell_size, radius_cutoff);
// TODO: give voxel colliders their own component type
for (entity, pos, collider, ori) in (
&read.entities,
&write.positions,
&read.colliders,
&write.orientations,
)
.join()
{
let vol = match collider {
Collider::Voxel { id } => voxel_colliders_manifest.colliders.get(&*id),
Collider::Volume(vol) => Some(&**vol),
_ => None,
};
if let Some(vol) = vol {
let sphere = voxel_collider_bounding_sphere(vol, pos, ori);
let radius = sphere.radius.ceil() as u32;
let pos_2d = sphere.center.xy().map(|e| e as i32);
const POS_TRUNCATION_ERROR: u32 = 1;
spatial_grid.insert(pos_2d, radius + POS_TRUNCATION_ERROR, entity);
}
}
spatial_grid
}
fn handle_movement_and_terrain(
&mut self,
job: &mut Job<Sys>,
voxel_collider_spatial_grid: &SpatialGrid,
) {
let PhysicsData {
ref read,
ref mut write,
} = self;
prof_span!(guard, "insert PosVelOriDefer");
// NOTE: keep in sync with join below
(
&read.entities,
read.colliders.mask(),
&write.positions,
&write.velocities,
&write.orientations,
write.orientations.mask(),
write.physics_states.mask(),
!&write.pos_vel_ori_defers, // This is the one we are adding
write.previous_phys_cache.mask(),
!&read.is_ridings,
)
.join()
.map(|t| (t.0, *t.2, *t.3, *t.4))
.collect::<Vec<_>>()
.into_iter()
.for_each(|(entity, pos, vel, ori)| {
let _ = write.pos_vel_ori_defers.insert(entity, PosVelOriDefer {
pos: Some(pos),
vel: Some(vel),
ori: Some(ori),
});
});
drop(guard);
// Apply movement inputs
span!(guard, "Apply movement");
let (positions, velocities) = (&write.positions, &mut write.velocities);
// First pass: update velocity using air resistance and gravity for each entity.
// We do this in a first pass because it helps keep things more stable for
// entities that are anchored to other entities (such as airships).
(
positions,
velocities,
read.stickies.maybe(),
&read.bodies,
read.character_states.maybe(),
&write.physics_states,
&read.masses,
&read.densities,
!&read.is_ridings,
)
.par_join()
.for_each_init(
|| {
prof_span!(guard, "velocity update rayon job");
guard
},
|_guard,
(
pos,
vel,
sticky,
body,
character_state,
physics_state,
mass,
density,
_,
)| {
let in_loaded_chunk = read
.terrain
.get_key(read.terrain.pos_key(pos.0.map(|e| e.floor() as i32)))
.is_some();
// Apply physics only if in a loaded chunk
if in_loaded_chunk
// And not already stuck on a block (e.g., for arrows)
&& !(physics_state.on_surface().is_some() && sticky.is_some())
{
// Clamp dt to an effective 10 TPS, to prevent gravity
// from slamming the players into the floor when
// stationary if other systems cause the server
// to lag (as observed in the 0.9 release party).
let dt = DeltaTime(read.dt.0.min(0.1));
match physics_state.in_fluid {
None => {
vel.0.z -= dt.0 * GRAVITY;
},
Some(fluid) => {
let wings = match character_state {
Some(&CharacterState::Glide(states::glide::Data {
aspect_ratio,
planform_area,
ori,
..
})) => Some(Wings {
aspect_ratio,
planform_area,
ori,
}),
_ => None,
};
vel.0 = integrate_forces(
&dt,
*vel,
(body, wings.as_ref()),
density,
mass,
&fluid,
GRAVITY,
)
.0
},
}
}
},
);
drop(guard);
job.cpu_stats.measure(ParMode::Single);
// Second pass: resolve collisions for terrain-like entities, this is required
// in order to update their positions before resolving collisions for
// non-terrain-like entities, since otherwise, collision is resolved
// based on where the terrain-like entity was in the previous frame.
Self::resolve_et_collision(job, read, write, voxel_collider_spatial_grid, true);
// Third pass: resolve collisions for non-terrain-like entities
Self::resolve_et_collision(job, read, write, voxel_collider_spatial_grid, false);
// Update cached 'old' physics values to the current values ready for the next
// tick
prof_span!(guard, "record ori into phys_cache");
for (pos, ori, previous_phys_cache, _) in (
&write.positions,
&write.orientations,
&mut write.previous_phys_cache,
&read.colliders,
)
.join()
{
// Note: updating ori with the rest of the cache values above was attempted but
// it did not work (investigate root cause?)
previous_phys_cache.pos = Some(*pos);
previous_phys_cache.ori = ori.to_quat();
}
drop(guard);
}
fn resolve_et_collision(
job: &mut Job<Sys>,
read: &PhysicsRead,
write: &mut PhysicsWrite,
voxel_collider_spatial_grid: &SpatialGrid,
terrain_like_entities: bool,
) {
let (positions, velocities, previous_phys_cache, orientations) = (
&write.positions,
&write.velocities,
&write.previous_phys_cache,
&write.orientations,
);
span!(guard, "Apply terrain collision");
job.cpu_stats.measure(ParMode::Rayon);
let (land_on_grounds, outcomes) = (
&read.entities,
read.scales.maybe(),
read.stickies.maybe(),
&read.colliders,
positions,
velocities,
orientations,
read.bodies.maybe(),
read.character_states.maybe(),
&mut write.physics_states,
&mut write.pos_vel_ori_defers,
previous_phys_cache,
!&read.is_ridings,
)
.par_join()
.filter(|tuple| tuple.3.is_voxel() == terrain_like_entities)
.map_init(
|| {
prof_span!(guard, "physics e<>t rayon job");
guard
},
|_guard,
(
entity,
scale,
sticky,
collider,
pos,
vel,
ori,
body,
character_state,
mut physics_state,
pos_vel_ori_defer,
previous_cache,
_,
)| {
let mut land_on_ground = None;
let mut outcomes = Vec::new();
// Defer the writes of positions, velocities and orientations
// to allow an inner loop over terrain-like entities.
let old_vel = *vel;
let mut vel = *vel;
let old_ori = *ori;
let mut ori = *ori;
let scale = if collider.is_voxel() {
scale.map(|s| s.0).unwrap_or(1.0)
} else {
// TODO: Use scale & actual proportions when pathfinding is good
// enough to manage irregular entity sizes
1.0
};
if let Some(state) = character_state {
let footwear = state.footwear().unwrap_or(Friction::Normal);
if footwear != physics_state.footwear {
physics_state.footwear = footwear;
}
}
let in_loaded_chunk = read
.terrain
.get_key(read.terrain.pos_key(pos.0.map(|e| e.floor() as i32)))
.is_some();
// Don't move if we're not in a loaded chunk
let pos_delta = if in_loaded_chunk {
vel.0 * read.dt.0
} else {
Vec3::zero()
};
// What's going on here?
// Because collisions need to be resolved against multiple
// colliders, this code takes the current position and
// propagates it forward according to velocity to find a
// 'target' position.
//
// This is where we'd ideally end up at the end of the tick,
// assuming no collisions. Then, we refine this target by
// stepping from the original position to the target for
// every obstacle, refining the target position as we go.
//
// It's not perfect, but it works pretty well in practice.
// Oddities can occur on the intersection between multiple
// colliders, but it's not like any game physics system
// resolves these sort of things well anyway.
// At the very least, we don't do things that result in glitchy
// velocities or entirely broken position snapping.
let mut tgt_pos = pos.0 + pos_delta;
let was_on_ground = physics_state.on_ground.is_some();
let block_snap =
body.map_or(false, |b| !matches!(b, Body::Object(_) | Body::Ship(_)));
let climbing =
character_state.map_or(false, |cs| matches!(cs, CharacterState::Climb(_)));
match &collider {
Collider::Voxel { .. } | Collider::Volume(_) => {
// For now, treat entities with voxel colliders
// as their bounding cylinders for the purposes of
// colliding them with terrain.
//
// Additionally, multiply radius by 0.1 to make
// the cylinder smaller to avoid lag.
let radius = collider.bounding_radius() * scale * 0.1;
let (_, z_max) = collider.get_z_limits(scale);
let z_min = 0.0;
let mut cpos = *pos;
let cylinder = (radius, z_min, z_max);
box_voxel_collision(
cylinder,
&*read.terrain,
entity,
&mut cpos,
tgt_pos,
&mut vel,
physics_state,
Vec3::zero(),
&read.dt,
was_on_ground,
block_snap,
climbing,
|entity, vel| land_on_ground = Some((entity, vel)),
read,
&ori,
);
tgt_pos = cpos.0;
},
Collider::CapsulePrism {
z_min: _,
z_max,
p0: _,
p1: _,
radius: _,
} => {
// Scale collider
let radius = collider.bounding_radius().min(0.45) * scale;
let z_min = 0.0;
let z_max = z_max.clamped(1.2, 1.95) * scale;
let cylinder = (radius, z_min, z_max);
let mut cpos = *pos;
box_voxel_collision(
cylinder,
&*read.terrain,
entity,
&mut cpos,
tgt_pos,
&mut vel,
physics_state,
Vec3::zero(),
&read.dt,
was_on_ground,
block_snap,
climbing,
|entity, vel| land_on_ground = Some((entity, vel)),
read,
&ori,
);
// Sticky things shouldn't move when on a surface
if physics_state.on_surface().is_some() && sticky.is_some() {
vel.0 = physics_state.ground_vel;
}
tgt_pos = cpos.0;
},
Collider::Point => {
let mut pos = *pos;
// TODO: If the velocity is exactly 0,
// a raycast may not pick up the current block.
//
// Handle this.
let (dist, block) = if let Some(block) = read
.terrain
.get(pos.0.map(|e| e.floor() as i32))
.ok()
.filter(|b| b.is_solid())
{
(0.0, Some(block))
} else {
let (dist, block) = read
.terrain
.ray(pos.0, pos.0 + pos_delta)
.until(|block: &Block| block.is_solid())
.ignore_error()
.cast();
// Can't fail since we do ignore_error above
(dist, block.unwrap())
};
pos.0 += pos_delta.try_normalized().unwrap_or_else(Vec3::zero) * dist;
// TODO: Not all projectiles should count as sticky!
if sticky.is_some() {
if let Some((projectile, body)) = read
.projectiles
.get(entity)
.filter(|_| vel.0.magnitude_squared() > 1.0 && block.is_some())
.zip(read.bodies.get(entity).copied())
{
outcomes.push(Outcome::ProjectileHit {
pos: pos.0 + pos_delta * dist,
body,
vel: vel.0,
source: projectile.owner,
target: None,
});
}
}
if block.is_some() {
let block_center = pos.0.map(|e| e.floor()) + 0.5;
let block_rpos = (pos.0 - block_center)
.try_normalized()
.unwrap_or_else(Vec3::zero);
// See whether we're on the top/bottom of a block,
// or the side
if block_rpos.z.abs()
> block_rpos.xy().map(|e| e.abs()).reduce_partial_max()
{
if block_rpos.z > 0.0 {
physics_state.on_ground = block.copied();
} else {
physics_state.on_ceiling = true;
}
vel.0.z = 0.0;
} else {
physics_state.on_wall =
Some(if block_rpos.x.abs() > block_rpos.y.abs() {
vel.0.x = 0.0;
Vec3::unit_x() * -block_rpos.x.signum()
} else {
vel.0.y = 0.0;
Vec3::unit_y() * -block_rpos.y.signum()
});
}
// Sticky things shouldn't move
if sticky.is_some() {
vel.0 = physics_state.ground_vel;
}
}
physics_state.in_fluid = read
.terrain
.get(pos.0.map(|e| e.floor() as i32))
.ok()
.and_then(|vox| {
vox.liquid_kind().map(|kind| Fluid::Liquid {
kind,
depth: 1.0,
vel: Vel::zero(),
})
})
.or_else(|| match physics_state.in_fluid {
Some(Fluid::Liquid { .. }) | None => Some(Fluid::Air {
elevation: pos.0.z,
vel: Vel::default(),
}),
fluid => fluid,
});
tgt_pos = pos.0;
},
}
// Compute center and radius of tick path bounding sphere
// for the entity for broad checks of whether it will
// collide with a voxel collider
let path_sphere = {
// TODO: duplicated with maintain_pushback_cache,
// make a common function to call to compute all this info?
let z_limits = calc_z_limit(character_state, collider);
let z_limits = (z_limits.0 * scale, z_limits.1 * scale);
let half_height = (z_limits.1 - z_limits.0) / 2.0;
let entity_center = pos.0 + (z_limits.0 + half_height) * Vec3::unit_z();
let path_center = entity_center + pos_delta / 2.0;
let flat_radius = collider.bounding_radius() * scale;
let radius = (flat_radius.powi(2) + half_height.powi(2)).sqrt();
let path_bounding_radius = radius + (pos_delta / 2.0).magnitude();
Sphere {
center: path_center,
radius: path_bounding_radius,
}
};
// Collide with terrain-like entities
let query_center = path_sphere.center.xy();
let query_radius = path_sphere.radius;
let voxel_colliders_manifest = VOXEL_COLLIDER_MANIFEST.read();
voxel_collider_spatial_grid
.in_circle_aabr(query_center, query_radius)
.filter_map(|entity| {
positions
.get(entity)
.and_then(|l| velocities.get(entity).map(|r| (l, r)))
.and_then(|l| previous_phys_cache.get(entity).map(|r| (l, r)))
.and_then(|l| read.colliders.get(entity).map(|r| (l, r)))
.and_then(|l| orientations.get(entity).map(|r| (l, r)))
.map(|((((pos, vel), previous_cache), collider), ori)| {
(entity, pos, vel, previous_cache, collider, ori)
})
})
.for_each(
|(
entity_other,
pos_other,
vel_other,
previous_cache_other,
collider_other,
ori_other,
)| {
if entity == entity_other {
return;
}
let voxel_collider = match collider_other {
Collider::Voxel { id } => {
voxel_colliders_manifest.colliders.get(id)
},
Collider::Volume(vol) => Some(&**vol),
_ => None,
};
// use bounding cylinder regardless of our collider
// TODO: extract point-terrain collision above to its own
// function
let radius = collider.bounding_radius();
let (_, z_max) = collider.get_z_limits(1.0);
let radius = radius.min(0.45) * scale;
let z_min = 0.0;
let z_max = z_max.clamped(1.2, 1.95) * scale;
if let Some(voxel_collider) = voxel_collider {
// TODO: cache/precompute sphere?
let voxel_sphere = voxel_collider_bounding_sphere(
voxel_collider,
pos_other,
ori_other,
);
// Early check
if voxel_sphere.center.distance_squared(path_sphere.center)
> (voxel_sphere.radius + path_sphere.radius).powi(2)
{
return;
}
let mut physics_state_delta = physics_state.clone();
// deliberately don't use scale yet here, because the
// 11.0/0.8 thing is
// in the comp::Scale for visual reasons
let mut cpos = *pos;
let wpos = cpos.0;
// TODO: Cache the matrices here to avoid recomputing
let transform_last_from = Mat4::<f32>::translation_3d(
previous_cache_other.pos.unwrap_or(*pos_other).0
- previous_cache.pos.unwrap_or(Pos(wpos)).0,
) * Mat4::from(
previous_cache_other.ori,
) * Mat4::<f32>::translation_3d(
voxel_collider.translation,
);
let transform_last_to = transform_last_from.inverted();
let transform_from =
Mat4::<f32>::translation_3d(pos_other.0 - wpos)
* Mat4::from(ori_other.to_quat())
* Mat4::<f32>::translation_3d(
voxel_collider.translation,
);
let transform_to = transform_from.inverted();
let ori_last_from = Mat4::from(previous_cache_other.ori);
let ori_last_to = ori_last_from.inverted();
let ori_from = Mat4::from(ori_other.to_quat());
// The velocity of the collider, taking into account
// orientation.
let pos_rel = (Mat4::<f32>::translation_3d(Vec3::zero())
* Mat4::from(ori_other.to_quat())
* Mat4::<f32>::translation_3d(voxel_collider.translation))
.inverted()
.mul_point(wpos - pos_other.0);
let rpos_last = (Mat4::<f32>::translation_3d(Vec3::zero())
* Mat4::from(previous_cache_other.ori)
* Mat4::<f32>::translation_3d(voxel_collider.translation))
.mul_point(pos_rel);
let vel_other = vel_other.0
+ (wpos - (pos_other.0 + rpos_last)) / read.dt.0;
cpos.0 = transform_last_to.mul_point(Vec3::zero());
vel.0 = ori_last_to.mul_direction(vel.0 - vel_other);
let cylinder = (radius, z_min, z_max);
box_voxel_collision(
cylinder,
&voxel_collider.volume(),
entity,
&mut cpos,
transform_to.mul_point(tgt_pos - wpos),
&mut vel,
&mut physics_state_delta,
ori_last_to.mul_direction(vel_other),
&read.dt,
was_on_ground,
block_snap,
climbing,
|entity, vel| {
land_on_ground =
Some((entity, Vel(ori_from.mul_direction(vel.0))));
},
read,
&ori,
);
cpos.0 = transform_from.mul_point(cpos.0) + wpos;
vel.0 = ori_from.mul_direction(vel.0) + vel_other;
tgt_pos = cpos.0;
// union in the state updates, so that the state isn't just
// based on the most
// recent terrain that collision was attempted with
if physics_state_delta.on_ground.is_some() {
physics_state.ground_vel = vel_other;
// Rotate if on ground
ori = ori.rotated(
ori_other.to_quat()
* previous_cache_other.ori.inverse(),
);
}
physics_state.on_ground =
physics_state.on_ground.or(physics_state_delta.on_ground);
physics_state.on_ceiling |= physics_state_delta.on_ceiling;
physics_state.on_wall = physics_state.on_wall.or_else(|| {
physics_state_delta
.on_wall
.map(|dir| ori_from.mul_direction(dir))
});
physics_state.in_fluid = match (
physics_state.in_fluid,
physics_state_delta.in_fluid,
) {
(Some(x), Some(y)) => x
.depth()
.and_then(|xh| {
y.depth()
.map(|yh| xh > yh)
.unwrap_or(true)
.then_some(x)
})
.or(Some(y)),
(x @ Some(_), _) => x,
(_, y @ Some(_)) => y,
_ => None,
};
}
},
);
if tgt_pos != pos.0 {
pos_vel_ori_defer.pos = Some(Pos(tgt_pos));
} else {
pos_vel_ori_defer.pos = None;
}
if vel != old_vel {
pos_vel_ori_defer.vel = Some(vel);
} else {
pos_vel_ori_defer.vel = None;
}
if ori != old_ori {
pos_vel_ori_defer.ori = Some(ori);
} else {
pos_vel_ori_defer.ori = None;
}
(land_on_ground, outcomes)
},
)
.fold(
|| (Vec::new(), Vec::new()),
|(mut land_on_grounds, mut all_outcomes), (land_on_ground, mut outcomes)| {
land_on_ground.map(|log| land_on_grounds.push(log));
all_outcomes.append(&mut outcomes);
(land_on_grounds, all_outcomes)
},
)
.reduce(
|| (Vec::new(), Vec::new()),
|(mut land_on_grounds_a, mut outcomes_a),
(mut land_on_grounds_b, mut outcomes_b)| {
land_on_grounds_a.append(&mut land_on_grounds_b);
outcomes_a.append(&mut outcomes_b);
(land_on_grounds_a, outcomes_a)
},
);
drop(guard);
job.cpu_stats.measure(ParMode::Single);
write.outcomes.emitter().emit_many(outcomes);
prof_span!(guard, "write deferred pos and vel");
for (_, pos, vel, ori, pos_vel_ori_defer, _) in (
&read.entities,
&mut write.positions,
&mut write.velocities,
&mut write.orientations,
&mut write.pos_vel_ori_defers,
&read.colliders,
)
.join()
.filter(|tuple| tuple.5.is_voxel() == terrain_like_entities)
{
if let Some(new_pos) = pos_vel_ori_defer.pos.take() {
*pos = new_pos;
}
if let Some(new_vel) = pos_vel_ori_defer.vel.take() {
*vel = new_vel;
}
if let Some(new_ori) = pos_vel_ori_defer.ori.take() {
*ori = new_ori;
}
}
drop(guard);
let mut event_emitter = read.event_bus.emitter();
land_on_grounds.into_iter().for_each(|(entity, vel)| {
event_emitter.emit(ServerEvent::LandOnGround { entity, vel: vel.0 });
});
}
fn update_cached_spatial_grid(&mut self) {
span!(_guard, "Update cached spatial grid");
let PhysicsData {
ref read,
ref mut write,
} = self;
let spatial_grid = &mut write.cached_spatial_grid.0;
spatial_grid.clear();
(
&read.entities,
&write.positions,
read.scales.maybe(),
read.colliders.maybe(),
)
.join()
.for_each(|(entity, pos, scale, collider)| {
let scale = scale.map(|s| s.0).unwrap_or(1.0);
let radius_2d =
(collider.map(|c| c.bounding_radius()).unwrap_or(0.5) * scale).ceil() as u32;
let pos_2d = pos.0.xy().map(|e| e as i32);
const POS_TRUNCATION_ERROR: u32 = 1;
spatial_grid.insert(pos_2d, radius_2d + POS_TRUNCATION_ERROR, entity);
});
}
}
impl<'a> System<'a> for Sys {
type SystemData = PhysicsData<'a>;
const NAME: &'static str = "phys";
const ORIGIN: Origin = Origin::Common;
const PHASE: Phase = Phase::Create;
fn run(job: &mut Job<Self>, mut physics_data: Self::SystemData) {
physics_data.reset();
// Apply pushback
//
// Note: We now do this first because we project velocity ahead. This is slighty
// imperfect and implies that we might get edge-cases where entities
// standing right next to the edge of a wall may get hit by projectiles
// fired into the wall very close to them. However, this sort of thing is
// already possible with poorly-defined hitboxes anyway so it's not too
// much of a concern.
//
// If this situation becomes a problem, this code should be integrated with the
// terrain collision code below, although that's not trivial to do since
// it means the step needs to take into account the speeds of both
// entities.
physics_data.maintain_pushback_cache();
let spatial_grid = physics_data.construct_spatial_grid();
physics_data.apply_pushback(job, &spatial_grid);
let voxel_collider_spatial_grid = physics_data.construct_voxel_collider_spatial_grid();
physics_data.handle_movement_and_terrain(job, &voxel_collider_spatial_grid);
// Spatial grid used by other systems
physics_data.update_cached_spatial_grid();
}
}
#[allow(clippy::too_many_lines)]
fn box_voxel_collision<'a, T: BaseVol<Vox = Block> + ReadVol>(
cylinder: (f32, f32, f32), // effective collision cylinder
terrain: &'a T,
entity: Entity,
pos: &mut Pos,
tgt_pos: Vec3<f32>,
vel: &mut Vel,
physics_state: &mut PhysicsState,
ground_vel: Vec3<f32>,
dt: &DeltaTime,
was_on_ground: bool,
block_snap: bool,
climbing: bool,
mut land_on_ground: impl FnMut(Entity, Vel),
read: &PhysicsRead,
ori: &Ori,
) {
// FIXME: Review these
#![allow(
clippy::cast_precision_loss,
clippy::cast_possible_truncation,
clippy::cast_sign_loss
)]
//prof_span!("box_voxel_collision");
// Convience function to compute the player aabb
fn player_aabb(pos: Vec3<f32>, radius: f32, z_range: Range<f32>) -> Aabb<f32> {
Aabb {
min: pos + Vec3::new(-radius, -radius, z_range.start),
max: pos + Vec3::new(radius, radius, z_range.end),
}
}
// Convience function to translate the near_aabb into the world space
fn move_aabb(aabb: Aabb<i32>, pos: Vec3<f32>) -> Aabb<i32> {
Aabb {
min: aabb.min + pos.map(|e| e.floor() as i32),
max: aabb.max + pos.map(|e| e.floor() as i32),
}
}
// Function for determining whether the player at a specific position collides
// with blocks with the given criteria
fn collision_with<T: BaseVol<Vox = Block> + ReadVol>(
pos: Vec3<f32>,
terrain: &T,
hit: impl Fn(&Block) -> bool,
near_aabb: Aabb<i32>,
radius: f32,
z_range: Range<f32>,
) -> bool {
let player_aabb = player_aabb(pos, radius, z_range);
// Calculate the world space near aabb
let near_aabb = move_aabb(near_aabb, pos);
let mut collision = false;
// TODO: could short-circuit here
terrain.for_each_in(near_aabb, |block_pos, block| {
if block.is_solid() && hit(&block) {
let block_aabb = Aabb {
min: block_pos.map(|e| e as f32),
max: block_pos.map(|e| e as f32) + Vec3::new(1.0, 1.0, block.solid_height()),
};
if player_aabb.collides_with_aabb(block_aabb) {
collision = true;
}
}
});
collision
}
// Should be easy to just make clippy happy if we want?
#[allow(clippy::trivially_copy_pass_by_ref)]
fn always_hits(_: &Block) -> bool { true }
let (radius, z_min, z_max) = cylinder;
// Probe distances
let hdist = radius.ceil() as i32;
// Neighbouring blocks Aabb
let near_aabb = Aabb {
min: Vec3::new(
-hdist,
-hdist,
1 - Block::MAX_HEIGHT.ceil() as i32 + z_min.floor() as i32,
),
max: Vec3::new(hdist, hdist, z_max.ceil() as i32),
};
let z_range = z_min..z_max;
// Setup values for the loop below
physics_state.on_ground = None;
physics_state.on_ceiling = false;
let mut on_ground = None::<Block>;
let mut on_ceiling = false;
// Don't loop infinitely here
let mut attempts = 0;
let mut pos_delta = tgt_pos - pos.0;
// Don't jump too far at once
const MAX_INCREMENTS: usize = 100; // The maximum number of collision tests per tick
let increments = ((pos_delta.map(|e| e.abs()).reduce_partial_max() / 0.3).ceil() as usize)
.clamped(1, MAX_INCREMENTS);
let old_pos = pos.0;
for _ in 0..increments {
//prof_span!("increment");
const MAX_ATTEMPTS: usize = 16;
pos.0 += pos_delta / increments as f32;
let try_colliding_block = |pos: &Pos| {
//prof_span!("most colliding check");
// Calculate the player's AABB
let player_aabb = player_aabb(pos.0, radius, z_range.clone());
// Determine the block that we are colliding with most
// (based on minimum collision axis)
// (if we are colliding with one)
let mut most_colliding = None;
// Calculate the world space near aabb
let near_aabb = move_aabb(near_aabb, pos.0);
let player_overlap = |block_aabb: Aabb<f32>| {
ordered_float::OrderedFloat(
(block_aabb.center() - player_aabb.center() - Vec3::unit_z() * 0.5)
.map(f32::abs)
.sum(),
)
};
terrain.for_each_in(near_aabb, |block_pos, block| {
// Make sure the block is actually solid
if block.is_solid() {
// Calculate block AABB
let block_aabb = Aabb {
min: block_pos.map(|e| e as f32),
max: block_pos.map(|e| e as f32)
+ Vec3::new(1.0, 1.0, block.solid_height()),
};
// Determine whether the block's AABB collides with the player's AABB
if block_aabb.collides_with_aabb(player_aabb) {
most_colliding = match most_colliding {
// Select the minimum of the value from `player_overlap`
other @ Some((_, other_block_aabb, _))
if {
// TODO: comment below is outdated (as of ~1 year ago)
// Find the maximum of the minimum collision axes (this bit
// is weird, trust me that it works)
player_overlap(block_aabb) >= player_overlap(other_block_aabb)
} =>
{
other
},
_ => Some((block_pos, block_aabb, block)),
}
}
}
});
most_colliding
};
// While the player is colliding with the terrain...
while let Some((_block_pos, block_aabb, block)) = (attempts < MAX_ATTEMPTS)
.then(|| try_colliding_block(pos))
.flatten()
{
// Calculate the player's AABB
let player_aabb = player_aabb(pos.0, radius, z_range.clone());
// Find the intrusion vector of the collision
let dir = player_aabb.collision_vector_with_aabb(block_aabb);
// Determine an appropriate resolution vector (i.e: the minimum distance
// needed to push out of the block)
let max_axis = dir.map(|e| e.abs()).reduce_partial_min();
let resolve_dir = -dir.map(|e| {
if e.abs().to_bits() == max_axis.to_bits() {
e
} else {
0.0
}
});
// When the resolution direction is pointing upwards, we must be on the
// ground
/* if resolve_dir.z > 0.0 && vel.0.z <= 0.0 { */
if resolve_dir.z > 0.0 {
on_ground = Some(block);
if !was_on_ground {
land_on_ground(entity, *vel);
}
} else if resolve_dir.z < 0.0 && vel.0.z >= 0.0 {
on_ceiling = true;
}
// When the resolution direction is non-vertical, we must be colliding
// with a wall
//
// If we're being pushed out horizontally...
if resolve_dir.z == 0.0
// ...and the vertical resolution direction is sufficiently great...
&& dir.z < -0.1
// ...and the space above is free...
&& {
//prof_span!("space above free");
!collision_with(
Vec3::new(pos.0.x, pos.0.y, (pos.0.z + 0.1).ceil()),
&terrain,
always_hits,
near_aabb,
radius,
z_range.clone(),
)
}
// ...and there is a collision with a block beneath our current hitbox...
&& {
//prof_span!("collision beneath");
collision_with(
pos.0 + resolve_dir - Vec3::unit_z() * 1.25,
&terrain,
always_hits,
near_aabb,
radius,
z_range.clone(),
)
} {
// ...block-hop!
pos.0.z = pos.0.z.max(block_aabb.max.z);
vel.0.z = vel.0.z.max(0.0);
// Push the character on to the block very slightly
// to avoid jitter due to imprecision
if (vel.0 * resolve_dir).xy().magnitude_squared() < 1.0_f32.powi(2) {
pos.0 -= resolve_dir.normalized() * 0.05;
}
on_ground = Some(block);
break;
}
// If not, correct the velocity
vel.0 = vel.0.map2(
resolve_dir,
|e, d| {
if d * e.signum() < 0.0 { 0.0 } else { e }
},
);
pos_delta *= resolve_dir.map(|e| if e == 0.0 { 1.0 } else { 0.0 });
// Resolve the collision normally
pos.0 += resolve_dir;
attempts += 1;
}
if attempts == MAX_ATTEMPTS {
vel.0 = Vec3::zero();
pos.0 = old_pos;
break;
}
}
// Report on_ceiling state
if on_ceiling {
physics_state.on_ceiling = true;
}
if on_ground.is_some() {
physics_state.on_ground = on_ground;
// If the space below us is free, then "snap" to the ground
} else if vel.0.z <= 0.0 && was_on_ground && block_snap && {
//prof_span!("snap check");
collision_with(
pos.0 - Vec3::unit_z() * 1.1,
&terrain,
always_hits,
near_aabb,
radius,
z_range.clone(),
)
} {
//prof_span!("snap!!");
let snap_height = terrain
.get(Vec3::new(pos.0.x, pos.0.y, pos.0.z - 0.1).map(|e| e.floor() as i32))
.ok()
.filter(|block| block.is_solid())
.map_or(0.0, Block::solid_height);
vel.0.z = 0.0;
pos.0.z = (pos.0.z - 0.1).floor() + snap_height;
physics_state.on_ground = terrain
.get(Vec3::new(pos.0.x, pos.0.y, pos.0.z - 0.01).map(|e| e.floor() as i32))
.ok()
.copied();
}
// Find liquid immersion and wall collision all in one round of iteration
let player_aabb = player_aabb(pos.0, radius, z_range.clone());
// Calculate the world space near_aabb
let near_aabb = move_aabb(near_aabb, pos.0);
let dirs = [
Vec3::unit_x(),
Vec3::unit_y(),
-Vec3::unit_x(),
-Vec3::unit_y(),
];
// Compute a list of aabbs to check for collision with nearby walls
let player_wall_aabbs = dirs.map(|dir| {
let pos = pos.0 + dir * 0.01;
Aabb {
min: pos + Vec3::new(-radius, -radius, z_range.start),
max: pos + Vec3::new(radius, radius, z_range.end),
}
});
let mut liquid = None::<(LiquidKind, f32)>;
let mut wall_dir_collisions = [false; 4];
//prof_span!(guard, "liquid/walls");
terrain.for_each_in(near_aabb, |block_pos, block| {
// Check for liquid blocks
if let Some(block_liquid) = block.liquid_kind() {
let liquid_aabb = Aabb {
min: block_pos.map(|e| e as f32),
// The liquid part of a liquid block always extends 1 block high.
max: block_pos.map(|e| e as f32) + Vec3::one(),
};
if player_aabb.collides_with_aabb(liquid_aabb) {
liquid = match liquid {
Some((kind, max_liquid_z)) => Some((
// TODO: merging of liquid kinds and max_liquid_z are done
// independently which allows mix and
// matching them
kind.merge(block_liquid),
max_liquid_z.max(liquid_aabb.max.z),
)),
None => Some((block_liquid, liquid_aabb.max.z)),
};
}
}
// Check for walls
if block.is_solid() {
let block_aabb = Aabb {
min: block_pos.map(|e| e as f32),
max: block_pos.map(|e| e as f32) + Vec3::new(1.0, 1.0, block.solid_height()),
};
for dir in 0..4 {
if player_wall_aabbs[dir].collides_with_aabb(block_aabb) {
wall_dir_collisions[dir] = true;
}
}
}
});
//drop(guard);
// Use wall collision results to determine if we are against a wall
let mut on_wall = None;
for dir in 0..4 {
if wall_dir_collisions[dir] {
on_wall = Some(match on_wall {
Some(acc) => acc + dirs[dir],
None => dirs[dir],
});
}
}
physics_state.on_wall = on_wall;
let fric_mod = read.stats.get(entity).map_or(1.0, |s| s.friction_modifier);
// skating (ski)
if !vel.0.xy().is_approx_zero()
&& physics_state
.on_ground
.map_or(false, |g| physics_state.footwear.can_skate_on(g.kind()))
{
const DT_SCALE: f32 = 1.0; // other areas use 60.0???
const POTENTIAL_TO_KINETIC: f32 = 8.0; // * 2.0 * GRAVITY;
let kind = physics_state.on_ground.map_or(BlockKind::Air, |g| g.kind());
let (longitudinal_friction, lateral_friction) = physics_state.footwear.get_friction(kind);
// the amount of longitudinal speed preserved
let longitudinal_friction_factor_squared =
(1.0 - longitudinal_friction).powf(dt.0 * DT_SCALE * 2.0);
let lateral_friction_factor = (1.0 - lateral_friction).powf(dt.0 * DT_SCALE);
let groundplane_velocity = vel.0.xy();
let mut longitudinal_dir = ori.look_vec().xy();
if longitudinal_dir.is_approx_zero() {
// fall back to travelling dir (in case we look up)
longitudinal_dir = groundplane_velocity;
}
let longitudinal_dir = longitudinal_dir.normalized();
let lateral_dir = Vec2::new(longitudinal_dir.y, -longitudinal_dir.x);
let squared_velocity = groundplane_velocity.magnitude_squared();
// if we crossed an edge up or down accelerate in travelling direction,
// as potential energy is converted into kinetic energy we compare it with the
// square of velocity
let vertical_difference = physics_state.skating_last_height - pos.0.z;
// might become negative when skating slowly uphill
let height_factor_squared = if vertical_difference != 0.0 {
// E=½mv², we scale both energies by ½m
let kinetic = squared_velocity;
// positive accelerate, negative decelerate, ΔE=mgΔh
let delta_potential = vertical_difference.max(-1.0).min(2.0) * POTENTIAL_TO_KINETIC;
let new_energy = kinetic + delta_potential;
physics_state.skating_last_height = pos.0.z;
new_energy / kinetic
} else {
1.0
};
// we calculate these squared as we need to combined them Euclidianly anyway,
// skiing: separate speed into longitudinal and lateral component
let long_speed = groundplane_velocity.dot(longitudinal_dir);
let lat_speed = groundplane_velocity.dot(lateral_dir);
let long_speed_squared = long_speed.powi(2);
// lateral speed is reduced by lateral_friction,
let new_lateral = lat_speed * lateral_friction_factor;
let lateral_speed_reduction = lat_speed - new_lateral;
// we convert this reduction partically (by the cosine of the angle) into
// longitudinal (elastic collision) and the remainder into heat
let cosine_squared_aoa = long_speed_squared / squared_velocity;
let converted_lateral_squared = cosine_squared_aoa * lateral_speed_reduction.powi(2);
let new_longitudinal_squared = longitudinal_friction_factor_squared
* (long_speed_squared + converted_lateral_squared)
* height_factor_squared;
let new_longitudinal =
new_longitudinal_squared.signum() * new_longitudinal_squared.abs().sqrt();
let new_ground_speed = new_longitudinal * longitudinal_dir + new_lateral * lateral_dir;
physics_state.skating_active = true;
vel.0 = Vec3::new(new_ground_speed.x, new_ground_speed.y, 0.0);
} else {
let ground_fric = physics_state
.on_ground
.map(|b| b.get_friction())
.unwrap_or(0.0);
let wall_fric = if physics_state.on_wall.is_some() && climbing {
FRIC_GROUND
} else {
0.0
};
let fric = ground_fric.max(wall_fric);
if fric > 0.0 {
vel.0 *= (1.0 - fric.min(1.0) * fric_mod).powf(dt.0 * 60.0);
physics_state.ground_vel = ground_vel;
}
physics_state.skating_active = false;
}
physics_state.in_fluid = liquid
.map(|(kind, max_z)| {
// NOTE: assumes min_z == 0.0
let depth = max_z - pos.0.z;
// This is suboptimal because it doesn't check for true depth,
// so it can cause problems for situations like swimming down
// a river and spawning or teleporting in(/to) water
let new_depth = physics_state.in_liquid().map_or(depth, |old_depth| {
(old_depth + old_pos.z - pos.0.z).max(depth)
});
Fluid::Liquid {
kind,
depth: new_depth,
vel: Vel::zero(),
}
})
.or_else(|| match physics_state.in_fluid {
Some(Fluid::Liquid { .. }) | None => Some(Fluid::Air {
elevation: pos.0.z,
vel: Vel::default(),
}),
fluid => fluid,
});
}
fn voxel_collider_bounding_sphere(
voxel_collider: &VoxelCollider,
pos: &Pos,
ori: &Ori,
) -> Sphere<f32, f32> {
let origin_offset = voxel_collider.translation;
use common::vol::SizedVol;
let lower_bound = voxel_collider.volume().lower_bound().map(|e| e as f32);
let upper_bound = voxel_collider.volume().upper_bound().map(|e| e as f32);
let center = (lower_bound + upper_bound) / 2.0;
// Compute vector from the origin (where pos value corresponds to) and the model
// center
let center_offset = center + origin_offset;
// Rotate
let oriented_center_offset = ori.local_to_global(center_offset);
// Add to pos to get world coordinates of the center
let wpos_center = oriented_center_offset + pos.0;
// Note: to not get too fine grained we use a 2D grid for now
const SPRITE_AND_MAYBE_OTHER_THINGS: f32 = 4.0;
let radius = ((upper_bound - lower_bound) / 2.0
+ Vec3::broadcast(SPRITE_AND_MAYBE_OTHER_THINGS))
.magnitude();
Sphere {
center: wpos_center,
radius,
}
}
struct ColliderData<'a> {
pos: &'a Pos,
previous_cache: &'a PreviousPhysCache,
z_limits: (f32, f32),
collider: &'a Collider,
mass: Mass,
}
/// Returns whether interesction between entities occured
#[allow(clippy::too_many_arguments)]
fn resolve_e2e_collision(
// utility variables for our entity
collision_registered: &mut bool,
entity_entity_collisions: &mut u64,
factor: f32,
physics: &mut PhysicsState,
char_state_maybe: Option<&CharacterState>,
vel_delta: &mut Vec3<f32>,
step_delta: f32,
// physics flags
is_mid_air: bool,
is_sticky: bool,
is_immovable: bool,
is_projectile: bool,
// entity we colliding with
other: Uid,
// symetrical collider context
our_data: ColliderData,
other_data: ColliderData,
vel: &Vel,
is_riding: bool,
) -> bool {
// Find the distance betwen our collider and
// collider we collide with and get vector of pushback.
//
// If we aren't colliding, just skip step.
// Get positions
let pos = our_data.pos.0 + our_data.previous_cache.velocity_dt * factor;
let pos_other = other_data.pos.0 + other_data.previous_cache.velocity_dt * factor;
// Compare Z ranges
let (z_min, z_max) = our_data.z_limits;
let ceiling = pos.z + z_max * our_data.previous_cache.scale;
let floor = pos.z + z_min * our_data.previous_cache.scale;
let (z_min_other, z_max_other) = other_data.z_limits;
let ceiling_other = pos_other.z + z_max_other * other_data.previous_cache.scale;
let floor_other = pos_other.z + z_min_other * other_data.previous_cache.scale;
let in_z_range = ceiling >= floor_other && floor <= ceiling_other;
if !in_z_range {
return false;
}
let ours = ColliderContext {
pos,
previous_cache: our_data.previous_cache,
};
let theirs = ColliderContext {
pos: pos_other,
previous_cache: other_data.previous_cache,
};
let (diff, collision_dist) = projection_between(ours, theirs);
let in_collision_range = diff.magnitude_squared() <= collision_dist.powi(2);
if !in_collision_range {
return false;
}
// If entities have not yet collided this tick (but just did) and if entity
// is either in mid air or is not sticky, then mark them as colliding with
// the other entity.
if !*collision_registered && (is_mid_air || !is_sticky) {
physics.touch_entities.insert(other);
*entity_entity_collisions += 1;
}
// Don't apply e2e pushback to entities that are in a forced movement state
// (e.g. roll, leapmelee).
//
// This allows leaps to work properly (since you won't get pushed away
// before delivering the hit), and allows rolling through an enemy when
// trapped (e.g. with minotaur).
//
// This allows using e2e pushback to gain speed by jumping out of a roll
// while in the middle of a collider, this is an intentional combat mechanic.
let forced_movement =
matches!(char_state_maybe, Some(cs) if cs.is_forced_movement()) || is_riding;
// Don't apply repulsive force to projectiles,
// or if we're colliding with a terrain-like entity,
// or if we are a terrain-like entity.
//
// Don't apply force when entity is immovable, or a sticky which is on the
// ground (or on the wall).
if !forced_movement
&& (!is_sticky || is_mid_air)
&& diff.magnitude_squared() > 0.0
&& !is_projectile
&& !is_immovable
&& !other_data.collider.is_voxel()
&& !our_data.collider.is_voxel()
{
const ELASTIC_FORCE_COEFFICIENT: f32 = 400.0;
let mass_coefficient = other_data.mass.0 / (our_data.mass.0 + other_data.mass.0);
let distance_coefficient = collision_dist - diff.magnitude();
let force = ELASTIC_FORCE_COEFFICIENT * distance_coefficient * mass_coefficient;
let diff = diff.normalized();
*vel_delta += Vec3::from(diff)
* force
* step_delta
* vel
.0
.xy()
.try_normalized()
.map_or(1.0, |dir| diff.dot(-dir).max(0.025));
}
*collision_registered = true;
true
}
struct ColliderContext<'a> {
pos: Vec3<f32>,
previous_cache: &'a PreviousPhysCache,
}
/// Find pushback vector and collision_distance we assume between this
/// colliders.
fn projection_between(c0: ColliderContext, c1: ColliderContext) -> (Vec2<f32>, f32) {
const DIFF_THRESHOLD: f32 = f32::EPSILON;
let our_radius = c0.previous_cache.neighborhood_radius;
let their_radius = c1.previous_cache.neighborhood_radius;
let collision_dist = our_radius + their_radius;
let we = c0.pos.xy();
let other = c1.pos.xy();
let (p0_offset, p1_offset) = match c0.previous_cache.origins {
Some(origins) => origins,
// fallback to simpler model
None => return capsule2cylinder(c0, c1),
};
let segment = LineSegment2 {
start: we + p0_offset,
end: we + p1_offset,
};
let (p0_offset_other, p1_offset_other) = match c1.previous_cache.origins {
Some(origins) => origins,
// fallback to simpler model
None => return capsule2cylinder(c0, c1),
};
let segment_other = LineSegment2 {
start: other + p0_offset_other,
end: other + p1_offset_other,
};
let (our, their) = closest_points(segment, segment_other);
let diff = our - their;
if diff.magnitude_squared() < DIFF_THRESHOLD {
capsule2cylinder(c0, c1)
} else {
(diff, collision_dist)
}
}
/// Returns the points on line segments n and m respectively that are the
/// closest to one-another. If the lines are parallel, an arbitrary,
/// unspecified pair of points that sit on the line segments will be chosen.
fn closest_points(n: LineSegment2<f32>, m: LineSegment2<f32>) -> (Vec2<f32>, Vec2<f32>) {
// TODO: Rewrite this to something reasonable, if you have faith
let a = n.start;
let b = n.end - n.start;
let c = m.start;
let d = m.end - m.start;
// Check to prevent div by 0.0 (produces NaNs) and minimize precision
// loss from dividing by small values.
// If both d.x and d.y are 0.0 then the segment is a point and we are fine
// to fallback to the end point projection.
let t = if d.x > d.y {
(d.y / d.x * (c.x - a.x) + a.y - c.y) / (b.x * d.y / d.x - b.y)
} else {
(d.x / d.y * (c.y - a.y) + a.x - c.x) / (b.y * d.x / d.y - b.x)
};
let u = if d.y > d.x {
(a.y + t * b.y - c.y) / d.y
} else {
(a.x + t * b.x - c.x) / d.x
};
// Check to see whether the lines are parallel
if !t.is_finite() || !u.is_finite() {
[
(n.projected_point(m.start), m.start),
(n.projected_point(m.end), m.end),
(n.start, m.projected_point(n.start)),
(n.end, m.projected_point(n.end)),
]
.into_iter()
.min_by_key(|(a, b)| ordered_float::OrderedFloat(a.distance_squared(*b)))
.expect("Lines had non-finite elements")
} else {
let t = t.clamped(0.0, 1.0);
let u = u.clamped(0.0, 1.0);
let close_n = a + b * t;
let close_m = c + d * u;
let proj_n = n.projected_point(close_m);
let proj_m = m.projected_point(close_n);
if proj_n.distance_squared(close_m) < proj_m.distance_squared(close_n) {
(proj_n, close_m)
} else {
(close_n, proj_m)
}
}
}
/// Find pushback vector and collision_distance we assume between this
/// colliders assuming that only one of them is capsule prism.
fn capsule2cylinder(c0: ColliderContext, c1: ColliderContext) -> (Vec2<f32>, f32) {
// "Proper" way to do this would be handle the case when both our colliders
// are capsule prisms by building origins from p0, p1 offsets and our
// positions and find some sort of projection between line segments of
// both colliders.
// While it's possible, it's not a trivial operation especially
// in the case when they are intersect. Because in such case,
// even when you found intersection and you should push entities back
// from each other, you get then difference between them is 0 vector.
//
// Considering that we won't fully simulate collision of capsule prism.
// As intermediate solution, we would assume that bigger collider
// (with bigger scaled_radius) is capsule prism (cylinder is special
// case of capsule prism too) and smaller collider is cylinder (point is
// special case of cylinder).
// So in the end our model of collision and pushback vector is simplified
// to checking distance of the point between segment of capsule.
//
// NOTE: no matter if we consider our collider capsule prism or cylinder
// we should always build pushback vector to have direction
// of motion from our target collider to our collider.
//
let we = c0.pos.xy();
let other = c1.pos.xy();
let calculate_projection_and_collision_dist = |our_radius: f32,
their_radius: f32,
origins: Option<(Vec2<f32>, Vec2<f32>)>,
start_point: Vec2<f32>,
end_point: Vec2<f32>,
coefficient: f32|
-> (Vec2<f32>, f32) {
let collision_dist = our_radius + their_radius;
let (p0_offset, p1_offset) = match origins {
Some(origins) => origins,
None => return (we - other, collision_dist),
};
let segment = LineSegment2 {
start: start_point + p0_offset,
end: start_point + p1_offset,
};
let projection = coefficient * (segment.projected_point(end_point) - end_point);
(projection, collision_dist)
};
if c0.previous_cache.scaled_radius > c1.previous_cache.scaled_radius {
calculate_projection_and_collision_dist(
c0.previous_cache.neighborhood_radius,
c1.previous_cache.scaled_radius,
c0.previous_cache.origins,
we,
other,
1.0,
)
} else {
calculate_projection_and_collision_dist(
c0.previous_cache.scaled_radius,
c1.previous_cache.neighborhood_radius,
c1.previous_cache.origins,
other,
we,
-1.0,
)
}
}