veloren/voxygen/src/scene/camera.rs

370 lines
12 KiB
Rust

use common::{terrain::TerrainGrid, vol::ReadVol};
use common_base::span;
use std::f32::consts::PI;
use treeculler::Frustum;
use vek::*;
pub const NEAR_PLANE: f32 = 0.25;
pub const FAR_PLANE: f32 = 100000.0;
const FIRST_PERSON_INTERP_TIME: f32 = 0.1;
const THIRD_PERSON_INTERP_TIME: f32 = 0.1;
const FREEFLY_INTERP_TIME: f32 = 0.0;
const LERP_ORI_RATE: f32 = 15.0;
pub const MIN_ZOOM: f32 = 0.1;
// Possible TODO: Add more modes
#[derive(PartialEq, Clone, Copy, Eq, Hash)]
pub enum CameraMode {
FirstPerson = 0,
ThirdPerson = 1,
Freefly = 2,
}
impl Default for CameraMode {
fn default() -> Self { Self::ThirdPerson }
}
#[derive(Clone, Copy)]
pub struct Dependents {
pub view_mat: Mat4<f32>,
pub view_mat_inv: Mat4<f32>,
pub proj_mat: Mat4<f32>,
pub proj_mat_inv: Mat4<f32>,
pub cam_pos: Vec3<f32>,
pub cam_dir: Vec3<f32>,
}
pub struct Camera {
tgt_focus: Vec3<f32>,
focus: Vec3<f32>,
tgt_ori: Vec3<f32>,
ori: Vec3<f32>,
tgt_dist: f32,
dist: f32,
fov: f32,
aspect: f32,
mode: CameraMode,
last_time: Option<f64>,
dependents: Dependents,
frustum: Frustum<f32>,
}
impl Camera {
/// Create a new `Camera` with default parameters.
pub fn new(aspect: f32, mode: CameraMode) -> Self {
// Make sure aspect is valid
let aspect = if aspect.is_normal() { aspect } else { 1.0 };
Self {
tgt_focus: Vec3::unit_z() * 10.0,
focus: Vec3::unit_z() * 10.0,
tgt_ori: Vec3::zero(),
ori: Vec3::zero(),
tgt_dist: 10.0,
dist: 10.0,
fov: 1.1,
aspect,
mode,
last_time: None,
dependents: Dependents {
view_mat: Mat4::identity(),
view_mat_inv: Mat4::identity(),
proj_mat: Mat4::identity(),
proj_mat_inv: Mat4::identity(),
cam_pos: Vec3::zero(),
cam_dir: Vec3::unit_y(),
},
frustum: Frustum::from_modelview_projection(Mat4::identity().into_col_arrays()),
}
}
/// Compute the transformation matrices (view matrix and projection matrix)
/// and position of the camera.
pub fn compute_dependents(&mut self, terrain: &TerrainGrid) {
self.compute_dependents_full(terrain, |block| !block.is_opaque())
}
/// The is_fluid argument should return true for transparent voxels.
pub fn compute_dependents_full<V: ReadVol>(
&mut self,
terrain: &V,
is_transparent: fn(&V::Vox) -> bool,
) {
span!(_guard, "compute_dependents", "Camera::compute_dependents");
let dist = {
let (start, end) = (self.focus - self.forward() * self.dist, self.focus);
match terrain
.ray(start, end)
.ignore_error()
.max_iter(500)
.until(is_transparent)
.cast()
{
(d, Ok(Some(_))) => f32::min(self.dist - d - 0.03, self.dist),
(_, Ok(None)) => self.dist,
(_, Err(_)) => self.dist,
}
.max(0.0)
};
self.dependents.view_mat = Mat4::<f32>::identity()
* Mat4::translation_3d(-Vec3::unit_z() * dist)
* Mat4::rotation_z(self.ori.z)
* Mat4::rotation_x(self.ori.y)
* Mat4::rotation_y(self.ori.x)
* Mat4::rotation_3d(PI / 2.0, -Vec4::unit_x())
* Mat4::translation_3d(-self.focus.map(|e| e.fract()));
self.dependents.view_mat_inv = self.dependents.view_mat.inverted();
self.dependents.proj_mat =
Mat4::perspective_rh_no(self.fov, self.aspect, NEAR_PLANE, FAR_PLANE);
self.dependents.proj_mat_inv = self.dependents.proj_mat.inverted();
// TODO: Make this more efficient.
self.dependents.cam_pos = Vec3::from(self.dependents.view_mat.inverted() * Vec4::unit_w());
self.frustum = Frustum::from_modelview_projection(
(self.dependents.proj_mat
* self.dependents.view_mat
* Mat4::translation_3d(-self.focus.map(|e| e.trunc())))
.into_col_arrays(),
);
self.dependents.cam_dir = Vec3::from(self.dependents.view_mat.inverted() * -Vec4::unit_z());
}
pub fn frustum(&self) -> &Frustum<f32> { &self.frustum }
pub fn dependents(&self) -> Dependents { self.dependents }
/// Rotate the camera about its focus by the given delta, limiting the input
/// accordingly.
pub fn rotate_by(&mut self, delta: Vec3<f32>) {
// Wrap camera yaw
self.tgt_ori.x = (self.tgt_ori.x + delta.x).rem_euclid(2.0 * PI);
// Clamp camera pitch to the vertical limits
self.tgt_ori.y = (self.tgt_ori.y + delta.y)
.min(PI / 2.0 - 0.0001)
.max(-PI / 2.0 + 0.0001);
// Wrap camera roll
self.tgt_ori.z = (self.tgt_ori.z + delta.z).rem_euclid(2.0 * PI);
}
/// Set the orientation of the camera about its focus.
pub fn set_orientation(&mut self, ori: Vec3<f32>) {
// Wrap camera yaw
self.tgt_ori.x = ori.x.rem_euclid(2.0 * PI);
// Clamp camera pitch to the vertical limits
self.tgt_ori.y = ori.y.min(PI / 2.0 - 0.0001).max(-PI / 2.0 + 0.0001);
// Wrap camera roll
self.tgt_ori.z = ori.z.rem_euclid(2.0 * PI);
}
/// Set the orientation of the camera about its focus without lerping.
pub fn set_ori_instant(&mut self, ori: Vec3<f32>) {
// Wrap camera yaw
self.ori.x = ori.x.rem_euclid(2.0 * PI);
// Clamp camera pitch to the vertical limits
self.ori.y = ori.y.min(PI / 2.0 - 0.0001).max(-PI / 2.0 + 0.0001);
// Wrap camera roll
self.ori.z = ori.z.rem_euclid(2.0 * PI);
}
/// Zoom the camera by the given delta, limiting the input accordingly.
pub fn zoom_by(&mut self, delta: f32) {
if self.mode == CameraMode::ThirdPerson {
// Clamp camera dist to the 2 <= x <= infinity range
self.tgt_dist = (self.tgt_dist + delta).max(2.0);
}
}
/// Zoom with the ability to switch between first and third-person mode.
pub fn zoom_switch(&mut self, delta: f32) {
if delta > 0_f32 || self.mode != CameraMode::FirstPerson {
let t = self.tgt_dist + delta;
const MIN_THIRD_PERSON: f32 = 2.35;
match self.mode {
CameraMode::ThirdPerson => {
if t < MIN_THIRD_PERSON {
self.set_mode(CameraMode::FirstPerson);
} else {
self.tgt_dist = t;
}
},
CameraMode::FirstPerson => {
self.set_mode(CameraMode::ThirdPerson);
self.tgt_dist = MIN_THIRD_PERSON;
},
_ => {},
}
}
}
/// Get the distance of the camera from the focus
pub fn get_distance(&self) -> f32 { self.dist }
/// Set the distance of the camera from the focus (i.e., zoom).
pub fn set_distance(&mut self, dist: f32) { self.tgt_dist = dist; }
pub fn update(&mut self, time: f64, dt: f32, smoothing_enabled: bool) {
// This is horribly frame time dependent, but so is most of the game
let delta = self.last_time.replace(time).map_or(0.0, |t| time - t);
if (self.dist - self.tgt_dist).abs() > 0.01 {
self.dist = f32::lerp(
self.dist,
self.tgt_dist,
0.65 * (delta as f32) / self.interp_time(),
);
}
if (self.focus - self.tgt_focus).magnitude_squared() > 0.001 {
let lerped_focus = Lerp::lerp(
self.focus,
self.tgt_focus,
(delta as f32) / self.interp_time()
* if matches!(self.mode, CameraMode::FirstPerson) {
2.0
} else {
1.0
},
);
self.focus.x = lerped_focus.x;
self.focus.y = lerped_focus.y;
// Always lerp in z
self.focus.z = lerped_focus.z;
}
let lerp_angle = |a: f32, b: f32, rate: f32| {
let offs = [-2.0 * PI, 0.0, 2.0 * PI]
.iter()
.min_by_key(|offs: &&f32| ((a - (b + *offs)).abs() * 1000.0) as i32)
.unwrap();
Lerp::lerp(a, b + *offs, rate)
};
if smoothing_enabled {
self.set_ori_instant(Vec3::new(
lerp_angle(self.ori.x, self.tgt_ori.x, LERP_ORI_RATE * dt),
Lerp::lerp(self.ori.y, self.tgt_ori.y, LERP_ORI_RATE * dt),
lerp_angle(self.ori.z, self.tgt_ori.z, LERP_ORI_RATE * dt),
));
} else {
self.set_ori_instant(self.tgt_ori)
};
}
pub fn interp_time(&self) -> f32 {
match self.mode {
CameraMode::FirstPerson => FIRST_PERSON_INTERP_TIME,
CameraMode::ThirdPerson => THIRD_PERSON_INTERP_TIME,
CameraMode::Freefly => FREEFLY_INTERP_TIME,
}
}
/// Get the focus position of the camera.
pub fn get_focus_pos(&self) -> Vec3<f32> { self.focus }
/// Set the focus position of the camera.
pub fn set_focus_pos(&mut self, focus: Vec3<f32>) { self.tgt_focus = focus; }
/// Get the aspect ratio of the camera.
pub fn get_aspect_ratio(&self) -> f32 { self.aspect }
/// Set the aspect ratio of the camera.
pub fn set_aspect_ratio(&mut self, aspect: f32) {
self.aspect = if aspect.is_normal() { aspect } else { 1.0 };
}
/// Get the orientation of the camera.
pub fn get_orientation(&self) -> Vec3<f32> { self.ori }
/// Get the field of view of the camera in radians.
pub fn get_fov(&self) -> f32 { self.fov }
/// Set the field of view of the camera in radians.
pub fn set_fov(&mut self, fov: f32) { self.fov = fov; }
/// Set the FOV in degrees
pub fn set_fov_deg(&mut self, fov: u16) {
//Magic value comes from pi/180; no use recalculating.
self.set_fov((fov as f32) * 0.01745329)
}
/// Set the mode of the camera.
pub fn set_mode(&mut self, mode: CameraMode) {
if self.mode != mode {
self.mode = mode;
match self.mode {
CameraMode::ThirdPerson => {
self.zoom_by(5.0);
},
CameraMode::FirstPerson => {
self.set_distance(MIN_ZOOM);
},
CameraMode::Freefly => {
self.zoom_by(0.0);
},
}
}
}
/// Get the mode of the camera
pub fn get_mode(&self) -> CameraMode {
// Perfom a bit of a trick... don't report first-person until the camera has
// lerped close enough to the player.
match self.mode {
CameraMode::FirstPerson if self.dist < 0.5 => CameraMode::FirstPerson,
CameraMode::FirstPerson => CameraMode::ThirdPerson,
mode => mode,
}
}
/// Cycle the camera to its next valid mode. If is_admin is false then only
/// modes which are accessible without admin access will be cycled to.
pub fn next_mode(&mut self, is_admin: bool) {
self.set_mode(match self.mode {
CameraMode::ThirdPerson => CameraMode::FirstPerson,
CameraMode::FirstPerson => {
if is_admin {
CameraMode::Freefly
} else {
CameraMode::ThirdPerson
}
},
CameraMode::Freefly => CameraMode::ThirdPerson,
});
}
/// Return a unit vector in the forward direction for the current camera
/// orientation
pub fn forward(&self) -> Vec3<f32> {
Vec3::new(
f32::sin(self.ori.x) * f32::cos(self.ori.y),
f32::cos(self.ori.x) * f32::cos(self.ori.y),
-f32::sin(self.ori.y),
)
}
/// Return a unit vector in the right direction for the current camera
/// orientation
pub fn right(&self) -> Vec3<f32> {
const UP: Vec3<f32> = Vec3::new(0.0, 0.0, 1.0);
self.forward().cross(UP).normalized()
}
/// Return a unit vector in the forward direction on the XY plane for
/// the current camera orientation
pub fn forward_xy(&self) -> Vec2<f32> { Vec2::new(f32::sin(self.ori.x), f32::cos(self.ori.x)) }
/// Return a unit vector in the right direction on the XY plane for
/// the current camera orientation
pub fn right_xy(&self) -> Vec2<f32> { Vec2::new(f32::cos(self.ori.x), -f32::sin(self.ori.x)) }
}