veloren/assets/voxygen/shaders/include/lod.glsl
2020-08-06 13:40:35 +02:00

290 lines
11 KiB
GLSL

#include <random.glsl>
#include <sky.glsl>
#include <srgb.glsl>
uniform sampler2D t_alt;
uniform sampler2D t_horizon;
const float MIN_SHADOW = 0.33;
vec2 pos_to_uv(sampler2D sampler, vec2 pos) {
// Want: (pixel + 0.5) / W
vec2 texSize = textureSize(sampler, 0);
vec2 uv_pos = (focus_off.xy + pos + 16) / (32.0 * texSize);
return vec2(uv_pos.x, /*1.0 - */uv_pos.y);
}
vec2 pos_to_tex(vec2 pos) {
// Want: (pixel + 0.5)
vec2 uv_pos = (focus_off.xy + pos + 16) / 32.0;
return vec2(uv_pos.x, uv_pos.y);
}
// textureBicubic from https://stackoverflow.com/a/42179924
vec4 cubic(float v) {
vec4 n = vec4(1.0, 2.0, 3.0, 4.0) - v;
vec4 s = n * n * n;
float x = s.x;
float y = s.y - 4.0 * s.x;
float z = s.z - 4.0 * s.y + 6.0 * s.x;
float w = 6.0 - x - y - z;
return vec4(x, y, z, w) * (1.0/6.0);
}
// NOTE: We assume the sampled coordinates are already in "texture pixels".
vec4 textureBicubic(sampler2D sampler, vec2 texCoords) {
vec2 texSize = textureSize(sampler, 0);
vec2 invTexSize = 1.0 / texSize;
/* texCoords.y = texSize.y - texCoords.y; */
texCoords = texCoords/* * texSize */ - 0.5;
vec2 fxy = fract(texCoords);
texCoords -= fxy;
vec4 xcubic = cubic(fxy.x);
vec4 ycubic = cubic(fxy.y);
vec4 c = texCoords.xxyy + vec2 (-0.5, +1.5).xyxy;
// vec4 c = texCoords.xxyy + vec2 (-1, +1).xyxy;
vec4 s = vec4(xcubic.xz + xcubic.yw, ycubic.xz + ycubic.yw);
vec4 offset = c + vec4 (xcubic.yw, ycubic.yw) / s;
offset *= invTexSize.xxyy;
/* // Correct for map rotaton.
offset.zw = 1.0 - offset.zw; */
vec4 sample0 = texture(sampler, offset.xz);
vec4 sample1 = texture(sampler, offset.yz);
vec4 sample2 = texture(sampler, offset.xw);
vec4 sample3 = texture(sampler, offset.yw);
// vec4 sample0 = texelFetch(sampler, offset.xz, 0);
// vec4 sample1 = texelFetch(sampler, offset.yz, 0);
// vec4 sample2 = texelFetch(sampler, offset.xw, 0);
// vec4 sample3 = texelFetch(sampler, offset.yw, 0);
float sx = s.x / (s.x + s.y);
float sy = s.z / (s.z + s.w);
return mix(
mix(sample3, sample2, sx), mix(sample1, sample0, sx)
, sy);
}
float alt_at(vec2 pos) {
return (/*round*/(texture/*textureBicubic*/(t_alt, pos_to_uv(t_alt, pos)).r * (/*1300.0*//*1278.7266845703125*/view_distance.w)) + /*140.0*/view_distance.z - focus_off.z);
//+ (texture(t_noise, pos * 0.002).x - 0.5) * 64.0;
// return 0.0
// + pow(texture(t_noise, pos * 0.00005).x * 1.4, 3.0) * 1000.0
// + texture(t_noise, pos * 0.001).x * 100.0
// + texture(t_noise, pos * 0.003).x * 30.0;
}
float alt_at_real(vec2 pos) {
// Basic idea: only really need the real altitude for an accurate water height estimation, so if we are in the cheap shader take a shortcut.
// #if (FLUID_MODE == FLUID_MODE_CHEAP)
// return alt_at(pos);
// #elif (FLUID_MODE == FLUID_MODE_SHINY)
return (/*round*/(textureBicubic(t_alt, pos_to_tex(pos)).r * (/*1300.0*//*1278.7266845703125*/view_distance.w)) + /*140.0*/view_distance.z - focus_off.z);
// #endif
//+ (texture(t_noise, pos * 0.002).x - 0.5) * 64.0;
// return 0.0
// + pow(texture(t_noise, pos * 0.00005).x * 1.4, 3.0) * 1000.0
// + texture(t_noise, pos * 0.001).x * 100.0
// + texture(t_noise, pos * 0.003).x * 30.0;
}
float horizon_at2(vec4 f_horizons, float alt, vec3 pos, /*float time_of_day*/vec4 light_dir) {
// vec3 sun_dir = get_sun_dir(time_of_day);
const float PI_2 = 3.1415926535897932384626433832795 / 2.0;
const float MIN_LIGHT = 0.0;//0.115/*0.0*/;
// return 1.0;
/*
let shade_frac = horizon_map
.and_then(|(angles, heights)| {
chunk_idx
.and_then(|chunk_idx| angles.get(chunk_idx))
.map(|&e| (e as f64, heights))
})
.and_then(|(e, heights)| {
chunk_idx
.and_then(|chunk_idx| heights.get(chunk_idx))
.map(|&f| (e, f as f64))
})
.map(|(angle, height)| {
let w = 0.1;
if angle != 0.0 && light_direction.x != 0.0 {
let deltax = height / angle;
let lighty = (light_direction.y / light_direction.x * deltax).abs();
let deltay = lighty - height;
let s = (deltay / deltax / w).min(1.0).max(0.0);
// Smoothstep
s * s * (3.0 - 2.0 * s)
} else {
1.0
}
})
.unwrap_or(1.0);
*/
// vec2 f_horizon;
/* if (light_dir.z >= 0) {
return 0.0;
} */
/* if (light_dir.x >= 0) {
f_horizon = f_horizons.rg;
// f_horizon = f_horizons.ba;
} else {
f_horizon = f_horizons.ba;
// f_horizon = f_horizons.rg;
}
return 1.0; */
/* bvec2 f_mode = lessThan(vec2(light_dir.x), vec2(1.0));
f_horizon = mix(f_horizons.ba, f_horizons.rg, f_mode); */
// f_horizon = mix(f_horizons.rg, f_horizons.ba, clamp(light_dir.x * 10000.0, 0.0, 1.0));
vec2 f_horizon = mix(f_horizons.rg, f_horizons.ba, bvec2(light_dir.x < 0.0));
// vec2 f_horizon = mix(f_horizons.ba, f_horizons.rg, clamp(light_dir.x * 10000.0, 0.0, 1.0));
// f_horizon = mix(f_horizons.ba, f_horizons.rg, bvec2(lessThan(light_dir.xx, vec2(0.0))));
/* if (f_horizon.x <= 0) {
return 1.0;
} */
float angle = tan(f_horizon.x * PI_2);
/* if (angle <= 0.0001) {
return 1.0;
} */
float height = f_horizon.y * /*1300.0*//*1278.7266845703125*/view_distance.w + view_distance.z;
const float w = 0.1;
float deltah = height - alt - focus_off.z;
//if (deltah < 0.0001/* || angle < 0.0001 || abs(light_dir.x) < 0.0001*/) {
// return 1.0;
/*} else */{
float lighta = /*max*/(-light_dir.z/*, 0.0*/) / max(abs(light_dir.x), 0.0001);
// NOTE: Ideally, deltah <= 0.0 is a sign we have an oblique horizon angle.
float deltax = deltah / max(angle, 0.0001)/*angle*/;
float lighty = lighta * deltax;
float deltay = lighty - deltah + max(pos.z - alt, 0.0);
// NOTE: the "real" deltah should always be >= 0, so we know we're only handling the 0 case with max.
float s = mix(max(min(max(deltay, 0.0) / max(deltax, 0.0001) / w, 1.0), 0.0), 1.0, deltah <= 0);
return max(/*0.2 + 0.8 * */(s * s * (3.0 - 2.0 * s)), MIN_LIGHT);
/* if (lighta >= angle) {
return 1.0;
} else {
return MIN_LIGHT;
} */
// float deltah = height - alt;
// float deltah = max(height - alt, 0.0);
// float lighty = abs(sun_dir.z / sun_dir.x * deltax);
// float lighty = abs(sun_dir.z / sun_dir.x * deltax);
// float deltay = lighty - /*pos.z*//*deltah*/(deltah + max(pos.z - alt, 0.0))/*deltah*/;
// float s = max(min(max(deltay, 0.0) / deltax / w, 1.0), 0.0);
// Smoothstep
// return max(/*0.2 + 0.8 * */(s * s * (3.0 - 2.0 * s)), MIN_LIGHT);
}
}
// float horizon_at(vec3 pos, /*float time_of_day*/vec3 light_dir) {
// vec4 f_horizons = textureBicubic(t_horizon, pos_to_tex(pos.xy));
// // f_horizons.xyz = /*linear_to_srgb*/(f_horizons.xyz);
// float alt = alt_at_real(pos.xy);
// return horizon_at2(f_horizons, alt, pos, light_dir);
// }
vec2 splay(vec2 pos) {
// const float SPLAY_MULT = 1048576.0;
float len_2 = dot(pos, pos);
float len_pow = len_2 * sqrt(len_2);
// float len_pow = pow(len/* * SQRT_2*//* * 0.5*/, 3.0);
// vec2 splayed = pos * pow(len * 0.5, 3.0) * SPLAY_MULT;
const float SQRT_2 = sqrt(2.0) / 2.0;
// /const float CBRT_2 = cbrt(2.0) / 2.0;
// vec2 splayed = pos * (view_distance.x * SQRT_2 + pow(len * 0.5, 3.0) * (SPLAY_MULT - view_distance.x));
vec2 splayed = pos * (view_distance.x * SQRT_2 + len_pow * (textureSize(t_alt, 0) * 32.0/* - view_distance.x*/));
return splayed;
// Radial: pos.x = r - view_distance.x from focus_pos, pos.y = θ from cam_pos to focus_pos on xy plane.
// const float PI_2 = 3.1415926535897932384626433832795;
// float squared = pos.x * pos.x;
// // // vec2 splayed2 = pos * vec2(squared * (SPLAY_MULT - view_distance.x), PI);
// vec2 splayed2 = pos * vec2(squared * (textureSize(t_alt, 0).x * 32.0 - view_distance.x), PI);
// float r = splayed2.x + view_distance.x;
// vec2 theta = vec2(cos(splayed2.y), sin(splayed2.y));
// return r * theta;
// // mat2 rot_mat = mat2(vec2(theta.x, -theta.y), theta.yx);
// // return r * /*normalize(normalize(focus_pos.xy - cam_pos.xy) + theta);*/rot_mat * normalize(focus_pos.xy - cam_pos.xy);
// return splayed;
}
vec3 lod_norm(vec2 f_pos/*vec3 pos*/, vec4 square) {
// const float SAMPLE_W = 32;
// vec2 f_pos = pos.xy;
// float altx0 = alt_at_real(f_pos + vec2(-1.0, 0) * SAMPLE_W);
// float altx1 = alt_at_real(f_pos + vec2(1.0, 0) * SAMPLE_W);
// float alty0 = alt_at_real(f_pos + vec2(0, -1.0) * SAMPLE_W);
// float alty1 = alt_at_real(f_pos + vec2(0, 1.0) * SAMPLE_W);
float altx0 = alt_at(vec2(square.x, f_pos.y));
float altx1 = alt_at(vec2(square.z, f_pos.y));
float alty0 = alt_at(vec2(f_pos.x, square.y));
float alty1 = alt_at(vec2(f_pos.x, square.w));
float slope = abs(altx1 - altx0) + abs(alty0 - alty1);
// vec3 norm = normalize(cross(
// vec3(/*2.0 * SAMPLE_W*/square.z - square.x, 0.0, altx1 - altx0),
// vec3(0.0, /*2.0 * SAMPLE_W*/square.w - square.y, alty1 - alty0)
// ));
vec3 norm = normalize(vec3(
(altx0 - altx1) / (square.z - square.x),
(alty0 - alty1) / (square.w - square.y),
1.0
//(abs(square.w - square.y) + abs(square.z - square.x)) / (slope + 0.00001) // Avoid NaN
));
/* vec3 norm = normalize(vec3(
(altx0 - altx1) / (2.0 * SAMPLE_W),
(alty0 - alty1) / (2.0 * SAMPLE_W),
(2.0 * SAMPLE_W) / (slope + 0.00001) // Avoid NaN
)); */
return faceforward(norm, vec3(0.0, 0.0, -1.0)/*pos - cam_pos.xyz*/, norm);
}
vec3 lod_norm(vec2 f_pos/*vec3 pos*/) {
const float SAMPLE_W = 32;
return lod_norm(f_pos, vec4(f_pos - vec2(SAMPLE_W), f_pos + vec2(SAMPLE_W)));
}
vec3 lod_pos(vec2 pos, vec2 focus_pos) {
// Remove spiking by "pushing" vertices towards local optima
vec2 delta = splay(pos);
vec2 hpos = focus_pos + delta;
vec2 nhpos = hpos;
// vec2 lod_shift = splay(abs(pos) - 1.0 / view_distance.y);
float shift = 15.0;// min(lod_shift.x, lod_shift.y) * 0.5;
for (int i = 0; i < 3; i ++) {
// vec4 square = focus_pos.xy + vec4(splay(pos - vec2(1.0, 1.0), splay(pos + vec2(1.0, 1.0))));
nhpos -= lod_norm(hpos).xy * shift;
}
hpos = hpos + normalize(nhpos - hpos + 0.001) * min(length(nhpos - hpos), 32);
return vec3(hpos, alt_at_real(hpos));
}
#ifdef HAS_LOD_FULL_INFO
uniform sampler2D t_map;
vec3 lod_col(vec2 pos) {
//return vec3(0, 0.5, 0);
// return /*linear_to_srgb*/vec3(alt_at(pos), textureBicubic(t_map, pos_to_tex(pos)).gb);
return /*linear_to_srgb*/(textureBicubic(t_map, pos_to_tex(pos)).rgb)
;//+ (texture(t_noise, pos * 0.04 + texture(t_noise, pos * 0.005).xy * 2.0 + texture(t_noise, pos * 0.06).xy * 0.6).x - 0.5) * 0.1;
//+ (texture(t_noise, pos * 0.04 + texture(t_noise, pos * 0.005).xy * 2.0 + texture(t_noise, pos * 0.06).xy * 0.6).x - 0.5) * 0.1;
}
#endif