veloren/common/src/util/find_dist.rs

151 lines
5.1 KiB
Rust

/// Calculate the shortest distance between the surfaces of two shapes
use vek::*;
pub trait FindDist<T> {
/// Compute roughly whether the other shape is out of range
/// Meant to be a cheap method for initial filtering
/// Must return true if the shape could be within the supplied distance but
/// is allowed to return true if the shape is actually just out of
/// range
fn approx_in_range(self, other: T, range: f32) -> bool;
/// Find the smallest distance between the two shapes
fn min_distance(self, other: T) -> f32;
}
/// A z-axis aligned cylinder
#[derive(Clone, Copy, Debug)]
pub struct Cylinder {
/// Center of the cylinder
pub pos: Vec3<f32>,
/// Radius of the cylinder
pub radius: f32,
/// Height of the cylinder
pub height: f32,
}
impl Cylinder {
fn aabb(&self) -> Aabb<f32> {
Aabb {
min: self.pos - Vec3::new(self.radius, self.radius, self.height) / 2.0,
max: self.pos + Vec3::new(self.radius, self.radius, self.height) / 2.0,
}
}
#[inline]
pub fn from_components(
pos: Vec3<f32>,
scale: Option<crate::comp::Scale>,
collider: Option<crate::comp::Collider>,
char_state: Option<&crate::comp::CharacterState>,
) -> Self {
let scale = scale.map_or(1.0, |s| s.0);
let radius = collider.map_or(0.5, |c| c.get_radius()) * scale;
let z_limit_modifier = char_state
.filter(|char_state| char_state.is_dodge())
.map_or(1.0, |_| 0.5)
* scale;
let (z_bottom, z_top) = collider
.map(|c| c.get_z_limits(z_limit_modifier))
.unwrap_or((-0.5 * z_limit_modifier, 0.5 * z_limit_modifier));
Self {
pos: pos + Vec3::unit_z() * (z_top + z_bottom) / 2.0,
radius,
height: z_top - z_bottom,
}
}
}
/// An axis aligned cube
#[derive(Clone, Copy, Debug)]
pub struct Cube {
/// The position of min corner of the cube
pub pos: Vec3<f32>,
/// The side length of the cube
pub side_length: f32,
}
impl FindDist<Cylinder> for Cube {
#[inline]
fn approx_in_range(self, other: Cylinder, range: f32) -> bool {
let cube_plus_range_aabb = Aabb {
min: self.pos - Vec3::from(range),
max: self.pos + Vec3::from(range),
};
let cylinder_aabb = other.aabb();
cube_plus_range_aabb.collides_with_aabb(cylinder_aabb)
}
#[inline]
fn min_distance(self, other: Cylinder) -> f32 {
// Distance between centers along the z-axis
let z_center_dist = (self.pos.z + self.side_length / 2.0 - other.pos.z).abs();
// Distance between surfaces projected onto the z-axis
let z_dist = (z_center_dist - (self.side_length + other.height) / 2.0).max(0.0);
// Distance between shapes projected onto the xy plane as a square/circle
let square_aabr = Aabr {
min: self.pos.xy(),
max: self.pos.xy() + self.side_length,
};
let xy_dist = (square_aabr.distance_to_point(other.pos.xy()) - other.radius).max(0.0);
// Overall distance by pythagoras
(z_dist.powi(2) + xy_dist.powi(2)).sqrt()
}
}
impl FindDist<Cube> for Cylinder {
#[inline]
fn approx_in_range(self, other: Cube, range: f32) -> bool { other.approx_in_range(self, range) }
#[inline]
fn min_distance(self, other: Cube) -> f32 { other.min_distance(self) }
}
impl FindDist<Cylinder> for Cylinder {
#[inline]
fn approx_in_range(self, other: Cylinder, range: f32) -> bool {
let mut aabb = self.aabb();
aabb.min -= range;
aabb.max += range;
aabb.collides_with_aabb(other.aabb())
}
#[inline]
fn min_distance(self, other: Cylinder) -> f32 {
// Distance between centers along the z-axis
let z_center_dist = (self.pos.z - other.pos.z).abs();
// Distance between surfaces projected onto the z-axis
let z_dist = (z_center_dist - (self.height + other.height) / 2.0).max(0.0);
// Distance between shapes projected onto the xy plane as a circles
let xy_dist =
(self.pos.xy().distance(other.pos.xy()) - self.radius - other.radius).max(0.0);
// Overall distance by pythagoras
(z_dist.powi(2) + xy_dist.powi(2)).sqrt()
}
}
impl FindDist<Vec3<f32>> for Cylinder {
#[inline]
fn approx_in_range(self, other: Vec3<f32>, range: f32) -> bool {
let mut aabb = self.aabb();
aabb.min -= range;
aabb.max += range;
aabb.contains_point(other)
}
#[inline]
fn min_distance(self, other: Vec3<f32>) -> f32 {
// Distance between center and point along the z-axis
let z_center_dist = (self.pos.z - other.z).abs();
// Distance between surface and point projected onto the z-axis
let z_dist = (z_center_dist - self.height / 2.0).max(0.0);
// Distance between shapes projected onto the xy plane
let xy_dist = (self.pos.xy().distance(other.xy()) - self.radius).max(0.0);
// Overall distance by pythagoras
(z_dist.powi(2) + xy_dist.powi(2)).sqrt()
}
}