veloren/assets/voxygen/shaders/terrain-frag.glsl
2020-07-02 22:10:22 +02:00

307 lines
15 KiB
GLSL

#version 330 core
// #extension GL_ARB_texture_storage : require
#include <constants.glsl>
#define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION
#define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY
#if (FLUID_MODE == FLUID_MODE_CHEAP)
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE
#elif (FLUID_MODE == FLUID_MODE_SHINY)
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE
#endif
#define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET
#define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN
#define HAS_SHADOW_MAPS
#include <globals.glsl>
#include <random.glsl>
in vec3 f_pos;
// in float f_ao;
// in vec3 f_chunk_pos;
// #ifdef FLUID_MODE_SHINY
flat in uint f_pos_norm;
// #else
// const uint f_pos_norm = 0u;
// #endif
// in float f_alt;
// in vec4 f_shadow;
// in vec3 f_col;
// in float f_light;
/*centroid */in vec2 f_uv_pos;
// in vec3 light_pos[2];
// const vec3 light_pos[6] = vec3[](vec3(0), vec3(0), vec3(00), vec3(0), vec3(0), vec3(0));
/* #if (SHADOW_MODE == SHADOW_MODE_MAP)
in vec4 sun_pos;
#elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE)
const vec4 sun_pos = vec4(0.0);
#endif */
uniform sampler2D t_col_light;
layout (std140)
uniform u_locals {
vec3 model_offs;
float load_time;
ivec4 atlas_offs;
};
out vec4 tgt_color;
#include <sky.glsl>
#include <light.glsl>
#include <lod.glsl>
void main() {
// discard;
// vec4 f_col_light = textureGrad(t_col_light, f_uv_pos / texSize, 0.25, 0.25);
// vec4 f_col_light = texture(t_col_light, (f_uv_pos) / texSize);
// First 3 normals are negative, next 3 are positive
const vec3 normals[8] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1), vec3(0,0,0), vec3(0,0,0));
// uint norm_index = (f_pos_norm >> 29) & 0x7u;
// vec2 uv_delta = (norm_index & 0u) == 0u ? vec2(-1.0) : vec2(0);
vec2 f_uv_pos = f_uv_pos + atlas_offs.xy;
// vec4 f_col_light = textureProj(t_col_light, vec3(f_uv_pos + 0.5, textureSize(t_col_light, 0)));//(f_uv_pos/* + 0.5*/) / texSize);
// float f_light = textureProj(t_col_light, vec3(f_uv_pos + 0.5, textureSize(t_col_light, 0))).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
vec4 f_col_light = texelFetch(t_col_light, ivec2(f_uv_pos)/* + uv_delta*//* - f_norm * 0.00001*/, 0);
// float f_light = f_col_light.a;
// vec4 f_col_light = texelFetch(t_col_light, ivec2(int(f_uv_pos.x), int(f_uv_pos.y)/* + uv_delta*//* - f_norm * 0.00001*/), 0);
vec3 f_col = /*linear_to_srgb*//*srgb_to_linear*/(f_col_light.rgb);
// vec3 f_col = vec3(1.0);
float f_light = texture(t_col_light, (f_uv_pos + 0.5) / textureSize(t_col_light, 0)).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
// vec2 texSize = textureSize(t_col_light, 0);
// float f_light = texture(t_col_light, f_uv_pos/* + vec2(atlas_offs.xy)*/).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
// float f_light = textureProj(t_col_light, vec3(f_uv_pos/* + vec2(atlas_offs.xy)*/, texSize.x)).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
// float f_light = textureProjLod(t_col_light, vec3(f_uv_pos/* + vec2(atlas_offs.xy)*/, texSize.x), 0).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
// float f_light = textureGrad(t_col_light, (f_uv_pos + 0.5) / texSize, vec2(0.1, 0.0), vec2(0.0, 0.1)).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
// f_light = sqrt(f_light);
// f_light = sqrt(f_light);
// f_col = vec3((uvec3(v_col_light) >> uvec3(8, 16, 24)) & uvec3(0xFFu)) / 255.0;
// vec3 f_col = light_col.rgb;//vec4(1.0, 0.0, 0.0, 1.0);
// float f_ao = 1.0;
// vec3 my_chunk_pos = vec3(ivec3((uvec3(f_pos_norm) >> uvec3(0, 6, 12)) & uvec3(0x3Fu, 0x3Fu, 0xFFFFu)));
// tgt_color = vec4(hash(floor(vec4(my_chunk_pos.x, 0, 0, 0))), hash(floor(vec4(0, my_chunk_pos.y, 0, 1))), hash(floor(vec4(0, 0, my_chunk_pos.z, 2))), 1.0);
// tgt_color.rgb *= f_light;
// tgt_color = vec4(vec3(f_light), 1.0);
// tgt_color = vec4(f_col, 1.0);
// return;
// vec4 light_pos[2];
// vec4 light_col = vec4(
// hash(floor(vec4(f_pos.x, 0, 0, 0))),
// hash(floor(vec4(0, f_pos.y, 0, 1))),
// hash(floor(vec4(0, 0, f_pos.z, 2))),
// 1.0
// );
// vec3 f_col = light_col.rgb;//vec4(1.0, 0.0, 0.0, 1.0);
// tgt_color = vec4(f_col, 1.0);
// tgt_color = vec4(light_shadow_count.x <= 31u ? f_col : vec3(0.0), 1.0);
// tgt_color = vec4(0.0, 0.0, 0.0, 1.0);
// float sum = 0.0;
// for (uint i = 0u; i < /* 6 * */light_shadow_count.x; i ++) {
// // uint i = 1u;
// Light L = lights[i/* / 6*/];
// /* vec4 light_col = vec4(
// hash(vec4(1.0, 0.0, 0.0, i)),
// hash(vec4(1.0, 1.0, 0.0, i)),
// hash(vec4(1.0, 0.0, 1.0, i)),
// 1.0
// ); */
// vec3 light_col = vec3(1.0);//L.light_col.rgb;
// float light_strength = L.light_col.a / 255.0;
// // float light_strength = 1.0 / light_shadow_count.x;
// vec3 light_pos = L.light_pos.xyz;
// // Pre-calculate difference between light and fragment
// vec3 fragToLight = f_pos - light_pos;
// // vec3 f_norm = normals[(f_pos_norm >> 29) & 0x7u];
// // use the light to fragment vector to sample from the depth map
// float bias = 0.0;//0.05;//0.05;
// // float closestDepth = texture(t_shadow_maps, vec4(fragToLight, i)/*, 0.0*//*, bias*/).r;
// // float closestDepth = texture(t_shadow_maps, vec4(fragToLight, lightIndex), bias);
// // float closestDepth = texture(t_shadow_maps, vec4(fragToLight, i + 1)/*, bias*/).r;
// float currentDepth = VectorToDepth(fragToLight) + bias;
// float closestDepth = texture(t_shadow_maps, vec3(fragToLight)/*, -2.5*/).r;
//
// // float visibility = texture(t_shadow_maps, vec4(fragToLight, i + 1), -(length(fragToLight) - bias)/* / screen_res.w*/);
// // it is currently in linear range between [0,1]. Re-transform back to original value
// // closestDepth *= screen_res.w; // far plane
// // now test for shadows
// // float shadow = /*currentDepth*/(screen_res.w - bias) > closestDepth ? 1.0 : 0.0;
// // float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
// // tgt_color += light_col * vec4(vec3(/*closestDepth*/visibility/* + bias*//* / screen_res.w */) * 1.0 / light_shadow_count.x, 0.0);
// // tgt_color.rgb += light_col * vec3(closestDepth + 0.05 / screen_res.w) * 1.0 /*/ light_shadow_count.x*/ * light_strength;
// tgt_color.rgb += light_col * vec3(closestDepth) * 1.0 / screen_res.w /*/ light_shadow_count.x*/ * light_strength;
// sum += light_strength;
// }
// TODO: last 3 bits in v_pos_norm should be a number between 0 and 5, rather than 0-2 and a direction.
// uint norm_axis = (f_pos_norm >> 30) & 0x3u;
// // Increase array access by 3 to access positive values
// uint norm_dir = ((f_pos_norm >> 29) & 0x1u) * 3u;
// Use an array to avoid conditional branching
// uint norm_index = (f_pos_norm >> 29) & 0x7u;
// vec3 f_norm = normals[norm_index];
vec3 f_norm = normals[(f_pos_norm >> 29) & 0x7u];
// vec3 du = dFdx(f_pos);
// vec3 dv = dFdy(f_pos);
// vec3 f_norm = normalize(cross(du, dv));
// /* if (light_shadow_count.x == 1) {
// tgt_color.rgb = vec3(0.0);
// } */
// if (sum > 0.0) {
// tgt_color.rgb /= sum;
// }
// return;
// Whether this face is facing fluid or not.
bool faces_fluid = bool((f_pos_norm >> 28) & 0x1u);
vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz);
// vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0);
// vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/);
vec3 view_dir = -cam_to_frag;
// vec3 view_dir = normalize(f_pos - cam_pos.xyz);
/* vec3 sun_dir = get_sun_dir(time_of_day.x);
vec3 moon_dir = get_moon_dir(time_of_day.x); */
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE == FLUID_MODE_SHINY)
float f_alt = alt_at(f_pos.xy);
#elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_CHEAP)
float f_alt = f_pos.z;
#endif
float alpha = 1.0;//0.0001;//1.0;
// TODO: Possibly angle with water surface into account? Since we can basically assume it's horizontal.
const float n2 = 1.5;//1.01;
const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2);
const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2);
const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2);
const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2);
// float faces_fluid = faces_fluid && f_pos.z <= floor(f_alt);
float fluid_alt = max(f_pos.z + 1, floor(f_alt));
float R_s = /*(f_pos.z < f_alt)*/faces_fluid /*&& f_pos.z <= fluid_alt*/ ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x);
// vec3 surf_color = /*srgb_to_linear*/(f_col);
vec3 k_a = vec3(1.0);
vec3 k_d = vec3(1.0);
vec3 k_s = vec3(R_s);
// float sun_light = get_sun_brightness(sun_dir);
// float moon_light = get_moon_brightness(moon_dir);
/* float sun_shade_frac = horizon_at(f_pos, sun_dir);
float moon_shade_frac = horizon_at(f_pos, moon_dir); */
// float f_alt = alt_at(f_pos.xy);
// vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy));
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP)
vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy));
float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
#elif (SHADOW_MODE == SHADOW_MODE_NONE)
float sun_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
#endif
float moon_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, moon_dir);
// Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence).
// Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing).
// float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5);
// NOTE: current assumption is that moon and sun shouldn't be out at the sae time.
// This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow
// for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally).
// float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac;
// DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, light_pos);
float point_shadow = shadow_at(f_pos, f_norm);
DirectionalLight sun_info = get_sun_info(sun_dir, point_shadow * sun_shade_frac, /*sun_pos*/f_pos);
DirectionalLight moon_info = get_moon_info(moon_dir, point_shadow * moon_shade_frac/*, light_pos*/);
float max_light = 0.0;
// After shadows are computed, we use a refracted sun and moon direction.
// sun_dir = faces_fluid && sun_shade_frac > 0.0 ? refract(sun_dir/*-view_dir*/, vec3(0.0, 0.0, 1.0), 1.0 / 1.3325) : sun_dir;
// moon_dir = faces_fluid && moon_shade_frac > 0.0 ? refract(moon_dir/*-view_dir*/, vec3(0.0, 0.0, 1.0), 1.0 / 1.3325) : moon_dir;
// Compute attenuation due to water from the camera.
vec3 mu = faces_fluid/* && f_pos.z <= fluid_alt*/ ? MU_WATER : vec3(0.0);
// NOTE: Default intersection point is camera position, meaning if we fail to intersect we assume the whole camera is in water.
vec3 cam_attenuation =
medium.x == 1u ? compute_attenuation_point(cam_pos.xyz, view_dir, MU_WATER, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/f_pos)
: compute_attenuation_point(f_pos, -view_dir, mu, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/cam_pos.xyz);
// Computing light attenuation from water.
vec3 emitted_light, reflected_light;
// To account for prior saturation
/*float */f_light = faces_fluid ? 1.0 : pow(f_light, 1.5);
emitted_light = vec3(1.0);
reflected_light = vec3(1.0);
max_light += get_sun_diffuse2(/*time_of_day.x, */sun_info, moon_info, f_norm, view_dir, f_pos, mu, cam_attenuation, fluid_alt, k_a/* * (shade_frac * 0.5 + light_frac * 0.5)*/, k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light);
// emitted_light *= f_light * point_shadow * max(shade_frac, MIN_SHADOW);
// reflected_light *= f_light * point_shadow * shade_frac;
// max_light *= f_light * point_shadow * shade_frac;
emitted_light *= f_light;
reflected_light *= f_light;
max_light *= f_light;
max_light += lights_at(f_pos, f_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light);
// float f_ao = 1.0;
// float ao = /*pow(f_ao, 0.5)*/f_ao * 0.9 + 0.1;
// emitted_light *= ao;
// reflected_light *= ao;
/* vec3 point_light = light_at(f_pos, f_norm);
emitted_light += point_light;
reflected_light += point_light; */
// float point_shadow = shadow_at(f_pos, f_norm);
// vec3 point_light = light_at(f_pos, f_norm);
// vec3 light, diffuse_light, ambient_light;
// get_sun_diffuse(f_norm, time_of_day.x, cam_to_frag, k_a * f_light, k_d * f_light, k_s * f_light, alpha, emitted_light, reflected_light);
// get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0);
// float point_shadow = shadow_at(f_pos, f_norm);
// diffuse_light *= f_light * point_shadow;
// ambient_light *= f_light * point_shadow;
// vec3 point_light = light_at(f_pos, f_norm);
// light += point_light;
// diffuse_light += point_light;
// reflected_light += point_light;
// reflected_light += light_reflection_factor(norm, cam_to_frag, , vec3 k_d, vec3 k_s, float alpha) {
// light_reflection_factorplight_reflection_factor
// vec3 surf_color = illuminate(srgb_to_linear(f_col), light, diffuse_light, ambient_light);
vec3 f_chunk_pos = f_pos - (model_offs - focus_off.xyz);
vec3 col = /*srgb_to_linear*/(f_col + hash(vec4(floor(f_chunk_pos * 3.0 - f_norm * 0.5), 0)) * 0.01/* - 0.01*/); // Small-scale noise
// vec3 col = /*srgb_to_linear*/(f_col + hash(vec4(floor(f_pos * 3.0 - f_norm * 0.5), 0)) * 0.01); // Small-scale noise
vec3 surf_color = illuminate(max_light, view_dir, col * emitted_light, col * reflected_light);
#if (CLOUD_MODE == CLOUD_MODE_REGULAR)
float fog_level = fog(f_pos.xyz, focus_pos.xyz, medium.x);
vec4 clouds;
vec3 fog_color = get_sky_color(cam_to_frag/*view_dir*/, time_of_day.x, cam_pos.xyz, f_pos, 1.0, false, clouds);
vec3 color = mix(mix(surf_color, fog_color, fog_level), clouds.rgb, clouds.a);
#elif (CLOUD_MODE == CLOUD_MODE_NONE)
vec3 color = surf_color;
#endif
tgt_color = vec4(color, 1.0);
}