veloren/common/src/sys/phys.rs
Joshua Barretto 933e48ac3b Merge branch 'fix-jump-height' into 'master'
Fix jump height

See merge request veloren/veloren!485
2019-09-08 15:50:08 +00:00

310 lines
12 KiB
Rust

use {
crate::{
comp::{Body, Ori, PhysicsState, Pos, Scale, Vel},
event::{EventBus, LocalEvent},
state::DeltaTime,
terrain::TerrainGrid,
vol::ReadVol,
},
specs::{Entities, Join, Read, ReadExpect, ReadStorage, System, WriteStorage},
vek::*,
};
const GRAVITY: f32 = 9.81 * 4.0;
// Friction values used for linear damping. They are unitless quantities. The
// value of these quantities must be between zero and one. They represent the
// amount an object will slow down within 1/60th of a second. Eg. if the frction
// is 0.01, and the speed is 1.0, then after 1/60th of a second the speed will
// be 0.99. after 1 second the speed will be 0.54, which is 0.99 ^ 60.
const FRIC_GROUND: f32 = 0.125;
const FRIC_AIR: f32 = 0.0125;
// Integrates forces, calculates the new velocity based off of the old velocity
// dt = delta time
// lv = linear velocity
// damp = linear damping
// Friction is a type of damping.
fn integrate_forces(dt: f32, mut lv: Vec3<f32>, grav: f32, damp: f32) -> Vec3<f32> {
// this is not linear damping, because it is proportional to the original
// velocity this "linear" damping in in fact, quite exponential. and thus
// must be interpolated accordingly
let linear_damp = if damp < 1.0 {
(1.0 - damp).powf(dt * 60.0)
} else {
0.0
};
lv.z = (lv.z - grav * dt).max(-50.0);
lv * linear_damp
}
/// This system applies forces and calculates new positions and velocities.
pub struct Sys;
impl<'a> System<'a> for Sys {
type SystemData = (
Entities<'a>,
ReadExpect<'a, TerrainGrid>,
Read<'a, DeltaTime>,
Read<'a, EventBus<LocalEvent>>,
ReadStorage<'a, Scale>,
ReadStorage<'a, Body>,
WriteStorage<'a, PhysicsState>,
WriteStorage<'a, Pos>,
WriteStorage<'a, Vel>,
WriteStorage<'a, Ori>,
);
fn run(
&mut self,
(
entities,
terrain,
dt,
event_bus,
scales,
bodies,
mut physics_states,
mut positions,
mut velocities,
mut orientations,
): Self::SystemData,
) {
let mut event_emitter = event_bus.emitter();
// Apply movement inputs
for (entity, scale, _, mut pos, mut vel, mut _ori) in (
&entities,
scales.maybe(),
&bodies,
&mut positions,
&mut velocities,
&mut orientations,
)
.join()
{
let mut physics_state = physics_states.get(entity).cloned().unwrap_or_default();
let scale = scale.map(|s| s.0).unwrap_or(1.0);
// Basic collision with terrain
let player_rad = 0.3 * scale; // half-width of the player's AABB
let player_height = 1.5 * scale;
// Probe distances
let hdist = player_rad.ceil() as i32;
let vdist = player_height.ceil() as i32;
// Neighbouring blocks iterator
let near_iter = (-hdist..=hdist)
.map(move |i| (-hdist..=hdist).map(move |j| (0..=vdist).map(move |k| (i, j, k))))
.flatten()
.flatten();
let old_vel = *vel;
// Integrate forces
// Friction is assumed to be a constant dependent on location
let friction = if physics_state.on_ground {
FRIC_GROUND
} else {
FRIC_AIR
};
vel.0 = integrate_forces(dt.0, vel.0, GRAVITY, friction);
// Don't move if we're not in a loaded chunk
let pos_delta = if terrain
.get_key(terrain.pos_key(pos.0.map(|e| e.floor() as i32)))
.is_some()
{
// this is an approximation that allows most framerates to
// behave in a similar manner.
(vel.0 + old_vel.0 * 4.0) * dt.0 * 0.2
} else {
Vec3::zero()
};
// Function for determining whether the player at a specific position collides with the ground
let collision_with = |pos: Vec3<f32>, near_iter| {
for (i, j, k) in near_iter {
let block_pos = pos.map(|e| e.floor() as i32) + Vec3::new(i, j, k);
if terrain
.get(block_pos)
.map(|vox| vox.is_solid())
.unwrap_or(false)
{
let player_aabb = Aabb {
min: pos + Vec3::new(-player_rad, -player_rad, 0.0),
max: pos + Vec3::new(player_rad, player_rad, player_height),
};
let block_aabb = Aabb {
min: block_pos.map(|e| e as f32),
max: block_pos.map(|e| e as f32) + 1.0,
};
if player_aabb.collides_with_aabb(block_aabb) {
return true;
}
}
}
false
};
let was_on_ground = physics_state.on_ground;
physics_state.on_ground = false;
let mut on_ground = false;
let mut attempts = 0; // Don't loop infinitely here
// Don't jump too far at once
let increments = (pos_delta.map(|e| e.abs()).reduce_partial_max() / 0.3)
.ceil()
.max(1.0);
let old_pos = pos.0;
for _ in 0..increments as usize {
pos.0 += pos_delta / increments;
const MAX_ATTEMPTS: usize = 16;
// While the player is colliding with the terrain...
while collision_with(pos.0, near_iter.clone()) && attempts < MAX_ATTEMPTS {
// Calculate the player's AABB
let player_aabb = Aabb {
min: pos.0 + Vec3::new(-player_rad, -player_rad, 0.0),
max: pos.0 + Vec3::new(player_rad, player_rad, player_height),
};
// Determine the block that we are colliding with most (based on minimum collision axis)
let (_block_pos, block_aabb) = near_iter
.clone()
// Calculate the block's position in world space
.map(|(i, j, k)| pos.0.map(|e| e.floor() as i32) + Vec3::new(i, j, k))
// Calculate the AABB of the block
.map(|block_pos| {
(
block_pos,
Aabb {
min: block_pos.map(|e| e as f32),
max: block_pos.map(|e| e as f32) + 1.0,
},
)
})
// Determine whether the block's AABB collides with the player's AABB
.filter(|(_, block_aabb)| block_aabb.collides_with_aabb(player_aabb))
// Make sure the block is actually solid
.filter(|(block_pos, _)| {
terrain
.get(*block_pos)
.map(|vox| vox.is_solid())
.unwrap_or(false)
})
// Find the maximum of the minimum collision axes (this bit is weird, trust me that it works)
.max_by_key(|(_, block_aabb)| {
((player_aabb
.collision_vector_with_aabb(*block_aabb)
.map(|e| e.abs())
.product()
+ block_aabb.min.z)
* 1_000_000.0) as i32
})
.expect("Collision detected, but no colliding blocks found!");
// Find the intrusion vector of the collision
let dir = player_aabb.collision_vector_with_aabb(block_aabb);
// Determine an appropriate resolution vector (i.e: the minimum distance needed to push out of the block)
let max_axis = dir.map(|e| e.abs()).reduce_partial_min();
let resolve_dir = -dir.map(|e| {
if e.abs().to_bits() == max_axis.to_bits() {
e
} else {
0.0
}
});
// When the resolution direction is pointing upwards, we must be on the ground
if resolve_dir.z > 0.0 && vel.0.z <= 0.0 {
on_ground = true;
if !was_on_ground {
event_emitter.emit(LocalEvent::LandOnGround { entity, vel: vel.0 });
}
}
// When the resolution direction is non-vertical, we must be colliding with a wall
// If the space above is free...
if !collision_with(Vec3::new(pos.0.x, pos.0.y, (pos.0.z + 0.1).ceil()), near_iter.clone())
// ...and we're being pushed out horizontally...
&& resolve_dir.z == 0.0
// ...and the vertical resolution direction is sufficiently great...
&& -dir.z > 0.1
// ...and we're falling/standing OR there is a block *directly* beneath our current origin (note: not hitbox)...
&& (vel.0.z <= 0.0 || terrain
.get((pos.0 - Vec3::unit_z() * 0.1).map(|e| e.floor() as i32))
.map(|vox| vox.is_solid())
.unwrap_or(false))
// ...and there is a collision with a block beneath our current hitbox...
&& collision_with(
old_pos + resolve_dir - Vec3::unit_z() * 1.05,
near_iter.clone(),
)
{
// ...block-hop!
pos.0.z = (pos.0.z + 0.1).ceil();
on_ground = true;
break;
} else {
// Correct the velocity
vel.0 = vel.0.map2(
resolve_dir,
|e, d| if d * e.signum() < 0.0 { 0.0 } else { e },
);
}
// Resolve the collision normally
pos.0 += resolve_dir;
attempts += 1;
}
if attempts == MAX_ATTEMPTS {
pos.0 = old_pos;
break;
}
}
if on_ground {
physics_state.on_ground = true;
// If the space below us is free, then "snap" to the ground
} else if collision_with(pos.0 - Vec3::unit_z() * 1.05, near_iter.clone())
&& vel.0.z < 0.0
&& vel.0.z > -1.5
&& was_on_ground
{
pos.0.z = (pos.0.z - 0.05).floor();
physics_state.on_ground = true;
}
let _ = physics_states.insert(entity, physics_state);
}
// Apply pushback
for (pos, scale, vel, _) in (&positions, scales.maybe(), &mut velocities, &bodies).join() {
let scale = scale.map(|s| s.0).unwrap_or(1.0);
for (pos_other, scale_other, _) in (&positions, scales.maybe(), &bodies).join() {
let scale_other = scale_other.map(|s| s.0).unwrap_or(1.0);
let diff = Vec2::<f32>::from(pos.0 - pos_other.0);
let collision_dist = 0.95 * (scale + scale_other);
if diff.magnitude_squared() > 0.0
&& diff.magnitude_squared() < collision_dist.powf(2.0)
&& pos.0.z + 1.6 * scale > pos_other.0.z
&& pos.0.z < pos_other.0.z + 1.6 * scale_other
{
vel.0 +=
Vec3::from(diff.normalized()) * (collision_dist - diff.magnitude()) * 1.0;
}
}
}
}
}