veloren/voxygen/src/render/mesh.rs
2022-03-03 01:11:02 -05:00

177 lines
5.2 KiB
Rust

use super::Vertex;
use core::{iter::FromIterator, ops::Range};
/// A `Vec`-based mesh structure used to store mesh data on the CPU.
pub struct Mesh<V: Vertex> {
verts: Vec<V>,
}
impl<V: Vertex> Clone for Mesh<V> {
fn clone(&self) -> Self {
Self {
verts: self.verts.clone(),
}
}
}
impl<V: Vertex> Mesh<V> {
#[allow(clippy::new_without_default)]
/// Create a new `Mesh`.
pub fn new() -> Self { Self { verts: Vec::new() } }
/// Clear vertices, allows reusing allocated memory of the underlying Vec.
pub fn clear(&mut self) { self.verts.clear(); }
/// Get a slice referencing the vertices of this mesh.
pub fn vertices(&self) -> &[V] { &self.verts }
/// Get a mutable slice referencing the vertices of this mesh.
pub fn vertices_mut(&mut self) -> &mut [V] { &mut self.verts }
/// Get a mutable vec referencing the vertices of this mesh.
pub fn vertices_mut_vec(&mut self) -> &mut Vec<V> { &mut self.verts }
/// Push a new vertex onto the end of this mesh.
pub fn push(&mut self, vert: V) { self.verts.push(vert); }
/// Push a new polygon onto the end of this mesh.
pub fn push_tri(&mut self, tri: Tri<V>) {
self.verts.push(tri.a);
self.verts.push(tri.b);
self.verts.push(tri.c);
}
/// Push a new quad onto the end of this mesh.
pub fn push_quad(&mut self, quad: Quad<V>) {
// A quad is composed of two triangles. The code below converts the former to
// the latter.
if V::QUADS_INDEX.is_some() {
// 0, 1, 2, 2, 1, 3
// b, c, a, a, c, d
self.verts.push(quad.b);
self.verts.push(quad.c);
self.verts.push(quad.a);
self.verts.push(quad.d);
} else {
// Tri 1
self.verts.push(quad.a);
self.verts.push(quad.b);
self.verts.push(quad.c);
// Tri 2
self.verts.push(quad.c);
self.verts.push(quad.d);
self.verts.push(quad.a);
}
}
/// Overwrite a quad
pub fn replace_quad(&mut self, index: usize, quad: Quad<V>) {
if V::QUADS_INDEX.is_some() {
debug_assert!(index % 4 == 0);
assert!(index + 3 < self.verts.len());
self.verts[index] = quad.b;
self.verts[index + 1] = quad.c;
self.verts[index + 2] = quad.a;
self.verts[index + 3] = quad.d;
} else {
debug_assert!(index % 3 == 0);
assert!(index + 5 < self.verts.len());
// Tri 1
self.verts[index] = quad.a;
self.verts[index + 1] = quad.b;
self.verts[index + 2] = quad.c;
// Tri 2
self.verts[index + 3] = quad.c;
self.verts[index + 4] = quad.d;
self.verts[index + 5] = quad.a;
}
}
/// Push the vertices of another mesh onto the end of this mesh.
pub fn push_mesh(&mut self, other: &Mesh<V>) { self.verts.extend_from_slice(other.vertices()); }
/// Map and push the vertices of another mesh onto the end of this mesh.
pub fn push_mesh_map<F: FnMut(V) -> V>(&mut self, other: &Mesh<V>, mut f: F) {
// Reserve enough space in our Vec. This isn't necessary, but it tends to reduce
// the number of required (re)allocations.
self.verts.reserve(other.vertices().len());
for vert in other.vertices() {
self.verts.push(f(*vert));
}
}
pub fn iter(&self) -> std::slice::Iter<V> { self.verts.iter() }
/// NOTE: Panics if vertex_range is out of bounds of vertices.
pub fn iter_mut(&mut self, vertex_range: Range<usize>) -> std::slice::IterMut<V> {
self.verts[vertex_range].iter_mut()
}
pub fn len(&self) -> usize { self.verts.len() }
pub fn is_empty(&self) -> bool { self.len() == 0 }
}
impl<V: Vertex> IntoIterator for Mesh<V> {
type IntoIter = std::vec::IntoIter<V>;
type Item = V;
fn into_iter(self) -> Self::IntoIter { self.verts.into_iter() }
}
impl<V: Vertex> FromIterator<Tri<V>> for Mesh<V> {
fn from_iter<I: IntoIterator<Item = Tri<V>>>(tris: I) -> Self {
tris.into_iter().fold(Self::new(), |mut this, tri| {
this.push_tri(tri);
this
})
}
}
impl<V: Vertex> FromIterator<Quad<V>> for Mesh<V> {
fn from_iter<I: IntoIterator<Item = Quad<V>>>(quads: I) -> Self {
quads.into_iter().fold(Self::new(), |mut this, quad| {
this.push_quad(quad);
this
})
}
}
/// Represents a triangle stored on the CPU.
pub struct Tri<V: Vertex> {
a: V,
b: V,
c: V,
}
impl<V: Vertex> Tri<V> {
pub fn new(a: V, b: V, c: V) -> Self { Self { a, b, c } }
}
/// Represents a quad stored on the CPU.
pub struct Quad<V: Vertex> {
a: V,
b: V,
c: V,
d: V,
}
impl<V: Vertex> Quad<V> {
pub fn new(a: V, b: V, c: V, d: V) -> Self { Self { a, b, c, d } }
#[must_use]
pub fn rotated_by(self, n: usize) -> Self {
let verts = [self.a, self.b, self.c, self.d];
Self {
a: verts[n % 4],
b: verts[(1 + n) % 4],
c: verts[(2 + n) % 4],
d: verts[(3 + n) % 4],
}
}
}