mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
1073 lines
39 KiB
Rust
1073 lines
39 KiB
Rust
use crate::{
|
|
astar::{Astar, PathResult},
|
|
terrain::Block,
|
|
vol::{BaseVol, ReadVol},
|
|
};
|
|
use common_base::span;
|
|
use hashbrown::hash_map::DefaultHashBuilder;
|
|
#[cfg(rrt_pathfinding)] use hashbrown::HashMap;
|
|
#[cfg(rrt_pathfinding)]
|
|
use kiddo::{distance::squared_euclidean, KdTree}; // For RRT paths (disabled for now)
|
|
#[cfg(rrt_pathfinding)]
|
|
use rand::distributions::Uniform;
|
|
use rand::{thread_rng, Rng};
|
|
#[cfg(rrt_pathfinding)] use std::f32::consts::PI;
|
|
use std::iter::FromIterator;
|
|
use vek::*;
|
|
|
|
// Path
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct Path<T> {
|
|
pub nodes: Vec<T>,
|
|
}
|
|
|
|
impl<T> Default for Path<T> {
|
|
fn default() -> Self {
|
|
Self {
|
|
nodes: Vec::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T> FromIterator<T> for Path<T> {
|
|
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
|
|
Self {
|
|
nodes: iter.into_iter().collect(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T> IntoIterator for Path<T> {
|
|
type IntoIter = std::vec::IntoIter<T>;
|
|
type Item = T;
|
|
|
|
fn into_iter(self) -> Self::IntoIter { self.nodes.into_iter() }
|
|
}
|
|
|
|
impl<T> Path<T> {
|
|
pub fn is_empty(&self) -> bool { self.nodes.is_empty() }
|
|
|
|
pub fn len(&self) -> usize { self.nodes.len() }
|
|
|
|
pub fn iter(&self) -> impl Iterator<Item = &T> { self.nodes.iter() }
|
|
|
|
pub fn start(&self) -> Option<&T> { self.nodes.first() }
|
|
|
|
pub fn end(&self) -> Option<&T> { self.nodes.last() }
|
|
|
|
pub fn nodes(&self) -> &[T] { &self.nodes }
|
|
}
|
|
|
|
// Route: A path that can be progressed along
|
|
|
|
#[derive(Default, Clone, Debug)]
|
|
pub struct Route {
|
|
path: Path<Vec3<i32>>,
|
|
next_idx: usize,
|
|
}
|
|
|
|
impl From<Path<Vec3<i32>>> for Route {
|
|
fn from(path: Path<Vec3<i32>>) -> Self { Self { path, next_idx: 0 } }
|
|
}
|
|
|
|
pub struct TraversalConfig {
|
|
/// The distance to a node at which node is considered visited.
|
|
pub node_tolerance: f32,
|
|
/// The slowdown factor when following corners.
|
|
/// 0.0 = no slowdown on corners, 1.0 = total slowdown on corners.
|
|
pub slow_factor: f32,
|
|
/// Whether the agent is currently on the ground.
|
|
pub on_ground: bool,
|
|
/// Whether the agent is currently in water.
|
|
pub in_liquid: bool,
|
|
/// The distance to the target below which it is considered reached.
|
|
pub min_tgt_dist: f32,
|
|
/// Whether the agent can climb.
|
|
pub can_climb: bool,
|
|
/// Whether the agent can fly.
|
|
pub can_fly: bool,
|
|
}
|
|
|
|
const DIAGONALS: [Vec2<i32>; 8] = [
|
|
Vec2::new(1, 0),
|
|
Vec2::new(1, 1),
|
|
Vec2::new(0, 1),
|
|
Vec2::new(-1, 1),
|
|
Vec2::new(-1, 0),
|
|
Vec2::new(-1, -1),
|
|
Vec2::new(0, -1),
|
|
Vec2::new(1, -1),
|
|
];
|
|
|
|
impl Route {
|
|
pub fn path(&self) -> &Path<Vec3<i32>> { &self.path }
|
|
|
|
pub fn next(&self, i: usize) -> Option<Vec3<i32>> {
|
|
self.path.nodes.get(self.next_idx + i).copied()
|
|
}
|
|
|
|
pub fn is_finished(&self) -> bool { self.next(0).is_none() }
|
|
|
|
pub fn traverse<V>(
|
|
&mut self,
|
|
vol: &V,
|
|
pos: Vec3<f32>,
|
|
vel: Vec3<f32>,
|
|
traversal_cfg: &TraversalConfig,
|
|
) -> Option<(Vec3<f32>, f32)>
|
|
where
|
|
V: BaseVol<Vox = Block> + ReadVol,
|
|
{
|
|
let (next0, next1, next_tgt, be_precise) = loop {
|
|
// If we've reached the end of the path, stop
|
|
let next0 = self.next(0)?;
|
|
let next1 = self.next(1).unwrap_or(next0);
|
|
|
|
// Stop using obstructed paths
|
|
if !walkable(vol, next1) {
|
|
return None;
|
|
}
|
|
|
|
let be_precise = DIAGONALS.iter().any(|pos| {
|
|
(-1..2).all(|z| {
|
|
vol.get(next0 + Vec3::new(pos.x, pos.y, z))
|
|
.map(|b| !b.is_solid())
|
|
.unwrap_or(false)
|
|
})
|
|
});
|
|
|
|
// Map position of node to middle of block
|
|
let next_tgt = next0.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0);
|
|
let closest_tgt = next_tgt.map2(pos, |tgt, pos| pos.clamped(tgt.floor(), tgt.ceil()));
|
|
// Determine whether we're close enough to the next to to consider it completed
|
|
let dist_sqrd = pos.xy().distance_squared(closest_tgt.xy());
|
|
if dist_sqrd
|
|
< traversal_cfg.node_tolerance.powi(2)
|
|
* if be_precise {
|
|
0.25
|
|
} else if traversal_cfg.in_liquid {
|
|
2.5
|
|
} else {
|
|
1.0
|
|
}
|
|
&& (((pos.z - closest_tgt.z > 1.2 || (pos.z - closest_tgt.z > -0.2 && traversal_cfg.on_ground))
|
|
&& (pos.z - closest_tgt.z < 1.2 || (pos.z - closest_tgt.z < 2.9 && vel.z < -0.05))
|
|
&& vel.z <= 0.0
|
|
// Only consider the node reached if there's nothing solid between us and it
|
|
&& (vol
|
|
.ray(pos + Vec3::unit_z() * 1.5, closest_tgt + Vec3::unit_z() * 1.5)
|
|
.until(Block::is_solid)
|
|
.cast()
|
|
.0
|
|
> pos.distance(closest_tgt) * 0.9 || dist_sqrd < 0.5)
|
|
&& self.next_idx < self.path.len())
|
|
|| (traversal_cfg.in_liquid
|
|
&& pos.z < closest_tgt.z + 0.8
|
|
&& pos.z > closest_tgt.z))
|
|
{
|
|
// Node completed, move on to the next one
|
|
self.next_idx += 1;
|
|
} else {
|
|
// The next node hasn't been reached yet, use it as a target
|
|
break (next0, next1, next_tgt, be_precise);
|
|
}
|
|
};
|
|
|
|
fn gradient(line: LineSegment2<f32>) -> f32 {
|
|
let r = (line.start.y - line.end.y) / (line.start.x - line.end.x);
|
|
if r.is_nan() { 100000.0 } else { r }
|
|
}
|
|
|
|
fn intersect(a: LineSegment2<f32>, b: LineSegment2<f32>) -> Option<Vec2<f32>> {
|
|
let ma = gradient(a);
|
|
let mb = gradient(b);
|
|
|
|
let ca = a.start.y - ma * a.start.x;
|
|
let cb = b.start.y - mb * b.start.x;
|
|
|
|
if (ma - mb).abs() < 0.0001 || (ca - cb).abs() < 0.0001 {
|
|
None
|
|
} else {
|
|
let x = (cb - ca) / (ma - mb);
|
|
let y = ma * x + ca;
|
|
|
|
Some(Vec2::new(x, y))
|
|
}
|
|
}
|
|
|
|
// We don't always want to aim for the centre of block since this can create
|
|
// jerky zig-zag movement. This function attempts to find a position
|
|
// inside a target block's area that aligned nicely with our velocity.
|
|
// This has a twofold benefit:
|
|
//
|
|
// 1. Entities can move at any angle when
|
|
// running on a flat surface
|
|
//
|
|
// 2. We don't have to search diagonals when
|
|
// pathfinding - cartesian positions are enough since this code will
|
|
// make the entity move smoothly along them
|
|
let corners = [
|
|
Vec2::new(0, 0),
|
|
Vec2::new(1, 0),
|
|
Vec2::new(1, 1),
|
|
Vec2::new(0, 1),
|
|
Vec2::new(0, 0), // Repeated start
|
|
];
|
|
|
|
let vel_line = LineSegment2 {
|
|
start: pos.xy(),
|
|
end: pos.xy() + vel.xy() * 100.0,
|
|
};
|
|
|
|
let align = |block_pos: Vec3<i32>, precision: f32| {
|
|
let lerp_block =
|
|
|x, precision| Lerp::lerp(x, block_pos.xy().map(|e| e as f32), precision);
|
|
|
|
(0..4)
|
|
.filter_map(|i| {
|
|
let edge_line = LineSegment2 {
|
|
start: lerp_block(
|
|
(block_pos.xy() + corners[i]).map(|e| e as f32),
|
|
precision,
|
|
),
|
|
end: lerp_block(
|
|
(block_pos.xy() + corners[i + 1]).map(|e| e as f32),
|
|
precision,
|
|
),
|
|
};
|
|
intersect(vel_line, edge_line).filter(|intersect| {
|
|
intersect
|
|
.clamped(
|
|
block_pos.xy().map(|e| e as f32),
|
|
block_pos.xy().map(|e| e as f32 + 1.0),
|
|
)
|
|
.distance_squared(*intersect)
|
|
< 0.001
|
|
})
|
|
})
|
|
.min_by_key(|intersect: &Vec2<f32>| {
|
|
(intersect.distance_squared(vel_line.end) * 1000.0) as i32
|
|
})
|
|
.unwrap_or_else(|| {
|
|
(0..2)
|
|
.flat_map(|i| (0..2).map(move |j| Vec2::new(i, j)))
|
|
.map(|rpos| block_pos + rpos)
|
|
.map(|block_pos| {
|
|
let block_posf = block_pos.xy().map(|e| e as f32);
|
|
let proj = vel_line.projected_point(block_posf);
|
|
let clamped = lerp_block(
|
|
proj.clamped(
|
|
block_pos.xy().map(|e| e as f32),
|
|
block_pos.xy().map(|e| e as f32),
|
|
),
|
|
precision,
|
|
);
|
|
|
|
(proj.distance_squared(clamped), clamped)
|
|
})
|
|
.min_by_key(|(d2, _)| (d2 * 1000.0) as i32)
|
|
.unwrap()
|
|
.1
|
|
})
|
|
};
|
|
|
|
let bez = CubicBezier2 {
|
|
start: pos.xy(),
|
|
ctrl0: pos.xy() + vel.xy().try_normalized().unwrap_or_default() * 1.0,
|
|
ctrl1: align(next0, 1.0),
|
|
end: align(next1, 1.0),
|
|
};
|
|
|
|
// Use a cubic spline of the next few targets to come up with a sensible target
|
|
// position. We want to use a position that gives smooth movement but is
|
|
// also accurate enough to avoid the agent getting stuck under ledges or
|
|
// falling off walls.
|
|
let next_dir = bez
|
|
.evaluate_derivative(0.85)
|
|
.try_normalized()
|
|
.unwrap_or_default();
|
|
let straight_factor = next_dir
|
|
.dot(vel.xy().try_normalized().unwrap_or(next_dir))
|
|
.max(0.0)
|
|
.powi(2);
|
|
|
|
let bez = CubicBezier2 {
|
|
start: pos.xy(),
|
|
ctrl0: pos.xy() + vel.xy().try_normalized().unwrap_or_default() * 1.0,
|
|
ctrl1: align(
|
|
next0,
|
|
(1.0 - if (next0.z as f32 - pos.z).abs() < 0.25 && !be_precise {
|
|
straight_factor
|
|
} else {
|
|
0.0
|
|
})
|
|
.max(0.1),
|
|
),
|
|
end: align(next1, 1.0),
|
|
};
|
|
|
|
let tgt2d = bez.evaluate(if (next0.z as f32 - pos.z).abs() < 0.25 {
|
|
0.25
|
|
} else {
|
|
0.5
|
|
});
|
|
let tgt = if be_precise {
|
|
next_tgt
|
|
} else {
|
|
Vec3::from(tgt2d) + Vec3::unit_z() * next_tgt.z
|
|
};
|
|
|
|
Some((
|
|
tgt - pos,
|
|
// Control the entity's speed to hopefully stop us falling off walls on sharp
|
|
// corners. This code is very imperfect: it does its best but it
|
|
// can still fail for particularly fast entities.
|
|
straight_factor * traversal_cfg.slow_factor + (1.0 - traversal_cfg.slow_factor),
|
|
))
|
|
.filter(|(bearing, _)| bearing.z < 2.1)
|
|
}
|
|
}
|
|
|
|
/// A self-contained system that attempts to chase a moving target, only
|
|
/// performing pathfinding if necessary
|
|
#[derive(Default, Clone, Debug)]
|
|
pub struct Chaser {
|
|
last_search_tgt: Option<Vec3<f32>>,
|
|
/// `bool` indicates whether the Route is a complete route to the target
|
|
route: Option<(Route, bool)>,
|
|
/// We use this hasher (AAHasher) because:
|
|
/// (1) we care about DDOS attacks (ruling out FxHash);
|
|
/// (2) we don't care about determinism across computers (we can use
|
|
/// AAHash).
|
|
astar: Option<Astar<Vec3<i32>, DefaultHashBuilder>>,
|
|
}
|
|
|
|
impl Chaser {
|
|
/// Returns bearing and speed
|
|
/// Bearing is a Vec3<f32> dictating the direction of movement
|
|
/// Speed is an f32 between 0.0 and 1.0
|
|
pub fn chase<V>(
|
|
&mut self,
|
|
vol: &V,
|
|
pos: Vec3<f32>,
|
|
vel: Vec3<f32>,
|
|
tgt: Vec3<f32>,
|
|
traversal_cfg: TraversalConfig,
|
|
) -> Option<(Vec3<f32>, f32)>
|
|
where
|
|
V: BaseVol<Vox = Block> + ReadVol,
|
|
{
|
|
span!(_guard, "chase", "Chaser::chase");
|
|
let pos_to_tgt = pos.distance(tgt);
|
|
|
|
// If we're already close to the target then there's nothing to do
|
|
let end = self
|
|
.route
|
|
.as_ref()
|
|
.and_then(|(r, _)| r.path.end().copied())
|
|
.map(|e| e.map(|e| e as f32 + 0.5))
|
|
.unwrap_or(tgt);
|
|
if ((pos - end) * Vec3::new(1.0, 1.0, 2.0)).magnitude_squared()
|
|
< traversal_cfg.min_tgt_dist.powi(2)
|
|
{
|
|
self.route = None;
|
|
return None;
|
|
}
|
|
|
|
let bearing = if let Some((end, complete)) = self
|
|
.route
|
|
.as_ref()
|
|
.and_then(|(r, complete)| Some((r.path().end().copied()?, *complete)))
|
|
{
|
|
let end_to_tgt = end.map(|e| e as f32).distance(tgt);
|
|
// If the target has moved significantly since the path was generated then it's
|
|
// time to search for a new path. Also, do this randomly from time
|
|
// to time to avoid any edge cases that cause us to get stuck. In
|
|
// theory this shouldn't happen, but in practice the world is full
|
|
// of unpredictable obstacles that are more than willing to mess up
|
|
// our day. TODO: Come up with a better heuristic for this
|
|
if end_to_tgt > pos_to_tgt * 0.3 + 5.0 && complete {
|
|
None
|
|
} else if thread_rng().gen::<f32>() < 0.001 {
|
|
self.route = None;
|
|
None
|
|
} else {
|
|
self.route
|
|
.as_mut()
|
|
.and_then(|(r, _)| r.traverse(vol, pos, vel, &traversal_cfg))
|
|
}
|
|
} else {
|
|
// There is no route found yet
|
|
None
|
|
};
|
|
|
|
// If a bearing has already been determined, use that
|
|
if let Some((bearing, speed)) = bearing {
|
|
Some((bearing, speed))
|
|
} else {
|
|
// Since no bearing has been determined yet, a new route will be
|
|
// calculated if the target has moved, pathfinding is not complete,
|
|
// or there is no route
|
|
let tgt_dir = (tgt - pos).xy().try_normalized().unwrap_or_default();
|
|
|
|
// Only search for a path if the target has moved from their last position. We
|
|
// don't want to be thrashing the pathfinding code for targets that
|
|
// we're unable to access!
|
|
if self
|
|
.last_search_tgt
|
|
.map(|last_tgt| last_tgt.distance(tgt) > pos_to_tgt * 0.15 + 5.0)
|
|
.unwrap_or(true)
|
|
|| self.astar.is_some()
|
|
|| self.route.is_none()
|
|
{
|
|
self.last_search_tgt = Some(tgt);
|
|
|
|
// NOTE: Enable air paths when air braking has been figured out
|
|
let (path, complete) = /*if cfg!(rrt_pathfinding) && traversal_cfg.can_fly {
|
|
find_air_path(vol, pos, tgt, &traversal_cfg)
|
|
} else */{
|
|
find_path(&mut self.astar, vol, pos, tgt, &traversal_cfg)
|
|
};
|
|
|
|
self.route = path.map(|path| {
|
|
let start_index = path
|
|
.iter()
|
|
.enumerate()
|
|
.min_by_key(|(_, node)| {
|
|
node.map(|e| e as f32).distance_squared(pos + tgt_dir) as i32
|
|
})
|
|
.map(|(idx, _)| idx);
|
|
|
|
(
|
|
Route {
|
|
path,
|
|
next_idx: start_index.unwrap_or(0),
|
|
},
|
|
complete,
|
|
)
|
|
});
|
|
}
|
|
// Start traversing the new route if it exists
|
|
if let Some(bearing) = self
|
|
.route
|
|
.as_mut()
|
|
.and_then(|(r, _)| r.traverse(vol, pos, vel, &traversal_cfg))
|
|
{
|
|
Some(bearing)
|
|
} else {
|
|
// At this point no route is available and no bearing
|
|
// has been determined, so we start sampling terrain.
|
|
// Check for falling off walls and try moving straight
|
|
// towards the target if falling is not a danger
|
|
let walking_towards_edge = (-8..2).all(|z| {
|
|
vol.get(
|
|
(pos + Vec3::<f32>::from(tgt_dir) * 2.5).map(|e| e as i32)
|
|
+ Vec3::unit_z() * z,
|
|
)
|
|
.map(|b| b.is_air())
|
|
.unwrap_or(false)
|
|
});
|
|
|
|
// Enable when airbraking/flight is figured out
|
|
/*if traversal_cfg.can_fly {
|
|
Some(((tgt - pos) , 1.0))
|
|
} else */
|
|
if traversal_cfg.can_fly {
|
|
Some(((tgt - pos) * Vec3::new(1.0, 1.0, 0.5), 1.0))
|
|
} else if !walking_towards_edge {
|
|
Some(((tgt - pos) * Vec3::new(1.0, 1.0, 0.0), 1.0))
|
|
} else {
|
|
// This is unfortunately where an NPC will stare blankly
|
|
// into space. No route has been found and no temporary
|
|
// bearing would suffice. Hopefully a route will be found
|
|
// in the coming ticks.
|
|
None
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn walkable<V>(vol: &V, pos: Vec3<i32>) -> bool
|
|
where
|
|
V: BaseVol<Vox = Block> + ReadVol,
|
|
{
|
|
let below = vol
|
|
.get(pos - Vec3::unit_z())
|
|
.ok()
|
|
.copied()
|
|
.unwrap_or_else(Block::empty);
|
|
let a = vol.get(pos).ok().copied().unwrap_or_else(Block::empty);
|
|
let b = vol
|
|
.get(pos + Vec3::unit_z())
|
|
.ok()
|
|
.copied()
|
|
.unwrap_or_else(Block::empty);
|
|
|
|
let on_ground = below.is_filled();
|
|
let in_liquid = a.is_liquid();
|
|
(on_ground || in_liquid) && !a.is_solid() && !b.is_solid()
|
|
}
|
|
|
|
/// Attempt to search for a path to a target, returning the path (if one was
|
|
/// found) and whether it is complete (reaches the target)
|
|
fn find_path<V>(
|
|
astar: &mut Option<Astar<Vec3<i32>, DefaultHashBuilder>>,
|
|
vol: &V,
|
|
startf: Vec3<f32>,
|
|
endf: Vec3<f32>,
|
|
traversal_cfg: &TraversalConfig,
|
|
) -> (Option<Path<Vec3<i32>>>, bool)
|
|
where
|
|
V: BaseVol<Vox = Block> + ReadVol,
|
|
{
|
|
let is_walkable = |pos: &Vec3<i32>| walkable(vol, *pos);
|
|
let get_walkable_z = |pos| {
|
|
let mut z_incr = 0;
|
|
for _ in 0..32 {
|
|
let test_pos = pos + Vec3::unit_z() * z_incr;
|
|
if is_walkable(&test_pos) {
|
|
return Some(test_pos);
|
|
}
|
|
z_incr = -z_incr + i32::from(z_incr <= 0);
|
|
}
|
|
None
|
|
};
|
|
|
|
let (start, end) = match (
|
|
get_walkable_z(startf.map(|e| e.floor() as i32)),
|
|
get_walkable_z(endf.map(|e| e.floor() as i32)),
|
|
) {
|
|
(Some(start), Some(end)) => (start, end),
|
|
_ => return (None, false),
|
|
};
|
|
|
|
let heuristic = |pos: &Vec3<i32>, _: &Vec3<i32>| (pos.distance_squared(end) as f32).sqrt();
|
|
let transition = |a: Vec3<i32>, b: Vec3<i32>| {
|
|
let crow_line = LineSegment2 {
|
|
start: startf.xy(),
|
|
end: endf.xy(),
|
|
};
|
|
|
|
// Modify the heuristic a little in order to prefer paths that take us on a
|
|
// straight line toward our target. This means we get smoother movement.
|
|
1.0 + crow_line.distance_to_point(b.xy().map(|e| e as f32)) * 0.025
|
|
+ (b.z - a.z - 1).max(0) as f32 * 10.0
|
|
};
|
|
let neighbors = |pos: &Vec3<i32>| {
|
|
let pos = *pos;
|
|
const DIRS: [Vec3<i32>; 17] = [
|
|
Vec3::new(0, 1, 0), // Forward
|
|
Vec3::new(0, 1, 1), // Forward upward
|
|
Vec3::new(0, 1, -1), // Forward downward
|
|
Vec3::new(0, 1, -2), // Forward downwardx2
|
|
Vec3::new(1, 0, 0), // Right
|
|
Vec3::new(1, 0, 1), // Right upward
|
|
Vec3::new(1, 0, -1), // Right downward
|
|
Vec3::new(1, 0, -2), // Right downwardx2
|
|
Vec3::new(0, -1, 0), // Backwards
|
|
Vec3::new(0, -1, 1), // Backward Upward
|
|
Vec3::new(0, -1, -1), // Backward downward
|
|
Vec3::new(0, -1, -2), // Backward downwardx2
|
|
Vec3::new(-1, 0, 0), // Left
|
|
Vec3::new(-1, 0, 1), // Left upward
|
|
Vec3::new(-1, 0, -1), // Left downward
|
|
Vec3::new(-1, 0, -2), // Left downwardx2
|
|
Vec3::new(0, 0, -1), // Downwards
|
|
];
|
|
|
|
const JUMPS: [Vec3<i32>; 4] = [
|
|
Vec3::new(0, 1, 2), // Forward Upwardx2
|
|
Vec3::new(1, 0, 2), // Right Upwardx2
|
|
Vec3::new(0, -1, 2), // Backward Upwardx2
|
|
Vec3::new(-1, 0, 2), // Left Upwardx2
|
|
];
|
|
|
|
// let walkable = [
|
|
// is_walkable(&(pos + Vec3::new(1, 0, 0))),
|
|
// is_walkable(&(pos + Vec3::new(-1, 0, 0))),
|
|
// is_walkable(&(pos + Vec3::new(0, 1, 0))),
|
|
// is_walkable(&(pos + Vec3::new(0, -1, 0))),
|
|
// ];
|
|
|
|
// const DIAGONALS: [(Vec3<i32>, [usize; 2]); 8] = [
|
|
// (Vec3::new(1, 1, 0), [0, 2]),
|
|
// (Vec3::new(-1, 1, 0), [1, 2]),
|
|
// (Vec3::new(1, -1, 0), [0, 3]),
|
|
// (Vec3::new(-1, -1, 0), [1, 3]),
|
|
// (Vec3::new(1, 1, 1), [0, 2]),
|
|
// (Vec3::new(-1, 1, 1), [1, 2]),
|
|
// (Vec3::new(1, -1, 1), [0, 3]),
|
|
// (Vec3::new(-1, -1, 1), [1, 3]),
|
|
// ];
|
|
|
|
DIRS.iter()
|
|
.chain(
|
|
Some(JUMPS.iter())
|
|
.filter(|_| {
|
|
vol.get(pos - Vec3::unit_z())
|
|
.map(|b| !b.is_liquid())
|
|
.unwrap_or(true)
|
|
|| traversal_cfg.can_climb
|
|
|| traversal_cfg.can_fly
|
|
})
|
|
.into_iter()
|
|
.flatten(),
|
|
)
|
|
.map(move |dir| (pos, dir))
|
|
.filter(move |(pos, dir)| {
|
|
(traversal_cfg.can_fly || is_walkable(pos) && is_walkable(&(*pos + **dir)))
|
|
&& ((dir.z < 1
|
|
|| vol
|
|
.get(pos + Vec3::unit_z() * 2)
|
|
.map(|b| !b.is_solid())
|
|
.unwrap_or(true))
|
|
&& (dir.z < 2
|
|
|| vol
|
|
.get(pos + Vec3::unit_z() * 3)
|
|
.map(|b| !b.is_solid())
|
|
.unwrap_or(true))
|
|
&& (dir.z >= 0
|
|
|| vol
|
|
.get(pos + *dir + Vec3::unit_z() * 2)
|
|
.map(|b| !b.is_solid())
|
|
.unwrap_or(true)))
|
|
})
|
|
.map(|(pos, dir)| {
|
|
let destination = pos + dir;
|
|
(destination, transition(pos, destination))
|
|
})
|
|
// .chain(
|
|
// DIAGONALS
|
|
// .iter()
|
|
// .filter(move |(dir, [a, b])| {
|
|
// is_walkable(&(pos + *dir)) && walkable[*a] &&
|
|
// walkable[*b] })
|
|
// .map(move |(dir, _)| pos + *dir),
|
|
// )
|
|
};
|
|
|
|
let satisfied = |pos: &Vec3<i32>| pos == &end;
|
|
|
|
let mut new_astar = match astar.take() {
|
|
None => Astar::new(25_000, start, DefaultHashBuilder::default()),
|
|
Some(astar) => astar,
|
|
};
|
|
|
|
let path_result = new_astar.poll(100, heuristic, neighbors, satisfied);
|
|
|
|
*astar = Some(new_astar);
|
|
|
|
match path_result {
|
|
PathResult::Path(path, _cost) => {
|
|
*astar = None;
|
|
(Some(path), true)
|
|
},
|
|
PathResult::None(path) => {
|
|
*astar = None;
|
|
(Some(path), false)
|
|
},
|
|
PathResult::Exhausted(path) => {
|
|
*astar = None;
|
|
(Some(path), false)
|
|
},
|
|
PathResult::Pending => (None, false),
|
|
}
|
|
}
|
|
|
|
// Enable when airbraking/sensible flight is a thing
|
|
#[cfg(rrt_pathfinding)]
|
|
fn find_air_path<V>(
|
|
vol: &V,
|
|
startf: Vec3<f32>,
|
|
endf: Vec3<f32>,
|
|
traversal_cfg: &TraversalConfig,
|
|
) -> (Option<Path<Vec3<i32>>>, bool)
|
|
where
|
|
V: BaseVol<Vox = Block> + ReadVol,
|
|
{
|
|
let radius = traversal_cfg.node_tolerance;
|
|
let mut connect = false;
|
|
let total_dist_sqrd = startf.distance_squared(endf);
|
|
// First check if a straight line path works
|
|
if vol
|
|
.ray(startf + Vec3::unit_z(), endf + Vec3::unit_z())
|
|
.until(Block::is_opaque)
|
|
.cast()
|
|
.0
|
|
.powi(2)
|
|
>= total_dist_sqrd
|
|
{
|
|
let mut path = Vec::new();
|
|
path.push(endf.map(|e| e.floor() as i32));
|
|
connect = true;
|
|
(Some(path.into_iter().collect()), connect)
|
|
// Else use RRTs
|
|
} else {
|
|
let is_traversable = |start: &Vec3<f32>, end: &Vec3<f32>| {
|
|
vol.ray(*start, *end)
|
|
.until(Block::is_solid)
|
|
.cast()
|
|
.0
|
|
.powi(2)
|
|
> (*start).distance_squared(*end)
|
|
//vol.get(*pos).ok().copied().unwrap_or_else(Block::empty).
|
|
// is_fluid();
|
|
};
|
|
informed_rrt_connect(start, end, is_traversable)
|
|
}
|
|
}
|
|
|
|
/// Attempts to find a path from a start to the end using an informed
|
|
/// RRT-Connect algorithm. A point is sampled from a bounding spheroid
|
|
/// between the start and end. Two separate rapidly exploring random
|
|
/// trees extend toward the sampled point. Nodes are stored in k-d trees
|
|
/// for quicker nearest node calculations. Points are sampled until the
|
|
/// trees connect. A final path is then reconstructed from the nodes.
|
|
/// This pathfinding algorithm is more appropriate for 3D pathfinding
|
|
/// with wider gaps, such as flying through a forest than for terrain
|
|
/// with narrow gaps, such as navigating a maze.
|
|
/// Returns a path and whether that path is complete or not.
|
|
#[cfg(rrt_pathfinding)]
|
|
fn informed_rrt_connect(
|
|
start: Vec3<f32>,
|
|
end: Vec3<f32>,
|
|
is_valid_edge: impl Fn(&Vec3<f32>, &Vec3<f32>) -> bool,
|
|
) -> (Option<Path<Vec3<i32>>>, bool) {
|
|
let mut path = Vec::new();
|
|
|
|
// Each tree has a vector of nodes
|
|
let mut node_index1: usize = 0;
|
|
let mut node_index2: usize = 0;
|
|
let mut nodes1 = Vec::new();
|
|
let mut nodes2 = Vec::new();
|
|
|
|
// The parents hashmap stores nodes and their parent nodes as pairs to
|
|
// retrace the complete path once the two RRTs connect
|
|
let mut parents1 = HashMap::new();
|
|
let mut parents2 = HashMap::new();
|
|
|
|
// The path vector stores the path from the appropriate terminal to the
|
|
// connecting node or vice versa
|
|
let mut path1 = Vec::new();
|
|
let mut path2 = Vec::new();
|
|
|
|
// K-d trees are used to find the closest nodes rapidly
|
|
let mut kdtree1 = KdTree::new();
|
|
let mut kdtree2 = KdTree::new();
|
|
|
|
// Add the start as the first node of the first k-d tree
|
|
kdtree1
|
|
.add(&[startf.x, startf.y, startf.z], node_index1)
|
|
.unwrap_or_default();
|
|
nodes1.push(startf);
|
|
node_index1 += 1;
|
|
|
|
// Add the end as the first node of the second k-d tree
|
|
kdtree2
|
|
.add(&[endf.x, endf.y, endf.z], node_index2)
|
|
.unwrap_or_default();
|
|
nodes2.push(endf);
|
|
node_index2 += 1;
|
|
|
|
let mut connection1_idx = 0;
|
|
let mut connection2_idx = 0;
|
|
|
|
let mut connect = false;
|
|
|
|
// Scalar non-dimensional value that is proportional to the size of the
|
|
// sample spheroid volume. This increases in value until a path is found.
|
|
let mut search_parameter = 0.01;
|
|
|
|
// Maximum of 7000 iterations
|
|
for _i in 0..7000 {
|
|
if connect {
|
|
break;
|
|
}
|
|
|
|
// Sample a point on the bounding spheroid
|
|
let (sampled_point1, sampled_point2) = {
|
|
let point = point_on_prolate_spheroid(startf, endf, search_parameter);
|
|
(point, point)
|
|
};
|
|
|
|
// Find the nearest nodes to the the sampled point
|
|
let nearest_index1 = kdtree1
|
|
.nearest_one(
|
|
&[sampled_point1.x, sampled_point1.y, sampled_point1.z],
|
|
&squared_euclidean,
|
|
)
|
|
.map_or(0, |n| *n.1);
|
|
let nearest_index2 = kdtree2
|
|
.nearest_one(
|
|
&[sampled_point2.x, sampled_point2.y, sampled_point2.z],
|
|
&squared_euclidean,
|
|
)
|
|
.map_or(0, |n| *n.1);
|
|
let nearest1 = nodes1[nearest_index1];
|
|
let nearest2 = nodes2[nearest_index2];
|
|
|
|
// Extend toward the sampled point from the nearest node of each tree
|
|
let new_point1 = nearest1 + (sampled_point1 - nearest1).normalized().map(|a| a * radius);
|
|
let new_point2 = nearest2 + (sampled_point2 - nearest2).normalized().map(|a| a * radius);
|
|
|
|
// Ensure the new nodes are valid/traversable
|
|
if is_valid_edge(&nearest1, &new_point1) {
|
|
kdtree1
|
|
.add(&[new_point1.x, new_point1.y, new_point1.z], node_index1)
|
|
.unwrap_or_default();
|
|
nodes1.push(new_point1);
|
|
parents1.insert(node_index1, nearest_index1);
|
|
node_index1 += 1;
|
|
// Check if the trees connect
|
|
if let Ok((check, index)) = kdtree2.nearest_one(
|
|
&[new_point1.x, new_point1.y, new_point1.z],
|
|
&squared_euclidean,
|
|
) {
|
|
if check < radius {
|
|
let connection = nodes2[*index];
|
|
connection2_idx = *index;
|
|
nodes1.push(connection);
|
|
connection1_idx = nodes1.len() - 1;
|
|
parents1.insert(node_index1, node_index1 - 1);
|
|
connect = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Repeat the validity check for the second tree
|
|
if is_valid_edge(&nearest2, &new_point2) {
|
|
kdtree2
|
|
.add(&[new_point2.x, new_point2.y, new_point1.z], node_index2)
|
|
.unwrap_or_default();
|
|
nodes2.push(new_point2);
|
|
parents2.insert(node_index2, nearest_index2);
|
|
node_index2 += 1;
|
|
// Again check for a connection
|
|
if let Ok((check, index)) = kdtree1.nearest_one(
|
|
&[new_point2.x, new_point2.y, new_point1.z],
|
|
&squared_euclidean,
|
|
) {
|
|
if check < radius {
|
|
let connection = nodes1[*index];
|
|
connection1_idx = *index;
|
|
nodes2.push(connection);
|
|
connection2_idx = nodes2.len() - 1;
|
|
parents2.insert(node_index2, node_index2 - 1);
|
|
connect = true;
|
|
}
|
|
}
|
|
}
|
|
// Increase the search parameter to widen the sample volume
|
|
search_parameter += 0.02;
|
|
}
|
|
|
|
if connect {
|
|
// Construct paths from the connection node to the start and end
|
|
let mut current_node_index1 = connection1_idx;
|
|
while current_node_index1 > 0 {
|
|
current_node_index1 = *parents1.get(¤t_node_index1).unwrap_or(&0);
|
|
path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
|
|
}
|
|
let mut current_node_index2 = connection2_idx;
|
|
while current_node_index2 > 0 {
|
|
current_node_index2 = *parents2.get(¤t_node_index2).unwrap_or(&0);
|
|
path2.push(nodes2[current_node_index2].map(|e| e.floor() as i32));
|
|
}
|
|
// Join the two paths together in the proper order and remove duplicates
|
|
path1.pop();
|
|
path1.reverse();
|
|
path.append(&mut path1);
|
|
path.append(&mut path2);
|
|
path.dedup();
|
|
} else {
|
|
// If the trees did not connect, construct a path from the start to
|
|
// the closest node to the end
|
|
let mut current_node_index1 = kdtree1
|
|
.nearest_one(&[endf.x, endf.y, endf.z], &squared_euclidean)
|
|
.map_or(0, |c| *c.1);
|
|
// Attempt to pick a node other than the start node
|
|
for _i in 0..3 {
|
|
if current_node_index1 == 0
|
|
|| nodes1[current_node_index1].distance_squared(startf) < 4.0
|
|
{
|
|
if let Some(index) = parents1.values().choose(&mut thread_rng()) {
|
|
current_node_index1 = *index;
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
|
|
// Construct the path
|
|
while current_node_index1 != 0 && nodes1[current_node_index1].distance_squared(startf) > 4.0
|
|
{
|
|
current_node_index1 = *parents1.get(¤t_node_index1).unwrap_or(&0);
|
|
path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
|
|
}
|
|
|
|
path1.reverse();
|
|
path.append(&mut path1);
|
|
}
|
|
let mut new_path = Vec::new();
|
|
let mut node = path[0];
|
|
new_path.push(node);
|
|
let mut node_idx = 0;
|
|
let num_nodes = path.len();
|
|
let end = path[num_nodes - 1];
|
|
while node != end {
|
|
let next_idx = if node_idx + 4 > num_nodes - 1 {
|
|
num_nodes - 1
|
|
} else {
|
|
node_idx + 4
|
|
};
|
|
let next_node = path[next_idx];
|
|
let start_pos = node.map(|e| e as f32 + 0.5);
|
|
let end_pos = next_node.map(|e| e as f32 + 0.5);
|
|
if vol
|
|
.ray(start_pos, end_pos)
|
|
.until(Block::is_solid)
|
|
.cast()
|
|
.0
|
|
.powi(2)
|
|
> (start_pos).distance_squared(end_pos)
|
|
{
|
|
node_idx = next_idx;
|
|
new_path.push(next_node);
|
|
} else {
|
|
node_idx += 1;
|
|
}
|
|
node = path[node_idx];
|
|
}
|
|
path = new_path;
|
|
}
|
|
|
|
/// Returns a random point within a radially symmetrical ellipsoid with given
|
|
/// foci and a `search parameter` to determine the size of the ellipse beyond
|
|
/// the foci. Technically the point is within a prolate spheroid translated and
|
|
/// rotated to the proper place in cartesian space.
|
|
/// The search_parameter is a float that relates to the length of the string for
|
|
/// a two dimensional ellipse or the size of the ellipse beyond the foci. In
|
|
/// this case that analogy still holds as the ellipse is radially symmetrical
|
|
/// along the axis between the foci. The value of the search parameter must be
|
|
/// greater than zero. In order to increase the sample area, the
|
|
/// search_parameter should be increased linearly as the search continues.
|
|
#[cfg(rrt_pathfinding)]
|
|
pub fn point_on_prolate_spheroid(
|
|
focus1: Vec3<f32>,
|
|
focus2: Vec3<f32>,
|
|
search_parameter: f32,
|
|
) -> Vec3<f32> {
|
|
let mut rng = thread_rng();
|
|
// Uniform distribution
|
|
let range = Uniform::from(0.0..1.0);
|
|
|
|
// Midpoint is used as the local origin
|
|
let midpoint = 0.5 * (focus1 + focus2);
|
|
// Radius between the start and end of the path
|
|
let radius: f32 = focus1.distance(focus2);
|
|
// The linear eccentricity of an ellipse is the distance from the origin to a
|
|
// focus A prolate spheroid is a half-ellipse rotated for a full revolution
|
|
// which is why ellipse variables are used frequently in this function
|
|
let linear_eccentricity: f32 = 0.5 * radius;
|
|
|
|
// For an ellipsoid, three variables determine the shape: a, b, and c.
|
|
// These are the distance from the center/origin to the surface on the
|
|
// x, y, and z axes, respectively.
|
|
// For a prolate spheroid a and b are equal.
|
|
// c is determined by adding the search parameter to the linear eccentricity.
|
|
// As the search parameter increases the size of the spheroid increases
|
|
let c: f32 = linear_eccentricity + search_parameter;
|
|
// The width is calculated to prioritize increasing width over length of
|
|
// the ellipsoid
|
|
let a: f32 = (c.powi(2) - linear_eccentricity.powi(2)).powf(0.5);
|
|
// The width should be the same in both the x and y directions
|
|
let b: f32 = a;
|
|
|
|
// The parametric spherical equation for an ellipsoid measuring from the
|
|
// center point is as follows:
|
|
// x = a * cos(theta) * cos(lambda)
|
|
// y = b * cos(theta) * sin(lambda)
|
|
// z = c * sin(theta)
|
|
//
|
|
// where -0.5 * PI <= theta <= 0.5 * PI
|
|
// and 0.0 <= lambda < 2.0 * PI
|
|
//
|
|
// Select these two angles using the uniform distribution defined at the
|
|
// beginning of the function from 0.0 to 1.0
|
|
let rtheta: f32 = PI * range.sample(&mut rng) - 0.5 * PI;
|
|
let lambda: f32 = 2.0 * PI * range.sample(&mut rng);
|
|
// Select a point on the surface of the ellipsoid
|
|
let point = Vec3::new(
|
|
a * rtheta.cos() * lambda.cos(),
|
|
b * rtheta.cos() * lambda.sin(),
|
|
c * rtheta.sin(),
|
|
);
|
|
// NOTE: Theoretically we should sample a point within the spheroid
|
|
// requiring selecting a point along the radius. In my tests selecting
|
|
// a point *on the surface* of the spheroid results in sampling that is
|
|
// "good enough". The following code is commented out to reduce expense.
|
|
//let surface_point = Vec3::new(a * rtheta.cos() * lambda.cos(), b *
|
|
// rtheta.cos() * lambda.sin(), c * rtheta.sin()); let magnitude =
|
|
// surface_point.magnitude(); let direction = surface_point.normalized();
|
|
//// Randomly select a point along the vector to the previously selected surface
|
|
//// point using the uniform distribution
|
|
//let point = magnitude * range.sample(&mut rng) * direction;
|
|
|
|
// Now that a point has been selected in local space, it must be rotated and
|
|
// translated into global coordinates
|
|
// NOTE: Don't rotate about the z axis as the point is already randomly
|
|
// selected about the z axis
|
|
//let dx = focus2.x - focus1.x;
|
|
//let dy = focus2.y - focus1.y;
|
|
let dz = focus2.z - focus1.z;
|
|
// Phi and theta are the angles from the x axis in the x-y plane and from
|
|
// the z axis, respectively. (As found in spherical coordinates)
|
|
// These angles are used to rotate the random point in the spheroid about
|
|
// the local origin
|
|
//
|
|
// Rotate about z axis by phi
|
|
//let phi: f32 = if dx.abs() > 0.0 {
|
|
// (dy / dx).atan()
|
|
//} else {
|
|
// 0.5 * PI
|
|
//};
|
|
// This is unnecessary as rtheta is randomly selected between 0.0 and 2.0 * PI
|
|
// let rot_z_mat = Mat3::new(phi.cos(), -1.0 * phi.sin(), 0.0, phi.sin(),
|
|
// phi.cos(), 0.0, 0.0, 0.0, 1.0);
|
|
|
|
// Rotate about perpendicular vector in the xy plane by theta
|
|
let theta: f32 = if radius > 0.0 {
|
|
(dz / radius).acos()
|
|
} else {
|
|
0.0
|
|
};
|
|
// Vector from focus1 to focus2
|
|
let r_vec = focus2 - focus1;
|
|
// Perpendicular vector in xy plane
|
|
let perp_vec = Vec3::new(-1.0 * r_vec.y, r_vec.x, 0.0).normalized();
|
|
let l = perp_vec.x;
|
|
let m = perp_vec.y;
|
|
let n = perp_vec.z;
|
|
// Rotation matrix for rotation about a vector
|
|
let rot_2_mat = Mat3::new(
|
|
l * l * (1.0 - theta.cos()),
|
|
m * l * (1.0 - theta.cos()) - n * theta.sin(),
|
|
n * l * (1.0 - theta.cos()) + m * theta.sin(),
|
|
l * m * (1.0 - theta.cos()) + n * theta.sin(),
|
|
m * m * (1.0 - theta.cos()) + theta.cos(),
|
|
n * m * (1.0 - theta.cos()) - l * theta.sin(),
|
|
l * n * (1.0 - theta.cos()) - m * theta.sin(),
|
|
m * n * (1.0 - theta.cos()) + l * theta.sin(),
|
|
n * n * (1.0 - theta.cos()) + theta.cos(),
|
|
);
|
|
|
|
// Get the global coordinates of the point by rotating and adding the origin
|
|
// rot_z_mat is unneeded due to the random rotation defined by lambda
|
|
// let global_coords = midpoint + rot_2_mat * (rot_z_mat * point);
|
|
midpoint + rot_2_mat * point
|
|
}
|