veloren/assets/voxygen/shaders/terrain-frag.glsl
2023-10-07 19:53:55 +02:00

547 lines
26 KiB
GLSL

#version 420 core
// #extension GL_ARB_texture_storage : require
#include <constants.glsl>
#define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION
#define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY
#if (FLUID_MODE == FLUID_MODE_LOW)
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE
#elif (FLUID_MODE >= FLUID_MODE_MEDIUM)
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE
#endif
#define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET
#define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN
#define HAS_SHADOW_MAPS
#include <globals.glsl>
#include <random.glsl>
layout(location = 0) in vec3 f_pos;
// in float f_ao;
// in vec3 f_chunk_pos;
// #ifdef FLUID_MODE_SHINY
layout(location = 1) flat in uint f_pos_norm;
layout(location = 2) flat in float f_load_time;
// #else
// const uint f_pos_norm = 0u;
// #endif
// in float f_alt;
// in vec4 f_shadow;
// in vec3 f_col;
// in float f_light;
/*centroid */layout(location = 3) in vec2 f_uv_pos;
// in vec3 light_pos[2];
// const vec3 light_pos[6] = vec3[](vec3(0), vec3(0), vec3(00), vec3(0), vec3(0), vec3(0));
/* #if (SHADOW_MODE == SHADOW_MODE_MAP)
in vec4 sun_pos;
#elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE)
const vec4 sun_pos = vec4(0.0);
#endif */
layout(set = 2, binding = 0)
uniform texture2D t_col_light;
layout(set = 2, binding = 1)
uniform sampler s_col_light;
layout(set = 2, binding = 2)
uniform utexture2D t_kind;
layout(set = 2, binding = 3)
uniform sampler s_kind;
layout (std140, set = 3, binding = 0)
uniform u_locals {
mat4 model_mat;
ivec4 atlas_offs;
float load_time;
};
layout(location = 0) out vec4 tgt_color;
layout(location = 1) out uvec4 tgt_mat;
#include <sky.glsl>
#include <light.glsl>
#include <lod.glsl>
void main() {
/*
float nz = abs(hash(vec4(floor((f_pos + focus_off.xyz) * 5.0), 0)));
if (nz > (tick.x - load_time) / 0.5 || distance(focus_pos.xy, f_pos.xy) / view_distance.x + nz * 0.1 > 1.0) {
discard;
}
*/
// discard;
// vec4 f_col_light = textureGrad(t_col_light, f_uv_pos / texSize, 0.25, 0.25);
// vec4 f_col_light = texture(t_col_light, (f_uv_pos) / texSize);
// First 3 normals are negative, next 3 are positive
const vec3 normals[8] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1), vec3(0,0,0), vec3(0,0,0));
// uint norm_index = (f_pos_norm >> 29) & 0x7u;
// vec2 uv_delta = (norm_index & 0u) == 0u ? vec2(-1.0) : vec2(0);
vec2 f_uv_pos = f_uv_pos + atlas_offs.xy;
// vec4 f_col_light = textureProj(t_col_light, vec3(f_uv_pos + 0.5, textureSize(t_col_light, 0)));//(f_uv_pos/* + 0.5*/) / texSize);
// float f_light = textureProj(t_col_light, vec3(f_uv_pos + 0.5, textureSize(t_col_light, 0))).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
float f_light, f_glow, f_ao, f_sky_exposure;
uint f_kind;
vec3 f_col = greedy_extract_col_light_kind_terrain(t_col_light, s_col_light, t_kind, f_uv_pos, f_light, f_glow, f_ao, f_sky_exposure, f_kind);
#ifdef EXPERIMENTAL_BAREMINIMUM
tgt_color = vec4(simple_lighting(f_pos.xyz, f_col, f_light), 1);
return;
#endif
//float f_light = (uint(texture(t_col_light, (f_uv_pos + 0.5) / textureSize(t_col_light, 0)).r * 255.0) & 0x1Fu) / 31.0;
// vec2 texSize = textureSize(t_col_light, 0);
// float f_light = texture(t_col_light, f_uv_pos/* + vec2(atlas_offs.xy)*/).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
// float f_light = textureProj(t_col_light, vec3(f_uv_pos/* + vec2(atlas_offs.xy)*/, texSize.x)).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
// float f_light = textureProjLod(t_col_light, vec3(f_uv_pos/* + vec2(atlas_offs.xy)*/, texSize.x), 0).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
// float f_light = textureGrad(t_col_light, (f_uv_pos + 0.5) / texSize, vec2(0.1, 0.0), vec2(0.0, 0.1)).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0;
// f_light = sqrt(f_light);
// f_light = sqrt(f_light);
// f_col = vec3((uvec3(v_col_light) >> uvec3(8, 16, 24)) & uvec3(0xFFu)) / 255.0;
// vec3 f_col = light_col.rgb;//vec4(1.0, 0.0, 0.0, 1.0);
// float f_ao = 1.0;
// vec3 my_chunk_pos = vec3(ivec3((uvec3(f_pos_norm) >> uvec3(0, 6, 12)) & uvec3(0x3Fu, 0x3Fu, 0xFFFFu)));
// tgt_color = vec4(hash(floor(vec4(my_chunk_pos.x, 0, 0, 0))), hash(floor(vec4(0, my_chunk_pos.y, 0, 1))), hash(floor(vec4(0, 0, my_chunk_pos.z, 2))), 1.0);
// tgt_color.rgb *= f_light;
// tgt_color = vec4(vec3(f_light), 1.0);
// tgt_color = vec4(f_col, 1.0);
// return;
// vec4 light_pos[2];
// vec4 light_col = vec4(
// hash(floor(vec4(f_pos.x, 0, 0, 0))),
// hash(floor(vec4(0, f_pos.y, 0, 1))),
// hash(floor(vec4(0, 0, f_pos.z, 2))),
// 1.0
// );
// vec3 f_col = light_col.rgb;//vec4(1.0, 0.0, 0.0, 1.0);
// tgt_color = vec4(f_col, 1.0);
// tgt_color = vec4(light_shadow_count.x <= 31u ? f_col : vec3(0.0), 1.0);
// tgt_color = vec4(0.0, 0.0, 0.0, 1.0);
// float sum = 0.0;
// for (uint i = 0u; i < /* 6 * */light_shadow_count.x; i ++) {
// // uint i = 1u;
// Light L = lights[i/* / 6*/];
// /* vec4 light_col = vec4(
// hash(vec4(1.0, 0.0, 0.0, i)),
// hash(vec4(1.0, 1.0, 0.0, i)),
// hash(vec4(1.0, 0.0, 1.0, i)),
// 1.0
// ); */
// vec3 light_col = vec3(1.0);//L.light_col.rgb;
// float light_strength = L.light_col.a / 255.0;
// // float light_strength = 1.0 / light_shadow_count.x;
// vec3 light_pos = L.light_pos.xyz;
// // Pre-calculate difference between light and fragment
// vec3 fragToLight = f_pos - light_pos;
// // vec3 f_norm = normals[(f_pos_norm >> 29) & 0x7u];
// // use the light to fragment vector to sample from the depth map
// float bias = 0.0;//0.05;//0.05;
// // float closestDepth = texture(t_shadow_maps, vec4(fragToLight, i)/*, 0.0*//*, bias*/).r;
// // float closestDepth = texture(t_shadow_maps, vec4(fragToLight, lightIndex), bias);
// // float closestDepth = texture(t_shadow_maps, vec4(fragToLight, i + 1)/*, bias*/).r;
// float currentDepth = VectorToDepth(fragToLight) + bias;
// float closestDepth = texture(t_shadow_maps, vec3(fragToLight)/*, -2.5*/).r;
//
// // float visibility = texture(t_shadow_maps, vec4(fragToLight, i + 1), -(length(fragToLight) - bias)/* / screen_res.w*/);
// // it is currently in linear range between [0,1]. Re-transform back to original value
// // closestDepth *= screen_res.w; // far plane
// // now test for shadows
// // float shadow = /*currentDepth*/(screen_res.w - bias) > closestDepth ? 1.0 : 0.0;
// // float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
// // tgt_color += light_col * vec4(vec3(/*closestDepth*/visibility/* + bias*//* / screen_res.w */) * 1.0 / light_shadow_count.x, 0.0);
// // tgt_color.rgb += light_col * vec3(closestDepth + 0.05 / screen_res.w) * 1.0 /*/ light_shadow_count.x*/ * light_strength;
// tgt_color.rgb += light_col * vec3(closestDepth) * 1.0 / screen_res.w /*/ light_shadow_count.x*/ * light_strength;
// sum += light_strength;
// }
// TODO: last 3 bits in v_pos_norm should be a number between 0 and 5, rather than 0-2 and a direction.
// uint norm_axis = (f_pos_norm >> 30) & 0x3u;
// // Increase array access by 3 to access positive values
// uint norm_dir = ((f_pos_norm >> 29) & 0x1u) * 3u;
// Use an array to avoid conditional branching
// uint norm_index = (f_pos_norm >> 29) & 0x7u;
// vec3 f_norm = normals[norm_index];
vec3 face_norm = normals[(f_pos_norm >> 29) & 0x7u];
vec3 f_norm = face_norm;
#ifdef EXPERIMENTAL_BRICKLOREN
vec3 pos = f_pos + focus_off.xyz;
const vec3 bk_sz = vec3(2, 2, 2);
vec3 sz = vec3(1.0 + mod(floor(pos.z * bk_sz.z + floor(pos.x) + floor(pos.y) - 0.01), 2.0) * (bk_sz.x - 1), 1.0 + mod(floor(pos.z * bk_sz.z + floor(pos.x) + floor(pos.y) + 0.99), 2.0) * (bk_sz.y - 1), bk_sz.z);
vec3 fp = pos * sz;
vec3 clamped = min(floor(fp.xyz) + 1.0 - 0.07 * sz, max(floor(fp.xyz) - 0.07 * sz, fp.xyz));
f_norm.xyz += (fp.xyz - clamped) * 5.0 * sign(1.0 - f_norm) * max(1.0 - length(f_pos - cam_pos.xyz) / 64.0, 0);
f_norm = normalize(f_norm);
f_col /= 1.0 + length((fp - clamped) * sign(1.0 - f_norm)) * 2;
#endif
// vec3 du = dFdx(f_pos);
// vec3 dv = dFdy(f_pos);
// vec3 f_norm = normalize(cross(du, dv));
// /* if (light_shadow_count.x == 1) {
// tgt_color.rgb = vec3(0.0);
// } */
// if (sum > 0.0) {
// tgt_color.rgb /= sum;
// }
// return;
// Whether this face is facing fluid or not.
bool faces_fluid = bool((f_pos_norm >> 28) & 0x1u);
vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz);
// vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0);
// vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/);
vec3 view_dir = -cam_to_frag;
// vec3 view_dir = normalize(f_pos - cam_pos.xyz);
/* vec3 sun_dir = get_sun_dir(time_of_day.x);
vec3 moon_dir = get_moon_dir(time_of_day.x); */
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE >= FLUID_MODE_MEDIUM)
float f_alt = alt_at(f_pos.xy);
#elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_LOW)
float f_alt = f_pos.z;
#endif
float alpha = 1.0;//0.0001;//1.0;
// TODO: Possibly angle with water surface into account? Since we can basically assume it's horizontal.
const float n2 = 1.5;//1.01;
const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2);
const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2);
const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2);
const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2);
// float faces_fluid = faces_fluid && f_pos.z <= floor(f_alt);
float fluid_alt = max(f_pos.z + 1, floor(f_alt + 1));
float R_s = /*(f_pos.z < f_alt)*/faces_fluid /*&& f_pos.z <= fluid_alt*/ ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x);
// vec3 surf_color = /*srgb_to_linear*/(f_col);
vec3 k_a = vec3(1.0);
vec3 k_d = vec3(1.0);
vec3 k_s = vec3(R_s);
// Toggle to see rain_occlusion
// tgt_color = vec4(rain_occlusion_at(f_pos.xyz), 0.0, 0.0, 1.0);
// return;
#if (REFLECTION_MODE >= REFLECTION_MODE_HIGH)
float f_alpha = 1.0;
#else
const float f_alpha = 1.0;
#endif
#if (CLOUD_MODE != CLOUD_MODE_NONE)
if (rain_density > 0 && !faces_fluid && f_norm.z > 0.5) {
vec3 pos = f_pos + focus_off.xyz;
vec3 drop_density = vec3(2, 2, 2);
vec3 drop_pos = pos + vec3(pos.zz, 0) + vec3(0, 0, -tick.x * 1.0);
drop_pos.z += noise_2d(floor(drop_pos.xy * drop_density.xy) * 13.1) * 10;
vec2 cell2d = floor(drop_pos.xy * drop_density.xy);
drop_pos.z *= 0.5 + hash_fast(uvec3(cell2d, 0));
vec3 cell = vec3(cell2d, floor(drop_pos.z * drop_density.z));
#if (REFLECTION_MODE >= REFLECTION_MODE_HIGH)
float puddle = clamp((noise_2d((f_pos.xy + focus_off.xy + vec2(0.1, 0)) * 0.02) - 0.5) * 20.0, 0.0, 1.0)
* min(rain_density * 10.0, 1.0)
* clamp((f_sky_exposure - 0.95) * 50.0, 0.0, 1.0);
#else
const float puddle = 1.0;
#endif
#if (REFLECTION_MODE >= REFLECTION_MODE_HIGH)
if (puddle > 0.0) {
f_alpha = puddle * 0.2 * max(1.0 + cam_to_frag.z, 0.3);
#ifdef EXPERIMENTAL_PUDDLEDETAILS
float h = (noise_2d((f_pos.xy + focus_off.xy) * 0.3) - 0.5) * sin(tick.x * 8.0 + f_pos.x * 3)
+ (noise_2d((f_pos.xy + focus_off.xy) * 0.6) - 0.5) * sin(tick.x * 3.5 - f_pos.y * 6);
float hx = (noise_2d((f_pos.xy + focus_off.xy + vec2(0.1, 0)) * 0.3) - 0.5) * sin(tick.x * 8.0 + f_pos.x * 3)
+ (noise_2d((f_pos.xy + focus_off.xy + vec2(0.1, 0)) * 0.6) - 0.5) * sin(tick.x * 3.5 - f_pos.y * 6);
float hy = (noise_2d((f_pos.xy + focus_off.xy + vec2(0, 0.1)) * 0.3) - 0.5) * sin(tick.x * 8.0 + f_pos.x * 3)
+ (noise_2d((f_pos.xy + focus_off.xy + vec2(0, 0.1)) * 0.6) - 0.5) * sin(tick.x * 3.5 - f_pos.y * 6);
f_norm.xy += mix(vec2(0), vec2(h - hx, h - hy) / 0.1 * 0.03, puddle);
#endif
alpha = mix(1.0, 0.2, puddle);
f_col.rgb *= mix(1.0, 0.7, puddle);
k_s = mix(k_s, vec3(0.7, 0.7, 1.0), puddle);
}
#endif
if (rain_occlusion_at(f_pos.xyz + vec3(0, 0, 0.25)) > 0.5) {
if (fract(hash(fract(vec4(cell, 0) * 0.01))) < rain_density * 2.0) {
vec3 off = vec3(hash_fast(uvec3(cell * 13)), hash_fast(uvec3(cell * 5)), 0);
vec3 near_cell = (cell + 0.5 + (off - 0.5) * 0.5) / drop_density;
float dist = length((drop_pos - near_cell) * vec3(1, 1, 0.5));
float drop_rad = 0.075 + puddle * 0.05;
float distort = max(1.0 - abs(dist - drop_rad) * 100, 0) * 1.5 * max(drop_pos.z - near_cell.z, 0);
k_a += distort;
k_d += distort;
k_s += distort;
f_norm.xy += (drop_pos - near_cell).xy
* max(1.0 - abs(dist - drop_rad) * 30, 0)
* 500.0
* max(drop_pos.z - near_cell.z, 0)
* sign(dist - drop_rad)
* max(drop_pos.z - near_cell.z, 0);
}
}
}
#endif
// float sun_light = get_sun_brightness(sun_dir);
// float moon_light = get_moon_brightness(moon_dir);
/* float sun_shade_frac = horizon_at(f_pos, sun_dir);
float moon_shade_frac = horizon_at(f_pos, moon_dir); */
// float f_alt = alt_at(f_pos.xy);
// vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy));
#if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP)
vec4 f_shadow = textureBicubic(t_horizon, s_horizon, pos_to_tex(f_pos.xy));
float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
#elif (SHADOW_MODE == SHADOW_MODE_NONE)
float sun_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
#endif
float moon_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, moon_dir);
// Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence).
// Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing).
// float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5);
// NOTE: current assumption is that moon and sun shouldn't be out at the sae time.
// This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow
// for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally).
// float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac;
// DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, light_pos);
DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, /*sun_pos*/f_pos);
DirectionalLight moon_info = get_moon_info(moon_dir, moon_shade_frac/*, light_pos*/);
#ifdef EXPERIMENTAL_DIRECTIONALSHADOWMAPTEXELGRID
float offset_scale = 0.5;
vec3 offset_one = dFdx(f_pos) * offset_scale;
vec3 offset_two = dFdy(f_pos) * offset_scale;
vec3 one_up = f_pos + offset_one;
vec3 one_down = f_pos - offset_one;
vec3 two_up = f_pos + offset_two;
vec3 two_down = f_pos - offset_two;
// Adjust this to change the size of the grid cells relative to the
// number of shadow texels
float grid_cell_to_texel_ratio = 32.0;
vec2 shadowTexSize = textureSize(sampler2D(t_directed_shadow_maps, s_directed_shadow_maps), 0) / grid_cell_to_texel_ratio;
vec4 one_up_shadow_tex = texture_mat * vec4(one_up, 1.0);
vec2 oust_snap = floor(one_up_shadow_tex.xy * shadowTexSize / one_up_shadow_tex.w);
vec4 one_down_shadow_tex = texture_mat * vec4(one_down, 1.0);
vec2 odst_snap = floor(one_down_shadow_tex.xy * shadowTexSize / one_down_shadow_tex.w);
vec4 two_up_shadow_tex = texture_mat * vec4(two_up, 1.0);
vec2 tust_snap = floor(two_up_shadow_tex.xy * shadowTexSize / two_up_shadow_tex.w);
vec4 two_down_shadow_tex = texture_mat * vec4(two_down, 1.0);
vec2 tdst_snap = floor(two_down_shadow_tex.xy * shadowTexSize / two_down_shadow_tex.w);
float border = length(max(abs(oust_snap - odst_snap), abs(tust_snap - tdst_snap)));
if (border != 0.0) {
tgt_color = vec4(vec3(0.0, 0.7, 0.2), 1.0);
return;
}
#endif
float max_light = 0.0;
// After shadows are computed, we use a refracted sun and moon direction.
// sun_dir = faces_fluid && sun_shade_frac > 0.0 ? refract(sun_dir/*-view_dir*/, vec3(0.0, 0.0, 1.0), 1.0 / 1.3325) : sun_dir;
// moon_dir = faces_fluid && moon_shade_frac > 0.0 ? refract(moon_dir/*-view_dir*/, vec3(0.0, 0.0, 1.0), 1.0 / 1.3325) : moon_dir;
// Compute attenuation due to water from the camera.
vec3 mu = faces_fluid/* && f_pos.z <= fluid_alt*/ ? MU_WATER : vec3(0.0);
// NOTE: Default intersection point is camera position, meaning if we fail to intersect we assume the whole camera is in water.
// Computing light attenuation from water.
vec3 cam_attenuation =
false/*medium.x == MEDIUM_WATER*/ ? compute_attenuation_point(cam_pos.xyz, view_dir, MU_WATER, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/f_pos)
: compute_attenuation_point(f_pos, -view_dir, mu, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/cam_pos.xyz);
// Prevent the sky affecting light when underground
float not_underground = clamp((f_pos.z - f_alt) / 128.0 + 1.0, 0.0, 1.0);
// To account for prior saturation
#if (FLUID_MODE == FLUID_MODE_LOW)
f_light = f_light * sqrt(f_light);
#else
f_light = faces_fluid ? not_underground : f_light * sqrt(f_light);
#endif
vec3 emitted_light = vec3(1.0);
vec3 reflected_light = vec3(1.0);
float sun_diffuse = get_sun_diffuse2(sun_info, moon_info, f_norm, view_dir, f_pos, mu, cam_attenuation, fluid_alt, k_a/* * (shade_frac * 0.5 + light_frac * 0.5)*/, k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light);
max_light += sun_diffuse;
// emitted_light *= f_light * point_shadow * max(shade_frac, MIN_SHADOW);
// reflected_light *= f_light * point_shadow * shade_frac;
// max_light *= f_light * point_shadow * shade_frac;
emitted_light *= f_light;
reflected_light *= f_light;
max_light *= f_light;
// TODO: Hack to add a small amount of underground ambient light to the scene
reflected_light += vec3(0.01, 0.02, 0.03) * (1.0 - not_underground);
// TODO: Apply AO after this
vec3 glow = glow_light(f_pos) * (pow(f_glow, 3) * 5 + pow(f_glow, 2.0) * 2) * pow(max(dot(face_norm, f_norm), 0), 2);
reflected_light += glow * cam_attenuation;
max_light += lights_at(f_pos, f_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light);
emitted_light *= mix(1.0, f_ao, 0.5);
reflected_light *= mix(1.0, f_ao, 0.5);
float point_shadow = shadow_at(f_pos, f_norm);
reflected_light *= point_shadow;
emitted_light *= point_shadow;
#ifndef EXPERIMENTAL_NOCAUSTICS
#if (FLUID_MODE >= FLUID_MODE_MEDIUM)
if (faces_fluid) {
vec3 wpos = f_pos + vec3(focus_off.xy, 0);
vec3 spos = (wpos + (fluid_alt - wpos.z) * vec3(sun_dir.xy, 0)) * 0.25;
reflected_light += caustics(spos.xy * 1.0, tick.x * 0.5)
* 3
/ (1.0 + pow(abs(fluid_alt - wpos.z) * 0.075, 2))
* cam_attenuation
* max(dot(f_norm, -sun_dir.xyz), 0)
* sun_diffuse
* sun_info.shadow
* f_light;
}
#endif
#endif
// float f_ao = 1.0;
// float ao = /*pow(f_ao, 0.5)*/f_ao * 0.9 + 0.1;
// emitted_light *= ao;
// reflected_light *= ao;
/* vec3 point_light = light_at(f_pos, f_norm);
emitted_light += point_light;
reflected_light += point_light; */
// float point_shadow = shadow_at(f_pos, f_norm);
// vec3 point_light = light_at(f_pos, f_norm);
// vec3 light, diffuse_light, ambient_light;
// get_sun_diffuse(f_norm, time_of_day.x, cam_to_frag, k_a * f_light, k_d * f_light, k_s * f_light, alpha, emitted_light, reflected_light);
// get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0);
// float point_shadow = shadow_at(f_pos, f_norm);
// diffuse_light *= f_light * point_shadow;
// ambient_light *= f_light * point_shadow;
// vec3 point_light = light_at(f_pos, f_norm);
// light += point_light;
// diffuse_light += point_light;
// reflected_light += point_light;
// reflected_light += light_reflection_factor(norm, cam_to_frag, , vec3 k_d, vec3 k_s, float alpha) {
// light_reflection_factorplight_reflection_factor
// vec3 surf_color = illuminate(srgb_to_linear(f_col), light, diffuse_light, ambient_light);
vec3 f_chunk_pos = f_pos - (model_mat[3].xyz - focus_off.xyz);
#ifdef EXPERIMENTAL_NONOISE
float noise = 0.0;
#else
#ifdef EXPERIMENTAL_BRICKLOREN
float noise = hash(vec4(floor(clamped), 0)) * 2 + hash(vec4(floor(clamped * 27 / sz), 0)) * 0.5;
#else
float noise = hash(vec4(floor(f_chunk_pos * 3.0 - f_norm * 0.5), 0));//0.005/* - 0.01*/;
#endif
#endif
//vec3 srgb_to_linear(vec3 srgb) {
// bvec3 cutoff = lessThan(srgb, vec3(0.04045));
// vec3 higher = pow((srgb + vec3(0.055))/vec3(1.055), vec3(2.4));
// vec3 lower = srgb/vec3(12.92);
//
// return mix(higher, lower, cutoff);
//}
//
//vec3 linear_to_srgb(vec3 col) {
// // bvec3 cutoff = lessThan(col, vec3(0.0060));
// // return mix(11.500726 * col, , cutoff);
// vec3 s1 = vec3(sqrt(col.r), sqrt(col.g), sqrt(col.b));
// vec3 s2 = vec3(sqrt(s1.r), sqrt(s1.g), sqrt(s1.b));
// vec3 s3 = vec3(sqrt(s2.r), sqrt(s2.g), sqrt(s2.b));
// return vec3(
// mix(11.500726 * col.r, (0.585122381 * s1.r + 0.783140355 * s2.r - 0.368262736 * s3.r), clamp((col.r - 0.0060) * 10000.0, 0.0, 1.0)),
// mix(11.500726 * col.g, (0.585122381 * s1.g + 0.783140355 * s2.g - 0.368262736 * s3.g), clamp((col.g - 0.0060) * 10000.0, 0.0, 1.0)),
// mix(11.500726 * col.b, (0.585122381 * s1.b + 0.783140355 * s2.b - 0.368262736 * s3.b), clamp((col.b - 0.0060) * 10000.0, 0.0, 1.0))
// );
//
// 11.500726
//}
// vec3 noise_delta = vec3(noise * 0.005);
// vec3 noise_delta = noise * 0.02 * (1.0 - vec3(0.2126, 0.7152, 0.0722));
// vec3 noise_delta = noise * 0.002 / vec3(0.2126, 0.7152, 0.0722);
// vec3 noise_delta = sqrt(f_col) + noise;
/* vec3 noise_delta = f_col + noise * 0.02;
noise_delta *= noise_delta;
noise_delta -= f_col; */
// vec3 noise_delta = (1.0 - f_col) * 0.02 * noise * noise;
//
// a = 0.055
//
// 1 / (1 + a) = 1 / (1 + 0.055) ~ 0.947867299
//
// l2s = x^(1/2.4) * (1 / (1 + a)) - a + c
// s2l = (l + a)^2.4 * (1 / (1 + a))^2.4
// = ((x^(1/2.4) * (1 / (1 + a)) - a + c) + a)^2.4 * (1 / (1 + a))^2.4
// = (x^(1/2.4) * (1 / (1 + a)) + c)^2.4 * (1 / (1 + a))^2.4
//
// ~ (x^(1/2) * 1 / (1 + a) + c)^2 * (1 / (1 + a))^2
//
// = ((x + a)^2.4 * (1 / (1 + a))^2.4 + c)^(1/2.4) * (1 / (1 + a))^(1/2.4)
// = (((x + a)^2.4 + c * (1 + a)^2.4) * (1 / (1 + a))^2.4)^(1/2.4) * (1 / (1 + a))^(1/2.4)
// = ((x + a)^2.4 + c * (1 + a)^2.4)^(1/2.4) * ((1 / (1 + a))^2.4)^(1/2.4) * (1 / (1 + a))^(1/2.4)
// = ((x + a)^2.4 + c * (1 + a)^2.4)^(1/2.4) * (1 / (1 + a))^(1/2.4)
//
// = ((x + a)^2 + c * (1 + a)^2)^(1/2) * (1 / (1 + a))^(1/2)
// = (x^2 + a^2 + 2xa + c + ca^2 + 2ac)^(1/2) * (1 / (1 + a))^(1/2)
//
const float A = 0.055;
const float W_INV = 1 / (1 + A);
const float W_2 = W_INV * W_INV;//pow(W_INV, 2.4);
const float NOISE_FACTOR = 0.015;//pow(0.02, 1.2);
vec3 noise_delta = (sqrt(f_col) * W_INV + noise * NOISE_FACTOR);
// noise_delta = noise_delta * noise_delta * W_2 - f_col;
// lum = W ⋅ col
// lum + noise = W ⋅ (col + delta)
// W ⋅ col + noise = W ⋅ col + W ⋅ delta
// noise = W ⋅ delta
// delta = noise / W
// vec3 col = (f_col + noise_delta);
vec3 col = noise_delta * noise_delta * W_2;
// vec3 col = srgb_to_linear(linear_to_srgb(f_col) + noise * 0.02);
// vec3 col = /*srgb_to_linear*/(f_col + noise); // Small-scale noise
// vec3 col = /*srgb_to_linear*/(f_col + hash(vec4(floor(f_pos * 3.0 - f_norm * 0.5), 0)) * 0.01); // Small-scale noise
vec3 surf_color = illuminate(max_light, view_dir, col * emitted_light, col * reflected_light);
float f_select = (select_pos.w > 0 && select_pos.xyz == floor(f_pos - f_norm * 0.5)) ? 1.0 : 0.0;
surf_color += f_select * (surf_color + 0.1) * vec3(0.5, 0.5, 0.5);
tgt_color = vec4(surf_color, f_alpha);
tgt_mat = uvec4(uvec3((f_norm + 1.0) * 127.0), MAT_BLOCK);
//tgt_color = vec4(f_norm, f_alpha);
}