veloren/voxygen/src/ui/mod.rs
Ben Wallis b499cf2c58 Added egui debug UI - a 100% rust UI framework (similar to imgui) allowing for rapid development of debug interfaces to aid development. This is feature-gated behind the egui-ui feature which is enabled by default but removed for airshipper builds.
Included in the initial implementation is an entity browser which lists all entities in the client ECS, an entity component viewer which shows select components belonging to the selected entity including character state information, and a simple frame time graph.

This MR also includes an extraction of the animation hot reloading code which has been reused for egui to allow for hot-reloading of the egui interface to allow rapid development of the UI with realtime feedback upon save as is the case with aninmations. This is feature-gated behind the `hot-egui` feature which is not enabled by default due to the extra startup time that it adds.
2021-07-04 09:47:18 +00:00

1066 lines
46 KiB
Rust

mod cache;
mod event;
mod graphic;
mod scale;
mod widgets;
#[macro_use]
pub mod img_ids;
#[macro_use]
pub mod fonts;
#[cfg(feature = "egui-ui")] pub mod egui;
pub mod ice;
pub mod keyed_jobs;
pub use event::Event;
pub use graphic::{Graphic, Id as GraphicId, Rotation, SampleStrat, Transform};
pub use keyed_jobs::KeyedJobs;
pub use scale::{Scale, ScaleMode};
pub use widgets::{
image_frame::ImageFrame,
image_slider::ImageSlider,
ingame::{Ingame, Ingameable},
item_tooltip::{ItemTooltip, ItemTooltipManager, ItemTooltipable},
outlined_text::OutlinedText,
radio_list::RadioList,
slot,
toggle_button::ToggleButton,
tooltip::{Tooltip, TooltipManager, Tooltipable},
};
use crate::{
render::{
create_ui_quad, create_ui_tri, DynamicModel, Mesh, RenderError, Renderer, UiBoundLocals,
UiDrawer, UiLocals, UiMode, UiVertex,
},
window::Window,
Error,
};
#[rustfmt::skip]
use ::image::GenericImageView;
use cache::Cache;
use common::{slowjob::SlowJobPool, util::srgba_to_linear};
use common_base::span;
use conrod_core::{
event::Input,
graph::{self, Graph},
image::{Id as ImageId, Map},
input::{touch::Touch, Motion, Widget},
render::{Primitive, PrimitiveKind},
text::{self, font},
widget::{self, id::Generator},
Rect, Scalar, UiBuilder, UiCell,
};
use core::{convert::TryInto, f32, f64, ops::Range};
use graphic::TexId;
use hashbrown::hash_map::Entry;
use std::time::Duration;
use tracing::{error, warn};
use vek::*;
#[derive(Debug)]
pub enum UiError {
RenderError(RenderError),
}
enum DrawKind {
Image(TexId),
// Text and non-textured geometry
Plain,
}
enum DrawCommand {
Draw { kind: DrawKind, verts: Range<u32> },
Scissor(Aabr<u16>),
WorldPos(Option<usize>),
}
impl DrawCommand {
fn image(verts: Range<usize>, id: TexId) -> DrawCommand {
DrawCommand::Draw {
kind: DrawKind::Image(id),
verts: verts
.start
.try_into()
.expect("Vertex count for UI rendering does not fit in a u32!")
..verts
.end
.try_into()
.expect("Vertex count for UI rendering does not fit in a u32!"),
}
}
fn plain(verts: Range<usize>) -> DrawCommand {
DrawCommand::Draw {
kind: DrawKind::Plain,
verts: verts
.start
.try_into()
.expect("Vertex count for UI rendering does not fit in a u32!")
..verts
.end
.try_into()
.expect("Vertex count for UI rendering does not fit in a u32!"),
}
}
}
pub struct Ui {
pub ui: conrod_core::Ui,
image_map: Map<(graphic::Id, Rotation)>,
cache: Cache,
// Draw commands for the next render
draw_commands: Vec<DrawCommand>,
// Mesh buffer for UI vertices; we reuse its allocation in order to limit vector reallocations
// during redrawing.
mesh: Mesh<UiVertex>,
// Model for drawing the ui
model: DynamicModel<UiVertex>,
// Consts for default ui drawing position (ie the interface)
interface_locals: UiBoundLocals,
// Consts to specify positions of ingame elements (e.g. Nametags)
ingame_locals: Vec<UiBoundLocals>,
// Window size for updating scaling
window_resized: Option<Vec2<f64>>,
// Scale factor changed
scale_factor_changed: Option<f64>,
// Used to delay cache resizing until after current frame is drawn
need_cache_resize: bool,
// Scaling of the ui
scale: Scale,
// Tooltips
tooltip_manager: TooltipManager,
// Item tooltips manager
item_tooltip_manager: ItemTooltipManager,
// Scissor for the whole window
window_scissor: Aabr<u16>,
}
impl Ui {
pub fn new(window: &mut Window) -> Result<Self, Error> {
let scale = Scale::new(window, ScaleMode::Absolute(1.0), 1.0);
let win_dims = scale.scaled_resolution().into_array();
let renderer = window.renderer_mut();
let physical_resolution = renderer.resolution();
let mut ui = UiBuilder::new(win_dims).build();
// NOTE: Since we redraw the actual frame each time whether or not the UI needs
// to be updated, there's no reason to set the redraw count higher than
// 1.
ui.set_num_redraw_frames(1);
let item_tooltip_manager = ItemTooltipManager::new(
ui.widget_id_generator(),
Duration::from_millis(1),
Duration::from_millis(0),
scale.scale_factor_logical(),
);
let tooltip_manager = TooltipManager::new(
ui.widget_id_generator(),
Duration::from_millis(1),
Duration::from_millis(0),
scale.scale_factor_logical(),
);
let interface_locals = renderer.create_ui_bound_locals(&[UiLocals::default()]);
Ok(Self {
ui,
image_map: Map::new(),
cache: Cache::new(renderer)?,
draw_commands: Vec::new(),
mesh: Mesh::new(),
model: renderer.create_dynamic_model(100),
interface_locals,
ingame_locals: Vec::new(),
window_resized: None,
scale_factor_changed: None,
need_cache_resize: false,
scale,
tooltip_manager,
item_tooltip_manager,
window_scissor: default_scissor(physical_resolution),
})
}
// Set the scaling mode of the ui.
pub fn set_scaling_mode(&mut self, mode: ScaleMode) {
self.scale.set_scaling_mode(mode);
// To clear the cache (it won't be resized in this case)
self.need_cache_resize = true;
// Give conrod the new size.
let (w, h) = self.scale.scaled_resolution().into_tuple();
self.ui.handle_event(Input::Resize(w, h));
}
pub fn scale_factor_changed(&mut self, scale_factor: f64) {
self.scale_factor_changed = Some(scale_factor);
}
// Get a copy of Scale
pub fn scale(&self) -> Scale { self.scale }
pub fn add_graphic(&mut self, graphic: Graphic) -> ImageId {
self.image_map
.insert((self.cache.add_graphic(graphic), Rotation::None))
}
pub fn add_graphic_with_rotations(&mut self, graphic: Graphic) -> img_ids::Rotations {
let graphic_id = self.cache.add_graphic(graphic);
img_ids::Rotations {
none: self.image_map.insert((graphic_id, Rotation::None)),
cw90: self.image_map.insert((graphic_id, Rotation::Cw90)),
cw180: self.image_map.insert((graphic_id, Rotation::Cw180)),
cw270: self.image_map.insert((graphic_id, Rotation::Cw270)),
// Hacky way to make sure a source rectangle always faces north regardless of player
// orientation.
// This is an easy way to get around Conrod's lack of rotation data for images (for this
// specific use case).
source_north: self.image_map.insert((graphic_id, Rotation::SourceNorth)),
// Hacky way to make sure a target rectangle always faces north regardless of player
// orientation.
// This is an easy way to get around Conrod's lack of rotation data for images (for this
// specific use case).
target_north: self.image_map.insert((graphic_id, Rotation::TargetNorth)),
}
}
pub fn replace_graphic(&mut self, id: ImageId, graphic: Graphic) {
let graphic_id = if let Some((graphic_id, _)) = self.image_map.get(&id) {
*graphic_id
} else {
error!("Failed to replace graphic the provided id is not in use");
return;
};
self.cache.replace_graphic(graphic_id, graphic);
self.image_map.replace(id, (graphic_id, Rotation::None));
}
pub fn new_font(&mut self, font: crate::ui::ice::RawFont) -> font::Id {
let font = text::Font::from_bytes(font.0).unwrap();
self.ui.fonts.insert(font)
}
pub fn id_generator(&mut self) -> Generator { self.ui.widget_id_generator() }
pub fn set_widgets(&mut self) -> (UiCell, &mut ItemTooltipManager, &mut TooltipManager) {
(
self.ui.set_widgets(),
&mut self.item_tooltip_manager,
&mut self.tooltip_manager,
)
}
pub fn set_item_widgets(&mut self) -> (UiCell, &mut ItemTooltipManager) {
(self.ui.set_widgets(), &mut self.item_tooltip_manager)
}
// Accepts Option so widget can be unfocused.
pub fn focus_widget(&mut self, id: Option<widget::Id>) {
self.ui.keyboard_capture(match id {
Some(id) => id,
None => self.ui.window,
});
}
// Get id of current widget capturing keyboard.
pub fn widget_capturing_keyboard(&self) -> Option<widget::Id> {
self.ui.global_input().current.widget_capturing_keyboard
}
// Get whether a widget besides the window is capturing the mouse.
pub fn no_widget_capturing_mouse(&self) -> bool {
self.ui
.global_input()
.current
.widget_capturing_mouse
.filter(|id| id != &self.ui.window)
.is_none()
}
// Get the widget graph.
pub fn widget_graph(&self) -> &Graph { self.ui.widget_graph() }
pub fn handle_event(&mut self, event: Event) {
match event.0 {
Input::Resize(w, h) => {
if w > 0.0 && h > 0.0 {
self.window_resized = Some(Vec2::new(w, h))
}
},
Input::Touch(touch) => self.ui.handle_event(Input::Touch(Touch {
xy: self.scale.scale_point(touch.xy.into()).into_array(),
..touch
})),
Input::Motion(motion) => self.ui.handle_event(Input::Motion(match motion {
Motion::MouseCursor { x, y } => {
let (x, y) = self.scale.scale_point(Vec2::new(x, y)).into_tuple();
Motion::MouseCursor { x, y }
},
Motion::MouseRelative { x, y } => {
let (x, y) = self.scale.scale_point(Vec2::new(x, y)).into_tuple();
Motion::MouseRelative { x, y }
},
Motion::Scroll { x, y } => {
let (x, y) = self.scale.scale_point(Vec2::new(x, y)).into_tuple();
Motion::Scroll { x, y }
},
_ => motion,
})),
_ => self.ui.handle_event(event.0),
}
}
pub fn widget_input(&self, id: widget::Id) -> Widget { self.ui.widget_input(id) }
#[allow(clippy::float_cmp)] // TODO: Pending review in #587
pub fn maintain(
&mut self,
renderer: &mut Renderer,
pool: Option<&SlowJobPool>,
view_projection_mat: Option<Mat4<f32>>,
) {
span!(_guard, "maintain", "Ui::maintain");
// Maintain tooltip manager
self.tooltip_manager
.maintain(self.ui.global_input(), self.scale.scale_factor_logical());
// Maintain tooltip manager
self.item_tooltip_manager
.maintain(self.ui.global_input(), self.scale.scale_factor_logical());
// Handle scale factor changing
let need_resize = if let Some(scale_factor) = self.scale_factor_changed.take() {
self.scale.scale_factor_changed(scale_factor)
} else {
false
};
// Handle window resizing.
let need_resize = if let Some(new_dims) = self.window_resized.take() {
let (old_w, old_h) = self.scale.scaled_resolution().into_tuple();
self.scale.window_resized(new_dims);
let (w, h) = self.scale.scaled_resolution().into_tuple();
self.ui.handle_event(Input::Resize(w, h));
self.window_scissor = default_scissor(renderer.resolution());
// Avoid panic in graphic cache when minimizing.
// Avoid resetting cache if window size didn't change
// Somewhat inefficient for elements that won't change size after a window
// resize
let res = renderer.resolution();
res.x > 0 && res.y > 0 && !(old_w == w && old_h == h)
} else {
false
} || need_resize;
if need_resize {
self.need_cache_resize = true;
}
if self.need_cache_resize {
// Resize graphic cache
// FIXME: Handle errors here.
self.cache.resize(renderer).unwrap();
self.need_cache_resize = false;
}
let mut retry = false;
self.maintain_internal(renderer, pool, view_projection_mat, &mut retry);
if retry {
// Update the glyph cache and try again.
self.maintain_internal(renderer, pool, view_projection_mat, &mut retry);
}
}
fn maintain_internal(
&mut self,
renderer: &mut Renderer,
pool: Option<&SlowJobPool>,
view_projection_mat: Option<Mat4<f32>>,
retry: &mut bool,
) {
span!(_guard, "internal", "Ui::maintain_internal");
let (graphic_cache, text_cache, glyph_cache, cache_tex) = self.cache.cache_mut_and_tex();
let mut primitives = if *retry {
// If this is a retry, always redraw.
self.ui.draw()
} else {
// Otherwise, redraw only if widgets were actually updated.
match self.ui.draw_if_changed() {
Some(primitives) => primitives,
None => return,
}
};
let (half_res, x_align, y_align) = {
let res = renderer.resolution();
(
res.map(|e| e as f32 / 2.0),
(res.x & 1) as f32 * 0.5,
(res.y & 1) as f32 * 0.5,
)
};
let ui = &self.ui;
let p_scale_factor = self.scale.scale_factor_physical();
// Functions for converting for conrod scalar coords to GL vertex coords (-1.0
// to 1.0).
let (ui_win_w, ui_win_h) = (ui.win_w, ui.win_h);
let vx = |x: f64| (x / ui_win_w * 2.0) as f32;
let vy = |y: f64| (y / ui_win_h * 2.0) as f32;
let gl_aabr = |rect: Rect| {
let (l, r, b, t) = rect.l_r_b_t();
let min = Vec2::new(
((vx(l) * half_res.x + x_align).round() - x_align) / half_res.x,
((vy(b) * half_res.y + y_align).round() - y_align) / half_res.y,
);
let max = Vec2::new(
((vx(r) * half_res.x + x_align).round() - x_align) / half_res.x,
((vy(t) * half_res.y + y_align).round() - y_align) / half_res.y,
);
Aabr { min, max }
};
// let window_dim = ui.window_dim();
let theme = &ui.theme;
let widget_graph = ui.widget_graph();
let fonts = &ui.fonts;
let dpi_factor = p_scale_factor as f32;
// We can use information about whether a widget was actually updated to more
// easily track cache invalidations.
let updated_widgets = ui.updated_widgets();
let mut glyph_missing = false;
updated_widgets.iter()
// Filter out widgets that are either:
// - not text primitives, or
// - are text primitives, but were both already in the cache, and not updated this
// frame.
//
// The reason the second condition is so complicated is that we want to handle cases
// where we cleared the whole cache, which can result in glyphs from text updated in a
// previous frame not being present in the text cache.
.filter_map(|(&widget_id, updated)| {
widget_graph.widget(widget_id)
.and_then(|widget| Some((widget.rect, widget.unique_widget_state::<widget::Text>()?)))
.and_then(|(rect, text)| {
// NOTE: This fallback is weird and probably shouldn't exist.
let font_id = text.style.font_id(theme)/*.or_else(|| fonts.ids().next())*/?;
let font = fonts.get(font_id)?;
Some((widget_id, updated, rect, text, font_id, font))
})
})
// Recache the entry.
.for_each(|(widget_id, updated, rect, graph::UniqueWidgetState { state, style }, font_id, font)| {
let entry = match text_cache.entry(widget_id) {
Entry::Occupied(_) if !updated => return,
entry => entry,
};
// Retrieve styling.
let color = style.color(theme);
let font_size = style.font_size(theme);
let line_spacing = style.line_spacing(theme);
let justify = style.justify(theme);
let y_align = conrod_core::position::Align::End;
let text = &state.string;
let line_infos = &state.line_infos;
// Convert conrod coordinates to pixel coordinates.
let trans_x = |x: Scalar| (x + ui_win_w / 2.0) * dpi_factor as Scalar;
let trans_y = |y: Scalar| ((-y) + ui_win_h / 2.0) * dpi_factor as Scalar;
// Produce the text layout iterators.
let lines = line_infos.iter().map(|info| &text[info.byte_range()]);
let line_rects = text::line::rects(line_infos.iter(), font_size, rect,
justify, y_align, line_spacing);
// Grab the positioned glyphs from the text primitives.
let scale = text::f32_pt_to_scale(font_size as f32 * dpi_factor);
let positioned_glyphs = lines.zip(line_rects).flat_map(|(line, line_rect)| {
let (x, y) = (trans_x(line_rect.left()) as f32, trans_y(line_rect.bottom()) as f32);
let point = text::rt::Point { x, y };
font.layout(line, scale, point)
});
// Reuse the mesh allocation if possible at this entry if possible; we
// then clear it to avoid using stale entries.
let mesh = entry.or_insert_with(Mesh::new);
mesh.clear();
let color = srgba_to_linear(color.to_fsa().into());
positioned_glyphs.for_each(|g| {
match glyph_cache.rect_for(font_id.index(), &g) {
Ok(Some((uv_rect, screen_rect))) => {
let uv = Aabr {
min: Vec2::new(uv_rect.min.x, uv_rect.max.y),
max: Vec2::new(uv_rect.max.x, uv_rect.min.y),
};
let rect = Aabr {
min: Vec2::new(
vx(screen_rect.min.x as f64 / p_scale_factor
- ui.win_w / 2.0),
vy(ui.win_h / 2.0
- screen_rect.max.y as f64 / p_scale_factor),
),
max: Vec2::new(
vx(screen_rect.max.x as f64 / p_scale_factor
- ui.win_w / 2.0),
vy(ui.win_h / 2.0
- screen_rect.min.y as f64 / p_scale_factor),
),
};
mesh.push_quad(create_ui_quad(rect, uv, color, UiMode::Text));
},
// Glyph not found, no-op.
Ok(None) => {},
// Glyph was found, but was not yet cached; we'll need to add it to the
// cache and retry.
Err(_) => {
// Queue the unknown glyph to be cached.
glyph_missing = true;
}
}
// NOTE: Important to do this for *all* glyphs to try to make sure that
// any that are uncached are part of the graph. Because we always
// clear the entire cache whenever a new glyph is encountered, by
// adding and checking all glyphs as they come in we guarantee that (1)
// any glyphs in the text cache are in the queue, and (2) any glyphs
// not in the text cache are either in the glyph cache, or (during our
// processing here) we set the retry flag to force a glyph cache
// update. Setting the flag causes all glyphs in the current queue to
// become part of the glyph cache during the second call to
// `maintain_internal`, so as long as the cache refresh succeeded,
// during the second call all glyphs will hit this branch as desired.
glyph_cache.queue_glyph(font_id.index(), g);
});
});
if glyph_missing {
#[allow(clippy::branches_sharing_code)] // TODO: evaluate (ask sharp)
if *retry {
// If a glyph was missing and this was our second try, we know something was
// messed up during the glyph_cache redraw. It is possible that
// the queue contained unneeded glyphs, so we don't necessarily
// have to give up; a more precise enumeration of the
// glyphs required to render this frame might work out. However, this is a
// pretty remote edge case, so we opt to not care about this
// frame (we skip rendering it, basically), and just clear the
// text cache and glyph queue; next frame will then
// start out with an empty slate, and therefore will enqueue precisely the
// glyphs needed for that frame. If *that* frame fails, we're
// in bigger trouble.
text_cache.clear();
glyph_cache.clear();
glyph_cache.clear_queue();
self.ui.needs_redraw();
warn!("Could not recache queued glyphs, skipping frame.");
} else {
// NOTE: If this is the first round after encountering a new glyph, we just
// refresh the whole glyph cache. Technically this is not necessary since
// positioned_glyphs should still be accurate, but it's just the easiest way
// to ensure that all glyph positions get updated. It also helps keep the glyph
// cache reasonable by making sure any glyphs that subsequently get rendered are
// actually in the cache, including glyphs that were mapped to ids but didn't
// happen to be rendered on the frame where the cache was
// refreshed.
text_cache.clear();
tracing::debug!("Updating glyphs and clearing text cache.");
if let Err(err) = glyph_cache.cache_queued(|rect, data| {
let offset = [rect.min.x as u32, rect.min.y as u32];
let size = [rect.width() as u32, rect.height() as u32];
let new_data = data
.iter()
.map(|x| [255, 255, 255, *x])
.collect::<Vec<[u8; 4]>>();
renderer.update_texture(&cache_tex.0, offset, size, &new_data);
}) {
// FIXME: If we actually hit this error, it's still possible we could salvage
// things in various ways (for instance, the current queue might have extra
// stuff in it, so we could try calling maintain_internal a
// third time with a fully clean queue; or we could try to
// increase the glyph texture size, etc. But hopefully
// we will not actually encounter this error.
warn!("Failed to cache queued glyphs: {:?}", err);
// Clear queued glyphs, so that (hopefully) next time we won't have the
// offending glyph or glyph set. We then exit the loop and don't try to
// rerender the frame.
glyph_cache.clear_queue();
self.ui.needs_redraw();
} else {
// Successfully cached, so repeat the loop.
*retry = true;
}
}
return;
}
self.draw_commands.clear();
let mesh = &mut self.mesh;
mesh.clear();
enum State {
Image(TexId),
Plain,
}
let mut current_state = State::Plain;
let mut start = 0;
let window_scissor = self.window_scissor;
let mut current_scissor = window_scissor;
let mut ingame_local_index = 0;
enum Placement {
Interface,
// Number of primitives left to render ingame and visibility
InWorld(usize, bool),
}
let mut placement = Placement::Interface;
// Switches to the `Plain` state and completes the previous `Command` if not
// already in the `Plain` state.
macro_rules! switch_to_plain_state {
() => {
if let State::Image(id) = current_state {
self.draw_commands
.push(DrawCommand::image(start..mesh.vertices().len(), id));
start = mesh.vertices().len();
current_state = State::Plain;
}
};
}
while let Some(prim) = primitives.next() {
let Primitive {
kind,
scizzor,
rect,
id: widget_id,
} = prim;
// Check for a change in the scissor.
let new_scissor = {
let (l, b, w, h) = scizzor.l_b_w_h();
let scale_factor = self.scale.scale_factor_physical();
// Calculate minimum x and y coordinates while
// flipping y axis (from +up to +down) and
// moving origin to top-left corner (from middle).
let min_x = ui.win_w / 2.0 + l;
let min_y = ui.win_h / 2.0 - b - h;
let intersection = Aabr {
min: Vec2 {
x: (min_x * scale_factor) as u16,
y: (min_y * scale_factor) as u16,
},
max: Vec2 {
x: ((min_x + w) * scale_factor) as u16,
y: ((min_y + h) * scale_factor) as u16,
},
}
.intersection(window_scissor);
if intersection.is_valid() && intersection.size().map(|s| s > 0).reduce_and() {
intersection
} else {
// TODO: What should we return here
// We used to return a zero sized aabr but it's invalid to
// use a zero sized scissor so for now we just don't change
// the scissor.
current_scissor
}
};
if new_scissor != current_scissor {
// Finish the current command.
self.draw_commands.push(match current_state {
State::Plain => DrawCommand::plain(start..mesh.vertices().len()),
State::Image(id) => DrawCommand::image(start..mesh.vertices().len(), id),
});
start = mesh.vertices().len();
// Update the scissor and produce a command.
current_scissor = new_scissor;
self.draw_commands.push(DrawCommand::Scissor(new_scissor));
}
match placement {
// No primitives left to place in the world at the current position, go back to
// drawing the interface
Placement::InWorld(0, _) => {
placement = Placement::Interface;
// Finish current state
self.draw_commands.push(match current_state {
State::Plain => DrawCommand::plain(start..mesh.vertices().len()),
State::Image(id) => DrawCommand::image(start..mesh.vertices().len(), id),
});
start = mesh.vertices().len();
// Push new position command
self.draw_commands.push(DrawCommand::WorldPos(None));
},
// Primitives still left to draw ingame
Placement::InWorld(num_prims, visible) => match kind {
// Other types aren't drawn & shouldn't decrement the number of primitives left
// to draw ingame
PrimitiveKind::Other(_) => {},
// Decrement the number of primitives left
_ => {
placement = Placement::InWorld(num_prims - 1, visible);
// Behind the camera
if !visible {
continue;
}
},
},
Placement::Interface => {},
}
match kind {
PrimitiveKind::Image {
image_id,
color,
source_rect,
} => {
let (graphic_id, rotation) = self
.image_map
.get(&image_id)
.expect("Image does not exist in image map");
let gl_aabr = gl_aabr(rect);
let (source_aabr, gl_size) = {
// Transform the source rectangle into uv coordinate.
// TODO: Make sure this is right. Especially the conversions.
let ((uv_l, uv_r, uv_b, uv_t), gl_size) =
match graphic_cache.get_graphic(*graphic_id) {
Some(Graphic::Blank) | None => continue,
Some(Graphic::Image(image, ..)) => {
source_rect.and_then(|src_rect| {
let (image_w, image_h) = image.dimensions();
let (source_w, source_h) = src_rect.w_h();
let gl_size = gl_aabr.size();
if image_w == 0
|| image_h == 0
|| source_w < 1.0
|| source_h < 1.0
|| gl_size.reduce_partial_min() < f32::EPSILON
{
None
} else {
// Multiply drawn image size by ratio of original image
// size to
// source rectangle size (since as the proportion of the
// image gets
// smaller, the drawn size should get bigger), up to the
// actual
// size of the original image.
let ratio_x = (image_w as f64 / source_w).min(
(image_w as f64 / (gl_size.w * half_res.x) as f64)
.max(1.0),
);
let ratio_y = (image_h as f64 / source_h).min(
(image_h as f64 / (gl_size.h * half_res.y) as f64)
.max(1.0),
);
let (l, r, b, t) = src_rect.l_r_b_t();
Some((
(
l / image_w as f64, /* * ratio_x*/
r / image_w as f64, /* * ratio_x*/
b / image_h as f64, /* * ratio_y*/
t / image_h as f64, /* * ratio_y*/
),
Extent2::new(
(gl_size.w as f64 * ratio_x) as f32,
(gl_size.h as f64 * ratio_y) as f32,
),
))
/* ((l / image_w as f64),
(r / image_w as f64),
(b / image_h as f64),
(t / image_h as f64)) */
}
})
},
// No easy way to interpret source_rect for voxels...
Some(Graphic::Voxel(..)) => None,
}
.unwrap_or_else(|| ((0.0, 1.0, 0.0, 1.0), gl_aabr.size()));
(
Aabr {
min: Vec2::new(uv_l, uv_b),
max: Vec2::new(uv_r, uv_t),
},
gl_size,
)
};
let resolution = Vec2::new(
(gl_size.w * half_res.x).round() as u16,
(gl_size.h * half_res.y).round() as u16,
);
// Don't do anything if resolution is zero
if resolution.map(|e| e == 0).reduce_or() {
continue;
// TODO: consider logging unneeded elements
}
let color =
srgba_to_linear(color.unwrap_or(conrod_core::color::WHITE).to_fsa().into());
// Cache graphic at particular resolution.
let (uv_aabr, tex_id) = match graphic_cache.cache_res(
renderer,
pool,
*graphic_id,
resolution,
source_aabr,
*rotation,
) {
// TODO: get dims from graphic_cache (or have it return floats directly)
Some((aabr, tex_id)) => {
let cache_dims = graphic_cache
.get_tex(tex_id)
.0
.get_dimensions()
.xy()
.map(|e| e as f32);
let min = Vec2::new(aabr.min.x as f32, aabr.max.y as f32) / cache_dims;
let max = Vec2::new(aabr.max.x as f32, aabr.min.y as f32) / cache_dims;
(Aabr { min, max }, tex_id)
},
None => continue,
};
match current_state {
// Switch to the image state if we are not in it already.
State::Plain => {
self.draw_commands
.push(DrawCommand::plain(start..mesh.vertices().len()));
start = mesh.vertices().len();
current_state = State::Image(tex_id);
},
// If the image is cached in a different texture switch to the new one
State::Image(id) if id != tex_id => {
self.draw_commands
.push(DrawCommand::image(start..mesh.vertices().len(), id));
start = mesh.vertices().len();
current_state = State::Image(tex_id);
},
State::Image(_) => {},
}
mesh.push_quad(create_ui_quad(gl_aabr, uv_aabr, color, match *rotation {
Rotation::None | Rotation::Cw90 | Rotation::Cw180 | Rotation::Cw270 => {
UiMode::Image
},
Rotation::SourceNorth => UiMode::ImageSourceNorth,
Rotation::TargetNorth => UiMode::ImageTargetNorth,
}));
},
PrimitiveKind::Text { .. } => {
switch_to_plain_state!();
// Mesh should already be cached.
mesh.push_mesh(
text_cache
.get(&widget_id)
.as_deref()
.unwrap_or(&Mesh::new()),
);
},
PrimitiveKind::Rectangle { color } => {
let color = srgba_to_linear(color.to_fsa().into());
// Don't draw a transparent rectangle.
if color[3] == 0.0 {
continue;
}
switch_to_plain_state!();
mesh.push_quad(create_ui_quad(
gl_aabr(rect),
Aabr {
min: Vec2::zero(),
max: Vec2::zero(),
},
color,
UiMode::Geometry,
));
},
PrimitiveKind::TrianglesSingleColor { color, triangles } => {
// Don't draw transparent triangle or switch state if there are actually no
// triangles.
let color = srgba_to_linear(Rgba::from(Into::<[f32; 4]>::into(color)));
if triangles.is_empty() || color[3] == 0.0 {
continue;
}
switch_to_plain_state!();
for tri in triangles {
let p1 = Vec2::new(vx(tri[0][0]), vy(tri[0][1]));
let p2 = Vec2::new(vx(tri[1][0]), vy(tri[1][1]));
let p3 = Vec2::new(vx(tri[2][0]), vy(tri[2][1]));
// If triangle is clockwise, reverse it.
let (v1, v2): (Vec3<f32>, Vec3<f32>) = ((p2 - p1).into(), (p3 - p1).into());
let triangle = if v1.cross(v2).z > 0.0 {
[p1.into_array(), p2.into_array(), p3.into_array()]
} else {
[p2.into_array(), p1.into_array(), p3.into_array()]
};
mesh.push_tri(create_ui_tri(
triangle,
[[0.0; 2]; 3],
color,
UiMode::Geometry,
));
}
},
PrimitiveKind::Other(container) => {
if container.type_id == std::any::TypeId::of::<widgets::ingame::State>() {
// Calculate the scale factor to pixels at this 3d point using the camera.
if let Some(view_projection_mat) = view_projection_mat {
// Retrieve world position
let parameters = container
.state_and_style::<widgets::ingame::State, widgets::ingame::Style>()
.unwrap()
.state
.parameters;
let pos_on_screen = (view_projection_mat
* Vec4::from_point(parameters.pos))
.homogenized();
let visible = if pos_on_screen.z > 0.0 && pos_on_screen.z < 1.0 {
let x = pos_on_screen.x;
let y = pos_on_screen.y;
let (w, h) = parameters.dims.into_tuple();
let (half_w, half_h) = (w / ui_win_w as f32, h / ui_win_h as f32);
(x - half_w < 1.0 && x + half_w > -1.0)
&& (y - half_h < 1.0 && y + half_h > -1.0)
} else {
false
};
// Don't process ingame elements outside the frustum
placement = if visible {
// Finish current state
self.draw_commands.push(match current_state {
State::Plain => {
DrawCommand::plain(start..mesh.vertices().len())
},
State::Image(id) => {
DrawCommand::image(start..mesh.vertices().len(), id)
},
});
start = mesh.vertices().len();
// Push new position command
let world_pos = Vec4::from_point(parameters.pos);
if self.ingame_locals.len() > ingame_local_index {
renderer.update_consts(
&mut self.ingame_locals[ingame_local_index],
&[world_pos.into()],
)
} else {
self.ingame_locals
.push(renderer.create_ui_bound_locals(&[world_pos.into()]));
}
self.draw_commands
.push(DrawCommand::WorldPos(Some(ingame_local_index)));
ingame_local_index += 1;
Placement::InWorld(parameters.num, true)
} else {
Placement::InWorld(parameters.num, false)
};
}
}
},
_ => {}, /* TODO: Add this.
*PrimitiveKind::TrianglesMultiColor {..} => {println!("primitive kind
* multicolor with id {:?}", id);} */
}
}
// Enter the final command.
self.draw_commands.push(match current_state {
State::Plain => DrawCommand::plain(start..mesh.vertices().len()),
State::Image(id) => DrawCommand::image(start..mesh.vertices().len(), id),
});
/* // Draw glyph cache (use for debugging).
self.draw_commands
.push(DrawCommand::Scissor(default_scissor(renderer)));
start = mesh.vertices().len();
mesh.push_quad(create_ui_quad(
Aabr {
min: (-1.0, -1.0).into(),
max: (1.0, 1.0).into(),
},
Aabr {
min: (0.0, 1.0).into(),
max: (1.0, 0.0).into(),
},
Rgba::new(1.0, 1.0, 1.0, 0.8),
UiMode::Text,
));
self.draw_commands
.push(DrawCommand::plain(start..mesh.vertices().len())); */
// Create a larger dynamic model if the mesh is larger than the current model
// size.
if self.model.len() < self.mesh.vertices().len() {
self.model = renderer.create_dynamic_model(self.mesh.vertices().len() * 4 / 3);
}
// Update model with new mesh.
renderer.update_model(&self.model, &self.mesh, 0);
}
pub fn render<'pass, 'data: 'pass>(&'data self, drawer: &mut UiDrawer<'_, 'pass>) {
span!(_guard, "render", "Ui::render");
let mut drawer = drawer.prepare(&self.interface_locals, &self.model, self.window_scissor);
for draw_command in self.draw_commands.iter() {
match draw_command {
DrawCommand::Scissor(new_scissor) => {
drawer.set_scissor(*new_scissor);
},
DrawCommand::WorldPos(index) => {
drawer.set_locals(
index.map_or(&self.interface_locals, |i| &self.ingame_locals[i]),
);
},
DrawCommand::Draw { kind, verts } => {
let tex = match kind {
DrawKind::Image(tex_id) => self.cache.graphic_cache().get_tex(*tex_id),
DrawKind::Plain => self.cache.glyph_cache_tex(),
};
drawer.draw(&tex.1, verts.clone()); // Note: trivial clone
},
}
}
}
}
fn default_scissor(physical_resolution: Vec2<u32>) -> Aabr<u16> {
let (screen_w, screen_h) = physical_resolution.into_tuple();
Aabr {
min: Vec2 { x: 0, y: 0 },
max: Vec2 {
x: screen_w as u16,
y: screen_h as u16,
},
}
}