veloren/network/src/api.rs
2020-07-04 12:31:59 +02:00

1028 lines
41 KiB
Rust

//!
//!
//!
//! (cd network/examples/async_recv && RUST_BACKTRACE=1 cargo run)
use crate::{
message::{self, partial_eq_bincode, IncomingMessage, MessageBuffer, OutgoingMessage},
scheduler::Scheduler,
types::{Mid, Pid, Prio, Promises, Sid},
};
use async_std::{io, sync::RwLock, task};
use futures::{
channel::{mpsc, oneshot},
sink::SinkExt,
stream::StreamExt,
};
use prometheus::Registry;
use serde::{de::DeserializeOwned, Serialize};
use std::{
collections::HashMap,
net::SocketAddr,
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
};
use tracing::*;
use tracing_futures::Instrument;
/// Represents a Tcp or Udp or Mpsc address
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
pub enum Address {
Tcp(SocketAddr),
Udp(SocketAddr),
Mpsc(u64),
}
/// `Participants` are generated by the [`Network`] and represent a connection
/// to a remote Participant. Look at the [`connect`] and [`connected`] method of
/// [`Networks`] on how to generate `Participants`
///
/// [`Networks`]: crate::api::Network
/// [`connect`]: Network::connect
/// [`connected`]: Network::connected
pub struct Participant {
local_pid: Pid,
remote_pid: Pid,
a2b_steam_open_s: RwLock<mpsc::UnboundedSender<(Prio, Promises, oneshot::Sender<Stream>)>>,
b2a_stream_opened_r: RwLock<mpsc::UnboundedReceiver<Stream>>,
closed: AtomicBool,
a2s_disconnect_s:
Option<mpsc::UnboundedSender<(Pid, oneshot::Sender<async_std::io::Result<()>>)>>,
}
/// `Streams` represents a channel to send `n` messages with a certain priority
/// and [`Promises`]. messages need always to be send between 2 `Streams`.
///
/// `Streams` are generated by the [`Participant`].
/// Look at the [`open`] and [`opened`] method of [`Participant`] on how to
/// generate `Streams`
///
/// Unlike [`Network`] and [`Participant`], `Streams` don't implement interior
/// mutability, as multiple threads don't need access to the same `Stream`.
///
/// [`Networks`]: crate::api::Network
/// [`open`]: Participant::open
/// [`opened`]: Participant::opened
#[derive(Debug)]
pub struct Stream {
pid: Pid,
sid: Sid,
mid: Mid,
prio: Prio,
promises: Promises,
a2b_msg_s: crossbeam_channel::Sender<(Prio, Sid, OutgoingMessage)>,
b2a_msg_recv_r: mpsc::UnboundedReceiver<IncomingMessage>,
closed: Arc<AtomicBool>,
a2b_close_stream_s: Option<mpsc::UnboundedSender<Sid>>,
}
/// Error type thrown by [`Networks`](Network) methods
#[derive(Debug)]
pub enum NetworkError {
NetworkClosed,
ListenFailed(std::io::Error),
}
/// Error type thrown by [`Participants`](Participant) methods
#[derive(Debug, PartialEq)]
pub enum ParticipantError {
ParticipantClosed,
}
/// Error type thrown by [`Streams`](Stream) methods
#[derive(Debug)]
pub enum StreamError {
StreamClosed,
DeserializeError(Box<bincode::ErrorKind>),
}
/// Use the `Network` to create connections to other [`Participants`]
///
/// The `Network` is the single source that handles all connections in your
/// Application. You can pass it around multiple threads in an
/// [`Arc`](std::sync::Arc) as all commands have internal mutability.
///
/// The `Network` has methods to [`connect`] and [`disconnect`] to other
/// [`Participants`] via their [`Address`]. All [`Participants`] will be stored
/// in the Network until explicitly disconnected, which is the only way to close
/// the sockets.
///
/// # Examples
/// ```rust
/// use veloren_network::{Network, Address, Pid};
/// use futures::executor::block_on;
///
/// # fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
/// // Create a Network, listen on port `2999` to accept connections and connect to port `8080` to connect to a (pseudo) database Application
/// let (network, f) = Network::new(Pid::new(), None);
/// std::thread::spawn(f);
/// block_on(async{
/// # //setup pseudo database!
/// # let (database, fd) = Network::new(Pid::new(), None);
/// # std::thread::spawn(fd);
/// # database.listen(Address::Tcp("127.0.0.1:8080".parse().unwrap())).await?;
/// network.listen(Address::Tcp("127.0.0.1:2999".parse().unwrap())).await?;
/// let database = network.connect(Address::Tcp("127.0.0.1:8080".parse().unwrap())).await?;
/// # Ok(())
/// })
/// # }
/// ```
///
/// [`Participants`]: crate::api::Participant
/// [`connect`]: Network::connect
/// [`disconnect`]: Network::disconnect
pub struct Network {
local_pid: Pid,
participants: RwLock<HashMap<Pid, Arc<Participant>>>,
listen_sender:
RwLock<mpsc::UnboundedSender<(Address, oneshot::Sender<async_std::io::Result<()>>)>>,
connect_sender:
RwLock<mpsc::UnboundedSender<(Address, oneshot::Sender<io::Result<Participant>>)>>,
connected_receiver: RwLock<mpsc::UnboundedReceiver<Participant>>,
shutdown_sender: Option<oneshot::Sender<()>>,
}
impl Network {
/// Generates a new `Network` to handle all connections in an Application
///
/// # Arguments
/// * `participant_id` - provide it by calling [`Pid::new()`], usually you
/// don't want to reuse a Pid for 2 `Networks`
/// * `registry` - Provide a Registy in order to collect Prometheus metrics
/// by this `Network`, `None` will deactivate Tracing. Tracing is done via
/// [`prometheus`]
///
/// # Result
/// * `Self` - returns a `Network` which can be `Send` to multiple areas of
/// your code, including multiple threads. This is the base strct of this
/// crate.
/// * `FnOnce` - you need to run the returning FnOnce exactly once, probably
/// in it's own thread. this is NOT done internally, so that you are free
/// to choose the threadpool implementation of your choice. We recommend
/// using [`ThreadPool`] from [`uvth`] crate. This fn will runn the
/// Scheduler to handle all `Network` internals. Additional threads will
/// be allocated on an internal async-aware threadpool
///
/// # Examples
/// ```rust
/// //Example with uvth
/// use uvth::ThreadPoolBuilder;
/// use veloren_network::{Address, Network, Pid};
///
/// let pool = ThreadPoolBuilder::new().build();
/// let (network, f) = Network::new(Pid::new(), None);
/// pool.execute(f);
/// ```
///
/// ```rust
/// //Example with std::thread
/// use veloren_network::{Address, Network, Pid};
///
/// let (network, f) = Network::new(Pid::new(), None);
/// std::thread::spawn(f);
/// ```
///
/// Usually you only create a single `Network` for an appliregistrycation,
/// except when client and server are in the same application, then you
/// will want 2. However there are no technical limitations from
/// creating more.
///
/// [`Pid::new()`]: crate::types::Pid::new
/// [`ThreadPool`]: https://docs.rs/uvth/newest/uvth/struct.ThreadPool.html
/// [`uvth`]: https://docs.rs/uvth
pub fn new(
participant_id: Pid,
registry: Option<&Registry>,
) -> (Self, impl std::ops::FnOnce()) {
let p = participant_id;
debug!(?p, "starting Network");
let (scheduler, listen_sender, connect_sender, connected_receiver, shutdown_sender) =
Scheduler::new(participant_id, registry);
(
Self {
local_pid: participant_id,
participants: RwLock::new(HashMap::new()),
listen_sender: RwLock::new(listen_sender),
connect_sender: RwLock::new(connect_sender),
connected_receiver: RwLock::new(connected_receiver),
shutdown_sender: Some(shutdown_sender),
},
move || {
trace!(?p, "starting sheduler in own thread");
let _handle = task::block_on(
scheduler
.run()
.instrument(tracing::info_span!("scheduler", ?p)),
);
trace!(?p, "stopping sheduler and his own thread");
},
)
}
/// starts listening on an [`Address`].
/// When the method returns the `Network` is ready to listen for incoming
/// connections OR has returned a [`NetworkError`] (e.g. port already used).
/// You can call [`connected`] to asynchrony wait for a [`Participant`] to
/// connect. You can call `listen` on multiple addresses, e.g. to
/// support multiple Protocols or NICs.
///
/// # Examples
/// ```rust
/// use futures::executor::block_on;
/// use veloren_network::{Address, Network, Pid};
///
/// # fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
/// // Create a Network, listen on port `2000` TCP on all NICs and `2001` UDP locally
/// let (network, f) = Network::new(Pid::new(), None);
/// std::thread::spawn(f);
/// block_on(async {
/// network
/// .listen(Address::Tcp("0.0.0.0:2000".parse().unwrap()))
/// .await?;
/// network
/// .listen(Address::Udp("127.0.0.1:2001".parse().unwrap()))
/// .await?;
/// # Ok(())
/// })
/// # }
/// ```
///
/// [`connected`]: Network::connected
pub async fn listen(&self, address: Address) -> Result<(), NetworkError> {
let (s2a_result_s, s2a_result_r) = oneshot::channel::<async_std::io::Result<()>>();
debug!(?address, "listening on address");
self.listen_sender
.write()
.await
.send((address, s2a_result_s))
.await?;
match s2a_result_r.await? {
//waiting guarantees that we either listened sucessfully or get an error like port in
// use
Ok(()) => Ok(()),
Err(e) => Err(NetworkError::ListenFailed(e)),
}
}
/// starts connectiong to an [`Address`].
/// When the method returns the Network either returns a [`Participant`]
/// ready to open [`Streams`] on OR has returned a [`NetworkError`] (e.g.
/// can't connect, or invalid Handshake) # Examples
/// ```rust
/// use futures::executor::block_on;
/// use veloren_network::{Address, Network, Pid};
///
/// # fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
/// // Create a Network, connect on port `2010` TCP and `2011` UDP like listening above
/// let (network, f) = Network::new(Pid::new(), None);
/// std::thread::spawn(f);
/// # let (remote, fr) = Network::new(Pid::new(), None);
/// # std::thread::spawn(fr);
/// block_on(async {
/// # remote.listen(Address::Tcp("0.0.0.0:2010".parse().unwrap())).await?;
/// # remote.listen(Address::Udp("0.0.0.0:2011".parse().unwrap())).await?;
/// let p1 = network
/// .connect(Address::Tcp("127.0.0.1:2010".parse().unwrap()))
/// .await?;
/// # //this doesn't work yet, so skip the test
/// # //TODO fixme!
/// # return Ok(());
/// let p2 = network
/// .connect(Address::Udp("127.0.0.1:2011".parse().unwrap()))
/// .await?;
/// assert!(std::sync::Arc::ptr_eq(&p1, &p2));
/// # Ok(())
/// })
/// # }
/// ```
/// Usually the `Network` guarantees that a operation on a [`Participant`]
/// succeeds, e.g. by automatic retrying unless it fails completely e.g. by
/// disconnecting from the remote. If 2 [`Addresses`] you `connect` to
/// belongs to the same [`Participant`], you get the same [`Participant`] as
/// a result. This is useful e.g. by connecting to the same
/// [`Participant`] via multiple Protocols.
///
/// [`Streams`]: crate::api::Stream
/// [`Addresses`]: crate::api::Address
pub async fn connect(&self, address: Address) -> Result<Arc<Participant>, NetworkError> {
let (pid_sender, pid_receiver) = oneshot::channel::<io::Result<Participant>>();
debug!(?address, "connect to address");
self.connect_sender
.write()
.await
.send((address, pid_sender))
.await?;
let participant = pid_receiver.await??;
let pid = participant.remote_pid;
debug!(
?pid,
"received Participant id from remote and return to user"
);
let participant = Arc::new(participant);
self.participants
.write()
.await
.insert(participant.remote_pid, participant.clone());
Ok(participant)
}
/// returns a [`Participant`] created from a [`Address`] you called
/// [`listen`] on before. This function will either return a working
/// [`Participant`] ready to open [`Streams`] on OR has returned a
/// [`NetworkError`] (e.g. Network got closed)
///
/// # Examples
/// ```rust
/// use futures::executor::block_on;
/// use veloren_network::{Address, Network, Pid};
///
/// # fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
/// // Create a Network, listen on port `2020` TCP and opens returns their Pid
/// let (network, f) = Network::new(Pid::new(), None);
/// std::thread::spawn(f);
/// # let (remote, fr) = Network::new(Pid::new(), None);
/// # std::thread::spawn(fr);
/// block_on(async {
/// network
/// .listen(Address::Tcp("0.0.0.0:2020".parse().unwrap()))
/// .await?;
/// # remote.connect(Address::Tcp("0.0.0.0:2020".parse().unwrap())).await?;
/// while let Ok(participant) = network.connected().await {
/// println!("Participant connected: {}", participant.remote_pid());
/// # //skip test here as it would be a endless loop
/// # break;
/// }
/// # Ok(())
/// })
/// # }
/// ```
///
/// [`Streams`]: crate::api::Stream
/// [`listen`]: crate::api::Network::listen
pub async fn connected(&self) -> Result<Arc<Participant>, NetworkError> {
let participant = self.connected_receiver.write().await.next().await?;
let participant = Arc::new(participant);
self.participants
.write()
.await
.insert(participant.remote_pid, participant.clone());
Ok(participant)
}
/// disconnecting a [`Participant`] where you move the last existing
/// [`Arc<Participant>`]. As the [`Network`] also holds [`Arc`] to the
/// [`Participant`], you need to provide the last [`Arc<Participant>`] and
/// are not allowed to keep others. If you do so the [`Participant`]
/// can't be disconnected properly. If you no longer have the respective
/// [`Participant`], try using the [`participants`] method to get it.
///
/// This function will wait for all [`Streams`] to properly close, including
/// all messages to be send before closing. If an error occurs with one
/// of the messages.
/// Except if the remote side already dropped the [`Participant`]
/// simultaneously, then messages won't be sended
///
/// There is NO `disconnected` function in `Network`, if a [`Participant`]
/// is no longer reachable (e.g. as the network cable was unplugged) the
/// [`Participant`] will fail all action, but needs to be manually
/// disconected, using this function.
///
/// # Examples
/// ```rust
/// use futures::executor::block_on;
/// use veloren_network::{Address, Network, Pid};
///
/// # fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
/// // Create a Network, listen on port `2030` TCP and opens returns their Pid and close connection.
/// let (network, f) = Network::new(Pid::new(), None);
/// std::thread::spawn(f);
/// # let (remote, fr) = Network::new(Pid::new(), None);
/// # std::thread::spawn(fr);
/// block_on(async {
/// network
/// .listen(Address::Tcp("0.0.0.0:2030".parse().unwrap()))
/// .await?;
/// # remote.connect(Address::Tcp("0.0.0.0:2030".parse().unwrap())).await?;
/// while let Ok(participant) = network.connected().await {
/// println!("Participant connected: {}", participant.remote_pid());
/// network.disconnect(participant).await?;
/// # //skip test here as it would be a endless loop
/// # break;
/// }
/// # Ok(())
/// })
/// # }
/// ```
///
/// [`Arc<Participant>`]: crate::api::Participant
/// [`Streams`]: crate::api::Stream
/// [`participants`]: Network::participants
/// [`Arc`]: std::sync::Arc
pub async fn disconnect(&self, participant: Arc<Participant>) -> Result<(), NetworkError> {
// Remove, Close and try_unwrap error when unwrap fails!
let pid = participant.remote_pid;
debug!(?pid, "removing participant from network");
self.participants.write().await.remove(&pid)?;
participant.closed.store(true, Ordering::Relaxed);
match Arc::try_unwrap(participant) {
Err(_) => {
warn!(
"you are disconnecting and still keeping a reference to this participant, \
this is a bad idea. Participant will only be dropped when you drop your last \
reference"
);
},
Ok(mut participant) => {
trace!("waiting now for participant to close");
let (finished_sender, finished_receiver) = oneshot::channel();
// we are deleting here asyncly before DROP is called. Because this is done
// nativly async, while drop needs an BLOCK! Drop will recognis
// that it has been delete here and don't try another double delete.
participant
.a2s_disconnect_s
.take()
.unwrap()
.send((pid, finished_sender))
.await
.expect("something is wrong in internal scheduler coding");
let res = finished_receiver.await.unwrap();
trace!("participant is now closed");
res?;
},
};
Ok(())
}
/// returns a copy of all current connected [`Participants`],
/// including ones, which can't send data anymore as the underlying sockets
/// are closed already but haven't been [`disconnected`] yet.
///
/// [`Participants`]: crate::api::Participant
/// [`disconnected`]: Network::disconnect
pub async fn participants(&self) -> HashMap<Pid, Arc<Participant>> {
self.participants.read().await.clone()
}
}
impl Participant {
pub(crate) fn new(
local_pid: Pid,
remote_pid: Pid,
a2b_steam_open_s: mpsc::UnboundedSender<(Prio, Promises, oneshot::Sender<Stream>)>,
b2a_stream_opened_r: mpsc::UnboundedReceiver<Stream>,
a2s_disconnect_s: mpsc::UnboundedSender<(Pid, oneshot::Sender<async_std::io::Result<()>>)>,
) -> Self {
Self {
local_pid,
remote_pid,
a2b_steam_open_s: RwLock::new(a2b_steam_open_s),
b2a_stream_opened_r: RwLock::new(b2a_stream_opened_r),
closed: AtomicBool::new(false),
a2s_disconnect_s: Some(a2s_disconnect_s),
}
}
/// Opens a [`Stream`] on this `Participant` with a certain Priority and
/// [`Promises`]
///
/// # Arguments
/// * `prio` - valid between 0-63. The priority rates the throughput for
/// messages of the [`Stream`] e.g. prio 5 messages will get 1/2 the speed
/// prio0 messages have. Prio10 messages only 1/4 and Prio 15 only 1/8,
/// etc...
/// * `promises` - use a combination of you prefered [`Promises`], see the
/// link for further documentation. You can combine them, e.g.
/// `PROMISES_ORDERED | PROMISES_CONSISTENCY` The Stream will then
/// guarantee that those promisses are met.
///
/// A [`ParticipantError`] might be thrown if the `Participant` is already
/// closed. [`Streams`] can be created without a answer from the remote
/// side, resulting in very fast creation and closing latency.
///
/// # Examples
/// ```rust
/// use futures::executor::block_on;
/// use veloren_network::{Address, Network, Pid, PROMISES_CONSISTENCY, PROMISES_ORDERED};
///
/// # fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
/// // Create a Network, connect on port 2100 and open a stream
/// let (network, f) = Network::new(Pid::new(), None);
/// std::thread::spawn(f);
/// # let (remote, fr) = Network::new(Pid::new(), None);
/// # std::thread::spawn(fr);
/// block_on(async {
/// # remote.listen(Address::Tcp("0.0.0.0:2100".parse().unwrap())).await?;
/// let p1 = network
/// .connect(Address::Tcp("127.0.0.1:2100".parse().unwrap()))
/// .await?;
/// let _s1 = p1.open(16, PROMISES_ORDERED | PROMISES_CONSISTENCY).await?;
/// # Ok(())
/// })
/// # }
/// ```
///
/// [`Streams`]: crate::api::Stream
pub async fn open(&self, prio: u8, promises: Promises) -> Result<Stream, ParticipantError> {
//use this lock for now to make sure that only one open at a time is made,
// TODO: not sure if we can paralise that, check in future
let mut a2b_steam_open_s = self.a2b_steam_open_s.write().await;
if self.closed.load(Ordering::Relaxed) {
warn!(?self.remote_pid, "participant is closed but another open is tried on it");
return Err(ParticipantError::ParticipantClosed);
}
let (p2a_return_stream_s, p2a_return_stream_r) = oneshot::channel();
if a2b_steam_open_s
.send((prio, promises, p2a_return_stream_s))
.await
.is_err()
{
debug!(?self.remote_pid, "stream_open_sender failed, closing participant");
self.closed.store(true, Ordering::Relaxed);
return Err(ParticipantError::ParticipantClosed);
}
match p2a_return_stream_r.await {
Ok(stream) => {
let sid = stream.sid;
debug!(?sid, ?self.remote_pid, "opened stream");
Ok(stream)
},
Err(_) => {
debug!(?self.remote_pid, "p2a_return_stream_r failed, closing participant");
self.closed.store(true, Ordering::Relaxed);
Err(ParticipantError::ParticipantClosed)
},
}
}
/// Use this method to handle [`Streams`] opened from remote site, like the
/// [`connected`] method of [`Network`]. This is the associated method
/// to [`open`]. It's guaranteed that the order of [`open`] and `opened`
/// is equal. The `nth` [`Streams`] on one side will represent the `nth` on
/// the other side. A [`ParticipantError`] might be thrown if the
/// `Participant` is already closed.
///
/// # Examples
/// ```rust
/// use veloren_network::{Network, Pid, Address, PROMISES_ORDERED, PROMISES_CONSISTENCY};
/// use futures::executor::block_on;
///
/// # fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
/// // Create a Network, connect on port 2110 and wait for the other side to open a stream
/// // Note: It's quite unusal to activly connect, but then wait on a stream to be connected, usually the Appication taking initiative want's to also create the first Stream.
/// let (network, f) = Network::new(Pid::new(), None);
/// std::thread::spawn(f);
/// # let (remote, fr) = Network::new(Pid::new(), None);
/// # std::thread::spawn(fr);
/// block_on(async {
/// # remote.listen(Address::Tcp("0.0.0.0:2110".parse().unwrap())).await?;
/// let p1 = network.connect(Address::Tcp("127.0.0.1:2110".parse().unwrap())).await?;
/// # let p2 = remote.connected().await?;
/// # p2.open(16, PROMISES_ORDERED | PROMISES_CONSISTENCY).await?;
/// let _s1 = p1.opened().await?;
/// # Ok(())
/// })
/// # }
/// ```
///
/// [`Streams`]: crate::api::Stream
/// [`connected`]: Network::connected
/// [`open`]: Participant::open
pub async fn opened(&self) -> Result<Stream, ParticipantError> {
//use this lock for now to make sure that only one open at a time is made,
// TODO: not sure if we can paralise that, check in future
let mut stream_opened_receiver = self.b2a_stream_opened_r.write().await;
if self.closed.load(Ordering::Relaxed) {
warn!(?self.remote_pid, "participant is closed but another open is tried on it");
return Err(ParticipantError::ParticipantClosed);
}
match stream_opened_receiver.next().await {
Some(stream) => {
let sid = stream.sid;
debug!(?sid, ?self.remote_pid, "receive opened stream");
Ok(stream)
},
None => {
debug!(?self.remote_pid, "stream_opened_receiver failed, closing participant");
self.closed.store(true, Ordering::Relaxed);
Err(ParticipantError::ParticipantClosed)
},
}
}
/// Returns the remote [`Pid`]
pub fn remote_pid(&self) -> Pid { self.remote_pid }
}
impl Stream {
#[allow(clippy::too_many_arguments)]
pub(crate) fn new(
pid: Pid,
sid: Sid,
prio: Prio,
promises: Promises,
a2b_msg_s: crossbeam_channel::Sender<(Prio, Sid, OutgoingMessage)>,
b2a_msg_recv_r: mpsc::UnboundedReceiver<IncomingMessage>,
closed: Arc<AtomicBool>,
a2b_close_stream_s: mpsc::UnboundedSender<Sid>,
) -> Self {
Self {
pid,
sid,
mid: 0,
prio,
promises,
a2b_msg_s,
b2a_msg_recv_r,
closed,
a2b_close_stream_s: Some(a2b_close_stream_s),
}
}
/// use to send a arbitrary message to the remote side, by having the remote
/// side also opened a `Stream` linked to this. the message will be
/// [`Serialized`], which actually is quite slow compared to most other
/// calculations done. A faster method [`send_raw`] exists, when extra
/// speed is needed. The other side needs to use the respective [`recv`]
/// function and know the type send.
///
/// `send` is an exception to the `async` messages, as it's probably called
/// quite often so it doesn't wait for execution. Which also means, that
/// no feedback is provided. It's to assume that the Message got `send`
/// correctly. If a error occurred, the next call will return an Error.
/// If the [`Participant`] disconnected it will also be unable to be used
/// any more. A [`StreamError`] will be returned in the error case, e.g.
/// when the `Stream` got closed already.
///
/// Note when a `Stream` is dropped locally, it will still send all
/// messages, though the `drop` will return immediately, however, when a
/// [`Participant`] gets gracefully shut down, all remaining messages
/// will be send. If the `Stream` is dropped from remote side no further
/// messages are send, because the remote side has no way of listening
/// to them either way. If the last channel is destroyed (e.g. by losing
/// the internet connection or non-gracefull shutdown, pending messages
/// are also dropped.
///
/// # Example
/// ```
/// use veloren_network::{Network, Address, Pid};
/// # use veloren_network::{PROMISES_ORDERED, PROMISES_CONSISTENCY};
/// use futures::executor::block_on;
///
/// # fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
/// // Create a Network, listen on Port `2200` and wait for a Stream to be opened, then answer `Hello World`
/// let (network, f) = Network::new(Pid::new(), None);
/// std::thread::spawn(f);
/// # let (remote, fr) = Network::new(Pid::new(), None);
/// # std::thread::spawn(fr);
/// block_on(async {
/// network.listen(Address::Tcp("127.0.0.1:2200".parse().unwrap())).await?;
/// # let remote_p = remote.connect(Address::Tcp("127.0.0.1:2200".parse().unwrap())).await?;
/// # // keep it alive
/// # let _stream_p = remote_p.open(16, PROMISES_ORDERED | PROMISES_CONSISTENCY).await?;
/// let participant_a = network.connected().await?;
/// let mut stream_a = participant_a.opened().await?;
/// //Send Message
/// stream_a.send("Hello World")?;
/// # Ok(())
/// })
/// # }
/// ```
///
/// [`send_raw`]: Stream::send_raw
/// [`recv`]: Stream::recv
/// [`Serialized`]: Serialize
#[inline]
pub fn send<M: Serialize>(&mut self, msg: M) -> Result<(), StreamError> {
self.send_raw(Arc::new(message::serialize(&msg)))
}
/// This methods give the option to skip multiple calls of [`bincode`], e.g.
/// in case the same Message needs to send on multiple `Streams` to multiple
/// [`Participants`]. Other then that, the same rules apply than for
/// [`send`]
///
/// # Example
/// ```rust
/// use veloren_network::{Network, Address, Pid, MessageBuffer};
/// # use veloren_network::{PROMISES_ORDERED, PROMISES_CONSISTENCY};
/// use futures::executor::block_on;
/// use bincode;
/// use std::sync::Arc;
///
/// # fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
/// let (network, f) = Network::new(Pid::new(), None);
/// std::thread::spawn(f);
/// # let (remote1, fr1) = Network::new(Pid::new(), None);
/// # std::thread::spawn(fr1);
/// # let (remote2, fr2) = Network::new(Pid::new(), None);
/// # std::thread::spawn(fr2);
/// block_on(async {
/// network.listen(Address::Tcp("127.0.0.1:2210".parse().unwrap())).await?;
/// # let remote1_p = remote1.connect(Address::Tcp("127.0.0.1:2210".parse().unwrap())).await?;
/// # let remote2_p = remote2.connect(Address::Tcp("127.0.0.1:2210".parse().unwrap())).await?;
/// # assert_eq!(remote1_p.remote_pid(), remote2_p.remote_pid());
/// # remote1_p.open(16, PROMISES_ORDERED | PROMISES_CONSISTENCY).await?;
/// # remote2_p.open(16, PROMISES_ORDERED | PROMISES_CONSISTENCY).await?;
/// let participant_a = network.connected().await?;
/// let participant_b = network.connected().await?;
/// let mut stream_a = participant_a.opened().await?;
/// let mut stream_b = participant_b.opened().await?;
///
/// //Prepare Message and decode it
/// let msg = "Hello World";
/// let raw_msg = Arc::new(MessageBuffer{
/// data: bincode::serialize(&msg).unwrap(),
/// });
/// //Send same Message to multiple Streams
/// stream_a.send_raw(raw_msg.clone());
/// stream_b.send_raw(raw_msg.clone());
/// # Ok(())
/// })
/// # }
/// ```
///
/// [`send`]: Stream::send
/// [`Participants`]: crate::api::Participant
pub fn send_raw(&mut self, messagebuffer: Arc<MessageBuffer>) -> Result<(), StreamError> {
if self.closed.load(Ordering::Relaxed) {
return Err(StreamError::StreamClosed);
}
//debug!(?messagebuffer, "sending a message");
self.a2b_msg_s.send((self.prio, self.sid, OutgoingMessage {
buffer: messagebuffer,
cursor: 0,
mid: self.mid,
sid: self.sid,
}))?;
self.mid += 1;
Ok(())
}
/// use `recv` to wait on a Message send from the remote side by their
/// `Stream`. The Message needs to implement [`DeserializeOwned`] and
/// thus, the resulting type must already be known by the receiving side.
/// If this is not know from the Application logic, one could use a `Enum`
/// and then handle the received message via a `match` state.
///
/// A [`StreamError`] will be returned in the error case, e.g. when the
/// `Stream` got closed already.
///
/// # Example
/// ```
/// use veloren_network::{Network, Address, Pid};
/// # use veloren_network::{PROMISES_ORDERED, PROMISES_CONSISTENCY};
/// use futures::executor::block_on;
///
/// # fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
/// // Create a Network, listen on Port `2220` and wait for a Stream to be opened, then listen on it
/// let (network, f) = Network::new(Pid::new(), None);
/// std::thread::spawn(f);
/// # let (remote, fr) = Network::new(Pid::new(), None);
/// # std::thread::spawn(fr);
/// block_on(async {
/// network.listen(Address::Tcp("127.0.0.1:2220".parse().unwrap())).await?;
/// # let remote_p = remote.connect(Address::Tcp("127.0.0.1:2220".parse().unwrap())).await?;
/// # let mut stream_p = remote_p.open(16, PROMISES_ORDERED | PROMISES_CONSISTENCY).await?;
/// # stream_p.send("Hello World");
/// let participant_a = network.connected().await?;
/// let mut stream_a = participant_a.opened().await?;
/// //Send Message
/// println!("{}", stream_a.recv::<String>().await?);
/// # Ok(())
/// })
/// # }
/// ```
#[inline]
pub async fn recv<M: DeserializeOwned>(&mut self) -> Result<M, StreamError> {
Ok(message::deserialize(self.recv_raw().await?)?)
}
/// the equivalent like [`send_raw`] but for [`recv`], no [`bincode`] is
/// executed for performance reasons.
///
/// [`send_raw`]: Stream::send_raw
/// [`recv`]: Stream::recv
pub async fn recv_raw(&mut self) -> Result<MessageBuffer, StreamError> {
//no need to access self.closed here, as when this stream is closed the Channel
// is closed which will trigger a None
let msg = self.b2a_msg_recv_r.next().await?;
//info!(?msg, "delivering a message");
Ok(msg.buffer)
}
}
impl Drop for Network {
fn drop(&mut self) {
let pid = self.local_pid;
debug!(?pid, "shutting down Network");
debug!(
?pid,
"shutting down Participants of Network, while we still have metrics"
);
task::block_on(async {
// we need to carefully shut down here! as otherwise we might call
// Participant::Drop with a2s_disconnect_s here which would open
// another task::block, which would panic! also i can't `.write` on
// `self.participants` as the `disconnect` fn needs it.
let mut participant_clone = self.participants().await;
for (_, p) in participant_clone.drain() {
if let Err(e) = self.disconnect(p).await {
error!(
?e,
"error while dropping network, the error occured when dropping a \
participant but can't be notified to the user any more"
);
}
}
self.participants.write().await.clear();
});
debug!(?pid, "shutting down Scheduler");
self.shutdown_sender
.take()
.unwrap()
.send(())
.expect("scheduler is closed, but nobody other should be able to close it");
debug!(?pid, "participants have shut down!");
}
}
impl Drop for Participant {
fn drop(&mut self) {
// ignore closed, as we need to send it even though we disconnected the
// participant from network
let pid = self.remote_pid;
debug!(?pid, "shutting down Participant");
match self.a2s_disconnect_s.take() {
None => debug!(
?pid,
"Participant has been shutdown cleanly, no further waiting is requiered!"
),
Some(mut a2s_disconnect_s) => {
debug!(
?pid,
"unclean shutdown detected, active waiting for client to be disconnected"
);
task::block_on(async {
let (finished_sender, finished_receiver) = oneshot::channel();
a2s_disconnect_s
.send((self.remote_pid, finished_sender))
.await
.expect("something is wrong in internal scheduler coding");
match finished_receiver.await {
Ok(Err(e)) => error!(
?pid,
?e,
"Error while dropping the participant, couldn't send all outgoing \
messages, dropping remaining"
),
Err(e) => warn!(
?e,
"//TODO i dont know why the finish doesnt work, i normally would \
expect to have sended a return message from the participant... \
ignoring to not caue a panic for now, please fix me"
),
_ => (),
};
});
},
}
debug!(?pid, "network dropped");
}
}
impl Drop for Stream {
fn drop(&mut self) {
// a send if closed is unecessary but doesnt hurt, we must not crash here
if !self.closed.load(Ordering::Relaxed) {
let sid = self.sid;
let pid = self.pid;
debug!(?pid, ?sid, "shutting down Stream");
if task::block_on(self.a2b_close_stream_s.take().unwrap().send(self.sid)).is_err() {
warn!(
"Other side got already dropped, probably due to timing, other side will \
handle this gracefully"
);
};
} else {
let sid = self.sid;
let pid = self.pid;
debug!(?pid, ?sid, "not needed");
}
}
}
impl std::fmt::Debug for Participant {
#[inline]
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let status = if self.closed.load(Ordering::Relaxed) {
"[CLOSED]"
} else {
"[OPEN]"
};
write!(
f,
"Participant {{{} local_pid: {:?}, remote_pid: {:?} }}",
status, &self.local_pid, &self.remote_pid,
)
}
}
impl<T> From<crossbeam_channel::SendError<T>> for StreamError {
fn from(_err: crossbeam_channel::SendError<T>) -> Self { StreamError::StreamClosed }
}
impl<T> From<crossbeam_channel::SendError<T>> for ParticipantError {
fn from(_err: crossbeam_channel::SendError<T>) -> Self { ParticipantError::ParticipantClosed }
}
impl<T> From<crossbeam_channel::SendError<T>> for NetworkError {
fn from(_err: crossbeam_channel::SendError<T>) -> Self { NetworkError::NetworkClosed }
}
impl From<async_std::io::Error> for NetworkError {
fn from(err: async_std::io::Error) -> Self { NetworkError::ListenFailed(err) }
}
impl From<std::option::NoneError> for StreamError {
fn from(_err: std::option::NoneError) -> Self { StreamError::StreamClosed }
}
impl From<std::option::NoneError> for ParticipantError {
fn from(_err: std::option::NoneError) -> Self { ParticipantError::ParticipantClosed }
}
impl From<std::option::NoneError> for NetworkError {
fn from(_err: std::option::NoneError) -> Self { NetworkError::NetworkClosed }
}
impl From<mpsc::SendError> for ParticipantError {
fn from(_err: mpsc::SendError) -> Self { ParticipantError::ParticipantClosed }
}
impl From<mpsc::SendError> for NetworkError {
fn from(_err: mpsc::SendError) -> Self { NetworkError::NetworkClosed }
}
impl From<oneshot::Canceled> for ParticipantError {
fn from(_err: oneshot::Canceled) -> Self { ParticipantError::ParticipantClosed }
}
impl From<oneshot::Canceled> for NetworkError {
fn from(_err: oneshot::Canceled) -> Self { NetworkError::NetworkClosed }
}
impl From<Box<bincode::ErrorKind>> for StreamError {
fn from(err: Box<bincode::ErrorKind>) -> Self { StreamError::DeserializeError(err) }
}
impl core::fmt::Display for StreamError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
StreamError::StreamClosed => write!(f, "stream closed"),
StreamError::DeserializeError(err) => {
write!(f, "deserialize error on message: {}", err)
},
}
}
}
impl core::fmt::Display for ParticipantError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
ParticipantError::ParticipantClosed => write!(f, "participant closed"),
}
}
}
impl core::fmt::Display for NetworkError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
NetworkError::NetworkClosed => write!(f, "network closed"),
NetworkError::ListenFailed(_) => write!(f, "listening failed"),
}
}
}
/// implementing PartialEq as it's super convenient in tests
impl core::cmp::PartialEq for StreamError {
fn eq(&self, other: &Self) -> bool {
match self {
StreamError::StreamClosed => match other {
StreamError::StreamClosed => true,
StreamError::DeserializeError(_) => false,
},
StreamError::DeserializeError(err) => match other {
StreamError::StreamClosed => false,
StreamError::DeserializeError(other_err) => partial_eq_bincode(err, other_err),
},
}
}
}
impl std::error::Error for StreamError {}
impl std::error::Error for ParticipantError {}
impl std::error::Error for NetworkError {}