mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
1632 lines
68 KiB
Rust
1632 lines
68 KiB
Rust
mod diffusion;
|
||
mod erosion;
|
||
mod location;
|
||
mod settlement;
|
||
mod util;
|
||
|
||
// Reexports
|
||
pub use self::diffusion::diffusion;
|
||
pub use self::erosion::{
|
||
do_erosion, fill_sinks, get_drainage, get_lakes, get_rivers, RiverData, RiverKind,
|
||
};
|
||
pub use self::location::Location;
|
||
pub use self::settlement::Settlement;
|
||
pub use self::util::{
|
||
cdf_irwin_hall, downhill, get_oceans, HybridMulti as HybridMulti_, local_cells, map_edge_factor, neighbors,
|
||
ScaleBias,
|
||
uniform_idx_as_vec2, uniform_noise, uphill, vec2_as_uniform_idx, InverseCdf,
|
||
};
|
||
|
||
use crate::{
|
||
all::ForestKind,
|
||
column::ColumnGen,
|
||
generator::TownState,
|
||
util::{seed_expan, FastNoise, RandomField, Sampler, StructureGen2d},
|
||
CONFIG,
|
||
};
|
||
use common::{
|
||
terrain::{BiomeKind, TerrainChunkSize},
|
||
vol::RectVolSize,
|
||
};
|
||
use noise::{
|
||
BasicMulti, Billow, Fbm, HybridMulti, MultiFractal, NoiseFn, RidgedMulti, Seedable,
|
||
SuperSimplex,
|
||
};
|
||
use num::{Float, Signed};
|
||
use rand::{Rng, SeedableRng};
|
||
use rand_chacha::ChaChaRng;
|
||
use rayon::prelude::*;
|
||
use std::{
|
||
collections::HashMap,
|
||
f32, f64,
|
||
ops::{Add, Div, Mul, Neg, Sub},
|
||
sync::Arc,
|
||
};
|
||
use vek::*;
|
||
|
||
// NOTE: I suspect this is too small (1024 * 16 * 1024 * 16 * 8 doesn't fit in an i32), but we'll see
|
||
// what happens, I guess! We could always store sizes >> 3. I think 32 or 64 is the absolute
|
||
// limit though, and would require substantial changes. Also, 1024 * 16 * 1024 * 16 is no longer
|
||
// cleanly representable in f32 (that stops around 1024 * 4 * 1024 * 4, for signed floats anyway)
|
||
// but I think that is probably less important since I don't think we actually cast a chunk id to
|
||
// float, just coordinates... could be wrong though!
|
||
pub const WORLD_SIZE: Vec2<usize> = Vec2 {
|
||
x: 1024 * 2,
|
||
y: 1024 * 2,
|
||
};
|
||
|
||
/// A structure that holds cached noise values and cumulative distribution functions for the input
|
||
/// that led to those values. See the definition of InverseCdf for a description of how to
|
||
/// interpret the types of its fields.
|
||
struct GenCdf {
|
||
humid_base: InverseCdf,
|
||
temp_base: InverseCdf,
|
||
chaos: InverseCdf,
|
||
alt: Box<[f32]>,
|
||
basement: Box<[f32]>,
|
||
water_alt: Box<[f32]>,
|
||
dh: Box<[isize]>,
|
||
/// NOTE: Until we hit 4096 × 4096, this should suffice since integers with an absolute value
|
||
/// under 2^24 can be exactly represented in an f32.
|
||
flux: Box<[f32]>,
|
||
pure_flux: InverseCdf,
|
||
alt_no_water: InverseCdf,
|
||
rivers: Box<[RiverData]>,
|
||
}
|
||
|
||
pub(crate) struct GenCtx {
|
||
pub turb_x_nz: SuperSimplex,
|
||
pub turb_y_nz: SuperSimplex,
|
||
pub chaos_nz: RidgedMulti,
|
||
pub alt_nz: HybridMulti_,
|
||
pub hill_nz: SuperSimplex,
|
||
pub temp_nz: Fbm,
|
||
// Humidity noise
|
||
pub humid_nz: Billow,
|
||
// Small amounts of noise for simulating rough terrain.
|
||
pub small_nz: BasicMulti,
|
||
pub rock_nz: HybridMulti,
|
||
pub cliff_nz: HybridMulti,
|
||
pub warp_nz: FastNoise,
|
||
pub tree_nz: BasicMulti,
|
||
|
||
pub cave_0_nz: SuperSimplex,
|
||
pub cave_1_nz: SuperSimplex,
|
||
|
||
pub structure_gen: StructureGen2d,
|
||
pub region_gen: StructureGen2d,
|
||
pub cliff_gen: StructureGen2d,
|
||
|
||
pub fast_turb_x_nz: FastNoise,
|
||
pub fast_turb_y_nz: FastNoise,
|
||
|
||
pub town_gen: StructureGen2d,
|
||
}
|
||
|
||
pub struct WorldSim {
|
||
pub seed: u32,
|
||
pub(crate) chunks: Vec<SimChunk>,
|
||
pub(crate) locations: Vec<Location>,
|
||
|
||
pub(crate) gen_ctx: GenCtx,
|
||
pub rng: ChaChaRng,
|
||
}
|
||
|
||
impl WorldSim {
|
||
pub fn generate(seed: u32) -> Self {
|
||
let mut rng = ChaChaRng::from_seed(seed_expan::rng_state(seed));
|
||
let continent_scale = 5_000.0f64/*32768.0*/.div(32.0).mul(TerrainChunkSize::RECT_SIZE.x as f64);
|
||
|
||
let gen_ctx = GenCtx {
|
||
turb_x_nz: SuperSimplex::new().set_seed(rng.gen()),
|
||
turb_y_nz: SuperSimplex::new().set_seed(rng.gen()),
|
||
chaos_nz: RidgedMulti::new()
|
||
.set_octaves(/*7*//*3*/ /*7*//*3*/7)
|
||
.set_frequency(
|
||
/*RidgedMulti::DEFAULT_FREQUENCY **/ 3_000.0 * 8.0 / continent_scale,
|
||
)
|
||
// .set_persistence(RidgedMulti::DEFAULT_LACUNARITY.powf(-(1.0 - 0.5)))
|
||
.set_seed(rng.gen()),
|
||
hill_nz: SuperSimplex::new().set_seed(rng.gen()),
|
||
alt_nz: HybridMulti_::new()
|
||
.set_octaves(/*3*//*2*/ /*8*//*3*/8)
|
||
// 1/2048*32*1024 = 16
|
||
.set_frequency(
|
||
/*HybridMulti::DEFAULT_FREQUENCY*/
|
||
// (2^8*(10000/5000/10000))*32 = per-chunk
|
||
(10_000.0/* * 2.0*/ / continent_scale) as f64,
|
||
)
|
||
// .set_frequency(1.0 / ((1 << 0) as f64))
|
||
// .set_lacunarity(1.0)
|
||
// persistence = lacunarity^(-(1.0 - fractal increment))
|
||
.set_persistence(HybridMulti_::DEFAULT_LACUNARITY.powf(-(1.0 - /*0.75*/0.75)))
|
||
// .set_persistence(/*0.5*//*0.5*/0.5 + 1.0 / ((1 << 6) as f64))
|
||
// .set_offset(/*0.7*//*0.5*//*0.75*/0.7)
|
||
// .set_offset(/*0.7*//*0.5*//*0.75*/0.0)
|
||
.set_seed(rng.gen()),
|
||
//temp_nz: SuperSimplex::new().set_seed(rng.gen()),
|
||
temp_nz: Fbm::new()
|
||
.set_octaves(6)
|
||
.set_persistence(0.5)
|
||
// 1/2^14*1024*32 = 2
|
||
// 1/(2^14-2^12)*1024*32 = 8/3 ~= 3
|
||
.set_frequency(
|
||
/*4.0 / /*(1024.0 * 4.0/* * 8.0*/)*//*32.0*/((1 << 6) * (WORLD_SIZE.x)) as f64*/
|
||
1.0 / (((1 << 6) * 64) as f64),
|
||
)
|
||
// .set_frequency(1.0 / 1024.0)
|
||
// .set_frequency(1.0 / (1024.0 * 8.0))
|
||
.set_lacunarity(2.0)
|
||
.set_seed(rng.gen()),
|
||
|
||
small_nz: BasicMulti::new().set_octaves(2).set_seed(rng.gen()),
|
||
rock_nz: HybridMulti::new().set_persistence(0.3).set_seed(rng.gen()),
|
||
cliff_nz: HybridMulti::new().set_persistence(0.3).set_seed(rng.gen()),
|
||
warp_nz: FastNoise::new(rng.gen()), //BasicMulti::new().set_octaves(3).set_seed(gen_seed()),
|
||
tree_nz: BasicMulti::new()
|
||
.set_octaves(12)
|
||
.set_persistence(0.75)
|
||
.set_seed(rng.gen()),
|
||
cave_0_nz: SuperSimplex::new().set_seed(rng.gen()),
|
||
cave_1_nz: SuperSimplex::new().set_seed(rng.gen()),
|
||
|
||
structure_gen: StructureGen2d::new(rng.gen(), 32, 16),
|
||
region_gen: StructureGen2d::new(rng.gen(), 400, 96),
|
||
cliff_gen: StructureGen2d::new(rng.gen(), 80, 56),
|
||
humid_nz: Billow::new()
|
||
.set_octaves(9)
|
||
.set_persistence(0.4)
|
||
.set_frequency(0.2)
|
||
// .set_octaves(6)
|
||
// .set_persistence(0.5)
|
||
.set_seed(rng.gen()),
|
||
|
||
fast_turb_x_nz: FastNoise::new(rng.gen()),
|
||
fast_turb_y_nz: FastNoise::new(rng.gen()),
|
||
|
||
town_gen: StructureGen2d::new(rng.gen(), 2048, 1024),
|
||
};
|
||
|
||
let river_seed = RandomField::new(rng.gen());
|
||
let rock_lacunarity = 0.5/*HybridMulti::DEFAULT_LACUNARITY*/;
|
||
let rock_strength_nz = /*Fbm*/HybridMulti_/*BasicMulti*//*Fbm*/::new()
|
||
.set_octaves(/*6*//*5*//*4*//*5*/4)
|
||
// persistence = lacunarity^(-(1.0 - fractal increment))
|
||
.set_persistence(/*0.9*/ /*2.0*//*1.5*//*HybridMulti::DEFAULT_LACUNARITY*/rock_lacunarity.powf(-(1.0 - 0.9)))
|
||
// 256*32/2^4
|
||
// (0.5^(-(1.0-0.9)))^4/256/32*2^4*16*32
|
||
// (0.5^(-(1.0-0.9)))^4/256/32*2^4*256*4
|
||
// (0.5^(-(1.0-0.9)))^1/256/32*2^4*256*4
|
||
// (2^(-(1.0-0.9)))^4
|
||
// 16.0
|
||
.set_frequency(/*0.9*/ /*Fbm*/HybridMulti_::DEFAULT_FREQUENCY / (/*64.0*/256.0/*1.0*//*16.0*/ * 32.0/* TerrainChunkSize::RECT_SIZE.x as f64 */))
|
||
// .set_persistence(/*0.9*/ /*2.0*/0.67)
|
||
// .set_frequency(/*0.9*/ Fbm::DEFAULT_FREQUENCY / (2.0 * 32.0))
|
||
// .set_lacunarity(0.5)
|
||
.set_seed(rng.gen());
|
||
// NOTE: octaves should definitely fit into i32, but we should check anyway to make
|
||
// sure.
|
||
/* assert!(rock_strength_nz.persistence > 0.0);
|
||
let rock_strength_scale = (1..rock_strength_nz.octaves as i32)
|
||
.map(|octave| rock_strength_nz.persistence.powi(octave + 1))
|
||
.sum::<f64>()
|
||
// For some reason, this is "scaled" by 3.0.
|
||
.mul(3.0);
|
||
let rock_strength_nz = ScaleBias::new(&rock_strength_nz)
|
||
.set_scale(1.0 / rock_strength_scale); */
|
||
|
||
let height_scale = 1.0f64; // 1.0 / CONFIG.mountain_scale as f64;
|
||
let max_erosion_per_delta_t = 32.0 * height_scale;
|
||
let erosion_pow_low = /*0.25*//*1.5*//*2.0*//*0.5*//*4.0*//*0.25*//*1.0*//*2.0*//*1.5*//*1.5*//*0.35*//*0.43*//*0.5*//*0.45*//*0.37*/1.002;
|
||
let erosion_pow_high = /*1.5*//*1.0*//*0.55*//*0.51*//*2.0*/1.002;
|
||
let erosion_center = /*0.45*//*0.75*//*0.75*//*0.5*//*0.75*/0.5;
|
||
let n_steps = 150;//37/*100*/;//50;//50;//37;//50;//37; // /*37*//*29*//*40*//*150*/37; //150;//200;
|
||
let n_small_steps = 0;//8;//8; // 8
|
||
|
||
// fractal dimension should be between 0 and 0.9999...
|
||
// (lacunarity^octaves)^(-H) = persistence^(octaves)
|
||
// lacunarity^(octaves*-H) = persistence^(octaves)
|
||
// e^(-octaves*H*ln(lacunarity)) = e^(octaves * ln(persistence))
|
||
// -octaves * H * ln(lacunarity) = octaves * ln(persistence)
|
||
// -H = ln(persistence) / ln(lacunarity)
|
||
// H = -ln(persistence) / ln(lacunarity)
|
||
// ln(persistence) = -H * ln(lacunarity)
|
||
// persistence = lacunarity^(-H)
|
||
//
|
||
// -ln(2^(-0.25))/ln(2) = 0.25
|
||
//
|
||
// -ln(2^(-0.1))/ln(2)
|
||
//
|
||
// 0 = -ln(persistence) / ln(lacunarity)
|
||
// 0 = ln(persistence) => persistence = e^0 = 1
|
||
//
|
||
// 1 = -ln(persistence) / ln(lacunarity)
|
||
// -ln(lacunarity) = ln(persistence)
|
||
// e^(-ln(lacunarity)) = e^(ln(persistence))
|
||
// 1 / lacunarity = persistence
|
||
//
|
||
// Ergo, we should not set fractal dimension to anything not between 1 / lacunarity and 1.
|
||
//
|
||
// dimension = -ln(0.25)/ln(2*pi/3) = 1.875
|
||
//
|
||
// (2*pi/3^1)^(-(-ln(0.25)/ln(2*pi/3))) = 0.25
|
||
//
|
||
// Default should be at most 1 / lacunarity.
|
||
//
|
||
// (2 * pi / 3)^(-ln(0.25)/ln(2*pi/3))
|
||
//
|
||
// -ln(0.25)/ln(2*pi/3) = 1.88
|
||
//
|
||
// (2 * pi / 3)^(-ln(0.25)/ln(2*pi/3))
|
||
//
|
||
// 2 * pi / 3
|
||
//
|
||
// 2.0^(2(-ln(1.5)/ln(2)))
|
||
// (1 / 1.5)^(2)
|
||
|
||
// No NaNs in these uniform vectors, since the original noise value always returns Some.
|
||
let ((alt_base, _), (chaos, _)) = rayon::join(
|
||
|| {
|
||
uniform_noise(|_, wposf| {
|
||
// "Base" of the chunk, to be multiplied by CONFIG.mountain_scale (multiplied value
|
||
// is from -0.35 * (CONFIG.mountain_scale * 1.05) to
|
||
// 0.35 * (CONFIG.mountain_scale * 0.95), but value here is from -0.3675 to 0.3325).
|
||
Some(
|
||
(gen_ctx
|
||
.alt_nz
|
||
.get((wposf.div(10_000.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0)
|
||
/* .mul(0.25)
|
||
.add(0.125) */)
|
||
// .add(0.5)
|
||
// .sub(0.05)
|
||
// .add(0.05)
|
||
.add(0.075)
|
||
.mul(0.35), /*-0.0175*/
|
||
)
|
||
})
|
||
},
|
||
|| {
|
||
uniform_noise(|_, wposf| {
|
||
// From 0 to 1.6, but the distribution before the max is from -1 and 1.6, so there is
|
||
// a 50% chance that hill will end up at 0.3 or lower, and probably a very high
|
||
// change it will be exactly 0.
|
||
let hill = (0.0f64
|
||
//.add(0.0)
|
||
+ gen_ctx
|
||
.hill_nz
|
||
.get((wposf.mul(32.0).div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(1_500.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0)
|
||
.mul(1.0)
|
||
+ gen_ctx
|
||
.hill_nz
|
||
.get((wposf.mul(32.0).div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(400.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0)
|
||
.mul(0.3))
|
||
.add(0.3)
|
||
.max(0.0);
|
||
|
||
// chaos produces a value in [0.12, 1.24]. It is a meta-level factor intended to
|
||
// reflect how "chaotic" the region is--how much weird stuff is going on on this
|
||
// terrain.
|
||
Some(
|
||
((gen_ctx
|
||
.chaos_nz
|
||
.get((wposf.div(3_000.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0))
|
||
.add(1.0)
|
||
.mul(0.5)
|
||
// [0, 1] * [0.4, 1] = [0, 1] (but probably towards the lower end)
|
||
//.mul(1.0)
|
||
.mul(
|
||
(gen_ctx
|
||
.chaos_nz
|
||
.get((wposf.div(6_000.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0))
|
||
.abs()
|
||
.max(0.4)
|
||
.min(1.0),
|
||
)
|
||
// Chaos is always increased by a little when we're on a hill (but remember
|
||
// that hill is 0.3 or less about 50% of the time).
|
||
// [0, 1] + 0.15 * [0, 1.6] = [0, 1.24]
|
||
.add(0.2 * hill)
|
||
// We can't have *no* chaos!
|
||
.max(0.12)) as f32,
|
||
)
|
||
})
|
||
},
|
||
);
|
||
|
||
// We ignore sea level because we actually want to be relative to sea level here and want
|
||
// things in CONFIG.mountain_scale units, but otherwise this is a correct altitude
|
||
// calculation. Note that this is using the "unadjusted" temperature.
|
||
//
|
||
// No NaNs in these uniform vectors, since the original noise value always returns Some.
|
||
let (alt_old, /*alt_old_inverse*/ _) = uniform_noise(|posi, wposf| {
|
||
// This is the extension upwards from the base added to some extra noise from -1 to
|
||
// 1.
|
||
//
|
||
// The extra noise is multiplied by alt_main (the mountain part of the extension)
|
||
// powered to 0.8 and clamped to [0.15, 1], to get a value between [-1, 1] again.
|
||
//
|
||
// The sides then receive the sequence (y * 0.3 + 1.0) * 0.4, so we have
|
||
// [-1*1*(1*0.3+1)*0.4, 1*(1*0.3+1)*0.4] = [-0.52, 0.52].
|
||
//
|
||
// Adding this to alt_main thus yields a value between -0.4 (if alt_main = 0 and
|
||
// gen_ctx = -1, 0+-1*(0*.3+1)*0.4) and 1.52 (if alt_main = 1 and gen_ctx = 1).
|
||
// Most of the points are above 0.
|
||
//
|
||
// Next, we add again by a sin of alt_main (between [-1, 1])^pow, getting
|
||
// us (after adjusting for sign) another value between [-1, 1], and then this is
|
||
// multiplied by 0.045 to get [-0.045, 0.045], which is added to [-0.4, 0.52] to get
|
||
// [-0.445, 0.565].
|
||
let alt_main = {
|
||
// Extension upwards from the base. A positive number from 0 to 1 curved to be
|
||
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
|
||
let alt_main = (gen_ctx
|
||
.alt_nz
|
||
.get((wposf.div(2_000.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0))
|
||
.abs()
|
||
// 0.5
|
||
.powf(1.35);
|
||
|
||
fn spring(x: f64, pow: f64) -> f64 {
|
||
x.abs().powf(pow) * x.signum()
|
||
}
|
||
|
||
(0.0 + alt_main/*0.4*/
|
||
+ (gen_ctx
|
||
.small_nz
|
||
.get((wposf.mul(32.0).div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(300.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0))
|
||
.mul(alt_main.powf(0.8).max(/*0.25*/ 0.15))
|
||
.mul(0.3)
|
||
.add(1.0)
|
||
.mul(0.4)
|
||
// 0.52
|
||
+ spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0).mul(0.045))
|
||
};
|
||
|
||
// Now we can compute the final altitude using chaos.
|
||
// We multiply by chaos clamped to [0.1, 1.24] to get a value between [0.03, 2.232]
|
||
// for alt_pre, then multiply by CONFIG.mountain_scale and add to the base and sea
|
||
// level to get an adjusted value, then multiply the whole thing by map_edge_factor
|
||
// (TODO: compute final bounds).
|
||
//
|
||
// [-.3675, .3325] + [-0.445, 0.565] * [0.12, 1.24]^1.2
|
||
// ~ [-.3675, .3325] + [-0.445, 0.565] * [_, 1.30]
|
||
// = [-.3675, .3325] + ([-0.5785, 0.7345])
|
||
// = [-0.946, 1.067]
|
||
Some(
|
||
((alt_base[posi].1
|
||
+ alt_main /*1.0*/
|
||
.mul(
|
||
(chaos[posi].1 as f64) /*.mul(2.0).sub(1.0).max(0.0)*/
|
||
.powf(1.2), /*0.25)*//*0.285*/
|
||
)/*0.1425*/)
|
||
.mul(map_edge_factor(posi) as f64)
|
||
.add(
|
||
(CONFIG.sea_level as f64)
|
||
.div(CONFIG.mountain_scale as f64)
|
||
.mul(map_edge_factor(posi) as f64),
|
||
)
|
||
.sub((CONFIG.sea_level as f64).div(CONFIG.mountain_scale as f64)))
|
||
as f32,
|
||
)
|
||
/* Some(
|
||
// FIXME: May fail on big-endian platforms.
|
||
((alt_base[posi].1 as f64 + 0.5 + (/*alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64 * ((1.0 / CONFIG.mountain_scale as f64).powf(1.0 / erosion_pow_low)) + */alt_main / CONFIG.mountain_scale as f64 * 128.0).mul(0.1).powf(1.2))
|
||
.mul(map_edge_factor(posi) as f64)
|
||
.add(
|
||
(CONFIG.sea_level as f64)
|
||
.div(CONFIG.mountain_scale as f64)
|
||
.mul(map_edge_factor(posi) as f64),
|
||
)
|
||
.sub((CONFIG.sea_level as f64).div(CONFIG.mountain_scale as f64)))
|
||
as f32,
|
||
) */
|
||
});
|
||
|
||
// Calculate oceans.
|
||
let old_height = |posi: usize| alt_old[posi].1 * CONFIG.mountain_scale * height_scale as f32;
|
||
/* let is_ocean = (0..WORLD_SIZE.x * WORLD_SIZE.y)
|
||
.into_par_iter()
|
||
.map(|i| map_edge_factor(i) == 0.0)
|
||
.collect::<Vec<_>>(); */
|
||
let is_ocean = get_oceans(old_height);
|
||
let is_ocean_fn = |posi: usize| is_ocean[posi];
|
||
|
||
// Recalculate altitudes without oceans.
|
||
// NaNs in these uniform vectors wherever pure_water() returns true.
|
||
let (alt_old_no_ocean, alt_old_inverse) = uniform_noise(|posi, _| {
|
||
if is_ocean_fn(posi) {
|
||
None
|
||
} else {
|
||
Some(old_height(posi) /*.abs()*/)
|
||
}
|
||
});
|
||
|
||
let old_height_uniform = |posi: usize| alt_old_no_ocean[posi].0;
|
||
let alt_old_min_uniform = 0.0;
|
||
let alt_old_max_uniform = 1.0;
|
||
let alt_old_center_uniform = erosion_center;
|
||
let (_alt_old_min_index, alt_old_min) = alt_old_inverse.first().unwrap();
|
||
let (_alt_old_max_index, alt_old_max) = alt_old_inverse.last().unwrap();
|
||
let (_alt_old_mid_index, alt_old_mid) =
|
||
alt_old_inverse[(alt_old_inverse.len() as f64 * erosion_center) as usize];
|
||
let alt_old_center =
|
||
((alt_old_mid - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64);
|
||
|
||
/* // Find the minimum and maximum original altitudes.
|
||
// NOTE: Will panic if there is no land, and will not work properly if the minimum and
|
||
// maximum land altitude are identical (will most likely panic later).
|
||
let old_height_uniform = |posi: usize| alt_old[posi].0;
|
||
let (alt_old_min_index, _alt_old_min) = alt_old_inverse
|
||
.iter()
|
||
.copied()
|
||
.find(|&(_, h)| h > 0.0)
|
||
.unwrap();
|
||
let &(alt_old_max_index, _alt_old_max) = alt_old_inverse.last().unwrap();
|
||
let alt_old_min_uniform = alt_old[alt_old_min_index].0;
|
||
let alt_old_max_uniform = alt_old[alt_old_max_index].0; */
|
||
|
||
// Perform some erosion.
|
||
|
||
// Logistic regression. Make sure x ∈ (0, 1).
|
||
let logit = |x: f64| x.ln() - (-x).ln_1p();
|
||
// 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi)))
|
||
let logistic_2_base = 3.0f64.sqrt() * f64::consts::FRAC_2_PI;
|
||
let logistic_base = /*3.0f64.sqrt() * f64::consts::FRAC_1_PI*/1.0f64;
|
||
// Assumes μ = 0, σ = 1
|
||
let logistic_cdf = |x: f64| (x / logistic_2_base).tanh() * 0.5 + 0.5;
|
||
|
||
let exp_inverse_cdf = |x: f64/*, pow: f64*/| -(-x).ln_1p()/* / ln(pow)*/;
|
||
// 2 / pi * ln(tan(pi/2 * p))
|
||
let hypsec_inverse_cdf = |x: f64| f64::consts::FRAC_2_PI * ((x * f64::consts::FRAC_PI_2).tan().ln());
|
||
// 2^((2^10-2)/256) = 15.91...
|
||
// -ln(1-(1-(2^(-22)*0.5)))
|
||
// -ln(1-(1-(2^(-53)*0.5)))
|
||
// ((-ln(1-((1-2^(-53)*0.5))))/ln(e))/((-ln(1-((2^(-53)*0.5))))/ln(e))
|
||
// ((-ln(1-((0.5))))/ln(2))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(2))
|
||
// ((-ln(1-((0.5))))/ln(e))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(e))
|
||
// ((-ln(1-((0.5))))/ln(e))/((-ln(1-((2^(-53)*0.5))))/ln(e))
|
||
// ((-ln(1-((1-2^(-53)))))/ln(1.002))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(1+2^(-10*2)*0.5))
|
||
// ((-ln(1-((0.9999999999999999))))/ln(e))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(1+2^(-53)*0.5))
|
||
//
|
||
// ((-ln(1-((1-2^(-10*2)))))/ln(1.002))/((-ln(1-((1 - 2^(-10*2)))))/ln(1+2^(-9)))
|
||
// ((-ln(1-((2^(-10*2)))))/ln(1.002))/((-ln(1-((1 - 2^(-10*2)))))/ln(1+2^(-9)))
|
||
// ((-ln(1-((1-2^(-10*2)))))/ln(1.002))/((-ln(1-((1 - 2^(-10*2)))))/ln(1.002))
|
||
let min_epsilon =
|
||
1.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64).max(f64::EPSILON as f64 * 0.5);
|
||
let max_epsilon = (1.0 - 1.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64))
|
||
.min(1.0 - f64::EPSILON as f64 * 0.5);
|
||
let inv_func = /*|x: f64| x*//*exp_inverse_cdf*/logit/*hypsec_inverse_cdf*/;
|
||
let alt_exp_min_uniform = /*exp_inverse_cdf*//*logit*/inv_func(min_epsilon);
|
||
let alt_exp_max_uniform = /*exp_inverse_cdf*//*logit*/inv_func(max_epsilon);
|
||
|
||
// let erosion_pow = 2.0;
|
||
// let n_steps = 100;//150;
|
||
// let erosion_factor = |x: f64| logistic_cdf(erosion_pow * logit(x));
|
||
let log_odds = |x: f64| {
|
||
logit(x)
|
||
- logit(
|
||
/*erosion_center*/ alt_old_center_uniform, /*alt_old_center*/
|
||
)
|
||
};
|
||
/* let erosion_factor = |x: f64| logistic_cdf(logistic_base * if x <= /*erosion_center*/alt_old_center_uniform/*alt_old_center*/ { erosion_pow_low.ln() } else { erosion_pow_high.ln() } * log_odds(x))/*0.5 + (x - 0.5).signum() * ((x - 0.5).mul(2.0).abs(
|
||
).powf(erosion_pow).mul(0.5))*/; */
|
||
let erosion_factor = |x: f64| (/*if x <= /*erosion_center*/alt_old_center_uniform/*alt_old_center*/ { erosion_pow_low.ln() } else { erosion_pow_high.ln() } * */(/*exp_inverse_cdf*//*logit*/inv_func(x) - alt_exp_min_uniform) / (alt_exp_max_uniform - alt_exp_min_uniform))/*0.5 + (x - 0.5).signum() * ((x - 0.5).mul(2.0).abs(
|
||
).powf(erosion_pow).mul(0.5))*//*.powf(0.5)*//*.powf(1.5)*//*.powf(2.0)*/;
|
||
let uplift_fn =
|
||
|posi| {
|
||
if is_ocean_fn(posi) {
|
||
return 0.0;
|
||
}
|
||
let wposf = (uniform_idx_as_vec2(posi)
|
||
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
||
.map(|e| e as f64);
|
||
let alt_main = {
|
||
// Extension upwards from the base. A positive number from 0 to 1 curved to be
|
||
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
|
||
let alt_main = (gen_ctx
|
||
.alt_nz
|
||
.get((wposf.div(2_000.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0))
|
||
.abs()
|
||
.powf(1.35);
|
||
|
||
fn spring(x: f64, pow: f64) -> f64 {
|
||
x.abs().powf(pow) * x.signum()
|
||
}
|
||
|
||
(0.0 + alt_main
|
||
+ (gen_ctx
|
||
.small_nz
|
||
.get((wposf.div(300.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0))
|
||
.mul(alt_main.powf(0.8).max(/*0.25*/ 0.15))
|
||
.mul(0.3)
|
||
.add(1.0)
|
||
.mul(0.4)
|
||
/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0)
|
||
.mul(0.045)*/)
|
||
};
|
||
let height =
|
||
((old_height_uniform(posi) - alt_old_min_uniform) as f64
|
||
/ (alt_old_max_uniform - alt_old_min_uniform) as f64)
|
||
/*((old_height(posi) - alt_old_min) as f64
|
||
/ (alt_old_max - alt_old_min) as f64)*/
|
||
;
|
||
|
||
let height = height.mul(max_epsilon - min_epsilon).add(min_epsilon);
|
||
/*.max(1e-7 / CONFIG.mountain_scale as f64)
|
||
.min(1.0f64 - 1e-7);*/
|
||
/* let alt_main = {
|
||
// Extension upwards from the base. A positive number from 0 to 1 curved to be
|
||
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
|
||
let alt_main = (gen_ctx
|
||
.alt_nz
|
||
.get((wposf.div(2_000.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0))
|
||
.abs()
|
||
.powf(1.35);
|
||
|
||
fn spring(x: f64, pow: f64) -> f64 {
|
||
x.abs().powf(pow) * x.signum()
|
||
}
|
||
|
||
(0.0 + alt_main
|
||
+ (gen_ctx
|
||
.small_nz
|
||
.get((wposf.div(300.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0))
|
||
.mul(alt_main.powf(0.8).max(/*0.25*/ 0.15))
|
||
.mul(0.3)
|
||
.add(1.0)
|
||
.mul(0.4)
|
||
+ spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0).mul(0.045))
|
||
}; */
|
||
// let height = height + (alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64 * ((1.0 / CONFIG.mountain_scale as f64).powf(1.0 / erosion_pow_low));
|
||
let height = erosion_factor(height);
|
||
assert!(height >= 0.0);
|
||
assert!(height <= 1.0);
|
||
// assert!(alt_main >= 0.0);
|
||
let (bump_factor, bump_max) = if
|
||
/*height < f32::EPSILON as f64 * 0.5/*false*/*/
|
||
false {
|
||
(
|
||
/*(alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64*/
|
||
(alt_main / CONFIG.mountain_scale as f64 * 128.0).mul(0.1).powf(1.2) * /*(1.0 / CONFIG.mountain_scale as f64)*/(f32::EPSILON * 0.5) as f64,
|
||
(f32::EPSILON * 0.5) as f64,
|
||
)
|
||
} else {
|
||
(0.0, 0.0)
|
||
};
|
||
let height = 1.0f64;
|
||
// let height = 1.0 / 7.0f64;
|
||
let height = height
|
||
/* .mul(15.0 / 16.0)
|
||
.add(1.0 / 16.0) */
|
||
.mul(7.0 / 8.0)
|
||
.add(1.0 / 8.0)
|
||
.mul(max_erosion_per_delta_t)
|
||
.sub(/*1.0 / CONFIG.mountain_scale as f64*/ bump_max)
|
||
.add(bump_factor);
|
||
/* .sub(/*1.0 / CONFIG.mountain_scale as f64*/(f32::EPSILON * 0.5) as f64)
|
||
.add(bump_factor); */
|
||
height as f32
|
||
};
|
||
let alt_func = |posi| {
|
||
if is_ocean_fn(posi) {
|
||
// -max_erosion_per_delta_t as f32
|
||
// -1.0 / CONFIG.mountain_scale
|
||
// -0.75
|
||
// -CONFIG.sea_level / CONFIG.mountain_scale
|
||
// 0.0
|
||
old_height(posi) // 0.0
|
||
} else {
|
||
// uplift_fn(posi)
|
||
let wposf = (uniform_idx_as_vec2(posi)
|
||
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
||
.map(|e| e as f64);
|
||
let alt_main = {
|
||
// Extension upwards from the base. A positive number from 0 to 1 curved to be
|
||
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
|
||
let alt_main = (gen_ctx
|
||
.alt_nz
|
||
.get((wposf.div(2_000.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0))
|
||
.abs()
|
||
.powf(1.35);
|
||
|
||
fn spring(x: f64, pow: f64) -> f64 {
|
||
x.abs().powf(pow) * x.signum()
|
||
}
|
||
|
||
(0.0 + alt_main
|
||
+ (gen_ctx
|
||
.small_nz
|
||
.get((wposf.div(300.0)).into_array())
|
||
.min(1.0)
|
||
.max(-1.0))
|
||
.mul(alt_main.powf(0.8).max(/*0.25*/ 0.15))
|
||
.mul(0.3)
|
||
.add(1.0)
|
||
.mul(0.4)
|
||
/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0)
|
||
.mul(0.045)*/)
|
||
};
|
||
old_height_uniform(posi)
|
||
/* // 0.0
|
||
// -/*CONFIG.sea_level / CONFIG.mountain_scale*//* 0.75 */1.0
|
||
// ((old_height(posi) - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64) as f32
|
||
// uplift_fn(posi) / max_erosion_per_delta_t as f32
|
||
// old_height_uniform(posi) *
|
||
(/*((old_height(posi) - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64) **/(((6.0 / 360.0 * 2.0 * f64::consts::PI).tan()
|
||
* TerrainChunkSize::RECT_SIZE.reduce_partial_min() as f64)
|
||
.floor()
|
||
* height_scale)) as f32
|
||
// 5.0 / CONFIG.mountain_scale */
|
||
}
|
||
};
|
||
let (alt, basement) = do_erosion(
|
||
0.0,
|
||
max_erosion_per_delta_t as f32,
|
||
n_steps,
|
||
&river_seed,
|
||
&rock_strength_nz,
|
||
|posi| alt_func(posi),
|
||
|posi| alt_func(posi),// if is_ocean_fn(posi) { old_height(posi) } else { 0.0 },
|
||
is_ocean_fn,
|
||
uplift_fn,
|
||
);
|
||
// Quick "small scale" erosion cycle in order to lower extreme angles.
|
||
let (alt, basement) = do_erosion(
|
||
0.0,
|
||
(1.0 * height_scale) as f32,
|
||
n_small_steps,
|
||
&river_seed,
|
||
&rock_strength_nz,
|
||
|posi| /* if is_ocean_fn(posi) { old_height(posi) } else { alt[posi] } */alt[posi],
|
||
|posi| basement[posi],
|
||
is_ocean_fn,
|
||
|posi| uplift_fn(posi) * (1.0 * height_scale / max_erosion_per_delta_t) as f32,
|
||
);
|
||
|
||
let is_ocean = get_oceans(|posi| alt[posi]);
|
||
let is_ocean_fn = |posi: usize| is_ocean[posi];
|
||
let mut dh = downhill(&alt, /*old_height*/ is_ocean_fn);
|
||
let (boundary_len, indirection, water_alt_pos) = get_lakes(&/*water_alt*/alt, &mut dh);
|
||
let flux_old = get_drainage(&water_alt_pos, &dh, boundary_len);
|
||
|
||
let water_height_initial = |chunk_idx| {
|
||
let indirection_idx = indirection[chunk_idx];
|
||
// Find the lake this point is flowing into.
|
||
let lake_idx = if indirection_idx < 0 {
|
||
chunk_idx
|
||
} else {
|
||
indirection_idx as usize
|
||
};
|
||
// Find the pass this lake is flowing into (i.e. water at the lake bottom gets
|
||
// pushed towards the point identified by pass_idx).
|
||
let neighbor_pass_idx = dh[lake_idx];
|
||
let chunk_water_alt = if neighbor_pass_idx < 0 {
|
||
// This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea level)
|
||
// or part of a lake that flows directly into the ocean. In the former case, water
|
||
// is at sea level so we just return 0.0. In the latter case, the lake bottom must
|
||
// have been a boundary node in the first place--meaning this node flows directly
|
||
// into the ocean. In that case, its lake bottom is ocean, meaning its water is
|
||
// also at sea level. Thus, we return 0.0 in both cases.
|
||
0.0
|
||
} else {
|
||
// This chunk is draining into a body of water that isn't the ocean (i.e., a lake).
|
||
// Then we just need to find the pass height of the surrounding lake in order to
|
||
// figure out the initial water height (which fill_sinks will then extend to make
|
||
// sure it fills the entire basin).
|
||
|
||
// Find the height of the pass into which our lake is flowing.
|
||
let pass_height_j = alt[neighbor_pass_idx as usize];
|
||
// Find the height of "our" side of the pass (the part of it that drains into this
|
||
// chunk's lake).
|
||
let pass_idx = -indirection[lake_idx];
|
||
let pass_height_i = alt[pass_idx as usize];
|
||
// Find the maximum of these two heights.
|
||
let pass_height = pass_height_i.max(pass_height_j);
|
||
// Use the pass height as the initial water altitude.
|
||
pass_height
|
||
};
|
||
// Use the maximum of the pass height and chunk height as the parameter to fill_sinks.
|
||
let chunk_alt = alt[chunk_idx];
|
||
chunk_alt.max(chunk_water_alt)
|
||
};
|
||
|
||
let water_alt = fill_sinks(water_height_initial, is_ocean_fn);
|
||
let rivers = get_rivers(&water_alt_pos, &water_alt, &dh, &indirection, &flux_old);
|
||
|
||
let water_alt = indirection
|
||
.par_iter()
|
||
.enumerate()
|
||
.map(|(chunk_idx, &indirection_idx)| {
|
||
// Find the lake this point is flowing into.
|
||
let lake_idx = if indirection_idx < 0 {
|
||
chunk_idx
|
||
} else {
|
||
indirection_idx as usize
|
||
};
|
||
// Find the pass this lake is flowing into (i.e. water at the lake bottom gets
|
||
// pushed towards the point identified by pass_idx).
|
||
let neighbor_pass_idx = dh[lake_idx];
|
||
if neighbor_pass_idx < 0 {
|
||
// This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea level)
|
||
// or part of a lake that flows directly into the ocean. In the former case, water
|
||
// is at sea level so we just return 0.0. In the latter case, the lake bottom must
|
||
// have been a boundary node in the first place--meaning this node flows directly
|
||
// into the ocean. In that case, its lake bottom is ocean, meaning its water is
|
||
// also at sea level. Thus, we return 0.0 in both cases.
|
||
0.0
|
||
} else {
|
||
// This is not flowing into the ocean, so we can use the existing water_alt.
|
||
water_alt[chunk_idx]
|
||
}
|
||
})
|
||
.collect::<Vec<_>>()
|
||
.into_boxed_slice();
|
||
|
||
let is_underwater = |chunk_idx: usize| match rivers[chunk_idx].river_kind {
|
||
Some(RiverKind::Ocean) | Some(RiverKind::Lake { .. }) => true,
|
||
Some(RiverKind::River { .. }) => false, // TODO: inspect width
|
||
None => false,
|
||
};
|
||
|
||
// Check whether any tiles around this tile are not water (since Lerp will ensure that they
|
||
// are included).
|
||
let pure_water = |posi: usize| {
|
||
/* let river_data = &rivers[posi];
|
||
match river_data.river_kind {
|
||
Some(RiverKind::Lake { .. }) => {
|
||
// Lakes are always completely submerged.
|
||
return true;
|
||
},
|
||
/* Some(RiverKind::River { cross_section }) if cross_section.x >= TerrainChunkSize::RECT_SIZE.x as f32 => {
|
||
// Rivers that are wide enough are considered completely submerged (not a
|
||
// completely fair approximation).
|
||
return true;
|
||
}, */
|
||
_ => {}
|
||
} */
|
||
let pos = uniform_idx_as_vec2(posi);
|
||
for x in pos.x - 1..(pos.x + 1) + 1 {
|
||
for y in pos.y - 1..(pos.y + 1) + 1 {
|
||
if x >= 0 && y >= 0 && x < WORLD_SIZE.x as i32 && y < WORLD_SIZE.y as i32 {
|
||
let posi = vec2_as_uniform_idx(Vec2::new(x, y));
|
||
if !is_underwater(posi) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
true
|
||
};
|
||
|
||
// NaNs in these uniform vectors wherever pure_water() returns true.
|
||
let (((alt_no_water, _), (pure_flux, _)), ((temp_base, _), (humid_base, _))) = rayon::join(
|
||
|| {
|
||
rayon::join(
|
||
|| {
|
||
uniform_noise(|posi, _| {
|
||
if pure_water(posi) {
|
||
None
|
||
} else {
|
||
// A version of alt that is uniform over *non-water* (or land-adjacent water)
|
||
// chunks.
|
||
Some(alt[posi])
|
||
}
|
||
})
|
||
},
|
||
|| {
|
||
uniform_noise(|posi, _| {
|
||
if pure_water(posi) {
|
||
None
|
||
} else {
|
||
Some(flux_old[posi])
|
||
}
|
||
})
|
||
},
|
||
)
|
||
},
|
||
|| {
|
||
rayon::join(
|
||
|| {
|
||
uniform_noise(|posi, wposf| {
|
||
if pure_water(posi) {
|
||
None
|
||
} else {
|
||
// -1 to 1.
|
||
Some(gen_ctx.temp_nz.get((wposf/*.div(12000.0)*/).into_array())
|
||
as f32)
|
||
}
|
||
})
|
||
},
|
||
|| {
|
||
uniform_noise(|posi, wposf| {
|
||
// Check whether any tiles around this tile are water.
|
||
if pure_water(posi) {
|
||
None
|
||
} else {
|
||
// 0 to 1, hopefully.
|
||
Some(
|
||
(gen_ctx.humid_nz.get(wposf.div(1024.0).into_array()) as f32)
|
||
.add(1.0)
|
||
.mul(0.5),
|
||
)
|
||
}
|
||
})
|
||
},
|
||
)
|
||
},
|
||
);
|
||
|
||
let gen_cdf = GenCdf {
|
||
humid_base,
|
||
temp_base,
|
||
chaos,
|
||
alt,
|
||
basement,
|
||
water_alt,
|
||
dh,
|
||
flux: flux_old,
|
||
pure_flux,
|
||
alt_no_water,
|
||
rivers,
|
||
};
|
||
|
||
let chunks = (0..WORLD_SIZE.x * WORLD_SIZE.y)
|
||
.into_par_iter()
|
||
.map(|i| SimChunk::generate(i, &gen_ctx, &gen_cdf))
|
||
.collect::<Vec<_>>();
|
||
|
||
let mut this = Self {
|
||
seed: seed,
|
||
chunks,
|
||
locations: Vec::new(),
|
||
gen_ctx,
|
||
rng,
|
||
};
|
||
|
||
this.seed_elements();
|
||
|
||
this
|
||
}
|
||
|
||
/// Draw a map of the world based on chunk information. Returns a buffer of u32s.
|
||
pub fn get_map(&self) -> Vec<u32> {
|
||
(0..WORLD_SIZE.x * WORLD_SIZE.y)
|
||
.into_par_iter()
|
||
.map(|chunk_idx| {
|
||
let pos = uniform_idx_as_vec2(chunk_idx);
|
||
|
||
let (alt, water_alt, river_kind) = self
|
||
.get(pos)
|
||
.map(|sample| (sample.alt, sample.water_alt, sample.river.river_kind))
|
||
.unwrap_or((CONFIG.sea_level, CONFIG.sea_level, None));
|
||
let alt = ((alt - CONFIG.sea_level) / CONFIG.mountain_scale)
|
||
.min(1.0)
|
||
.max(0.0);
|
||
let water_alt = ((alt.max(water_alt) - CONFIG.sea_level) / CONFIG.mountain_scale)
|
||
.min(1.0)
|
||
.max(0.0);
|
||
match river_kind {
|
||
Some(RiverKind::Ocean) => u32::from_le_bytes([64, 32, 0, 255]),
|
||
Some(RiverKind::Lake { .. }) => u32::from_le_bytes([
|
||
64 + (water_alt * 191.0) as u8,
|
||
32 + (water_alt * 95.0) as u8,
|
||
0,
|
||
255,
|
||
]),
|
||
Some(RiverKind::River { .. }) => u32::from_le_bytes([
|
||
64 + (alt * 191.0) as u8,
|
||
32 + (alt * 95.0) as u8,
|
||
0,
|
||
255,
|
||
]),
|
||
None => u32::from_le_bytes([0, (alt * 255.0) as u8, 0, 255]),
|
||
}
|
||
})
|
||
.collect()
|
||
}
|
||
|
||
/// Prepare the world for simulation
|
||
pub fn seed_elements(&mut self) {
|
||
let mut rng = self.rng.clone();
|
||
|
||
let cell_size = 16;
|
||
let grid_size = WORLD_SIZE / cell_size;
|
||
let loc_count = 100;
|
||
|
||
let mut loc_grid = vec![None; grid_size.product()];
|
||
let mut locations = Vec::new();
|
||
|
||
// Seed the world with some locations
|
||
for _ in 0..loc_count {
|
||
let cell_pos = Vec2::new(
|
||
self.rng.gen::<usize>() % grid_size.x,
|
||
self.rng.gen::<usize>() % grid_size.y,
|
||
);
|
||
let wpos = (cell_pos * cell_size + cell_size / 2)
|
||
.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
|
||
e as i32 * sz as i32 + sz as i32 / 2
|
||
});
|
||
|
||
locations.push(Location::generate(wpos, &mut rng));
|
||
|
||
loc_grid[cell_pos.y * grid_size.x + cell_pos.x] = Some(locations.len() - 1);
|
||
}
|
||
|
||
// Find neighbours
|
||
let mut loc_clone = locations
|
||
.iter()
|
||
.map(|l| l.center)
|
||
.enumerate()
|
||
.collect::<Vec<_>>();
|
||
for i in 0..locations.len() {
|
||
let pos = locations[i].center.map(|e| e as i64);
|
||
|
||
loc_clone.sort_by_key(|(_, l)| l.map(|e| e as i64).distance_squared(pos));
|
||
|
||
loc_clone.iter().skip(1).take(2).for_each(|(j, _)| {
|
||
locations[i].neighbours.insert(*j);
|
||
locations[*j].neighbours.insert(i);
|
||
});
|
||
}
|
||
|
||
// Simulate invasion!
|
||
let invasion_cycles = 25;
|
||
for _ in 0..invasion_cycles {
|
||
for i in 0..grid_size.x {
|
||
for j in 0..grid_size.y {
|
||
if loc_grid[j * grid_size.x + i].is_none() {
|
||
const R_COORDS: [i32; 5] = [-1, 0, 1, 0, -1];
|
||
let idx = self.rng.gen::<usize>() % 4;
|
||
let new_i = i as i32 + R_COORDS[idx];
|
||
let new_j = j as i32 + R_COORDS[idx + 1];
|
||
if new_i >= 0 && new_j >= 0 {
|
||
let loc = Vec2::new(new_i as usize, new_j as usize);
|
||
loc_grid[j * grid_size.x + i] =
|
||
loc_grid.get(loc.y * grid_size.x + loc.x).cloned().flatten();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Place the locations onto the world
|
||
let gen = StructureGen2d::new(self.seed, cell_size as u32, cell_size as u32 / 2);
|
||
for i in 0..WORLD_SIZE.x {
|
||
for j in 0..WORLD_SIZE.y {
|
||
let chunk_pos = Vec2::new(i as i32, j as i32);
|
||
let block_pos = Vec2::new(
|
||
chunk_pos.x * TerrainChunkSize::RECT_SIZE.x as i32,
|
||
chunk_pos.y * TerrainChunkSize::RECT_SIZE.y as i32,
|
||
);
|
||
let _cell_pos = Vec2::new(i / cell_size, j / cell_size);
|
||
|
||
// Find the distance to each region
|
||
let near = gen.get(chunk_pos);
|
||
let mut near = near
|
||
.iter()
|
||
.map(|(pos, seed)| RegionInfo {
|
||
chunk_pos: *pos,
|
||
block_pos: pos
|
||
.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e * sz as i32),
|
||
dist: (pos - chunk_pos).map(|e| e as f32).magnitude(),
|
||
seed: *seed,
|
||
})
|
||
.collect::<Vec<_>>();
|
||
|
||
// Sort regions based on distance
|
||
near.sort_by(|a, b| a.dist.partial_cmp(&b.dist).unwrap());
|
||
|
||
let nearest_cell_pos = near[0].chunk_pos;
|
||
if nearest_cell_pos.x >= 0 && nearest_cell_pos.y >= 0 {
|
||
let nearest_cell_pos = nearest_cell_pos.map(|e| e as usize) / cell_size;
|
||
self.get_mut(chunk_pos).unwrap().location = loc_grid
|
||
.get(nearest_cell_pos.y * grid_size.x + nearest_cell_pos.x)
|
||
.cloned()
|
||
.unwrap_or(None)
|
||
.map(|loc_idx| LocationInfo { loc_idx, near });
|
||
|
||
let town_size = 200;
|
||
let in_town = self
|
||
.get(chunk_pos)
|
||
.unwrap()
|
||
.location
|
||
.as_ref()
|
||
.map(|l| {
|
||
locations[l.loc_idx]
|
||
.center
|
||
.map(|e| e as i64)
|
||
.distance_squared(block_pos.map(|e| e as i64))
|
||
< town_size * town_size
|
||
})
|
||
.unwrap_or(false);
|
||
if in_town {
|
||
self.get_mut(chunk_pos).unwrap().spawn_rate = 0.0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Stage 2 - towns!
|
||
let mut maybe_towns = HashMap::new();
|
||
for i in 0..WORLD_SIZE.x {
|
||
for j in 0..WORLD_SIZE.y {
|
||
let chunk_pos = Vec2::new(i as i32, j as i32);
|
||
let wpos = chunk_pos.map2(Vec2::from(TerrainChunkSize::RECT_SIZE), |e, sz: u32| {
|
||
e * sz as i32 + sz as i32 / 2
|
||
});
|
||
|
||
let near_towns = self.gen_ctx.town_gen.get(wpos);
|
||
let town = near_towns
|
||
.iter()
|
||
.min_by_key(|(pos, _seed)| wpos.distance_squared(*pos));
|
||
|
||
if let Some((pos, _)) = town {
|
||
let maybe_town = maybe_towns
|
||
.entry(*pos)
|
||
.or_insert_with(|| {
|
||
// println!("Town: {:?}", town);
|
||
TownState::generate(*pos, &mut ColumnGen::new(self), &mut rng)
|
||
.map(|t| Arc::new(t))
|
||
})
|
||
.as_mut()
|
||
// Only care if we're close to the town
|
||
.filter(|town| {
|
||
Vec2::from(town.center()).distance_squared(wpos)
|
||
< town.radius().add(64).pow(2)
|
||
})
|
||
.cloned();
|
||
self.get_mut(chunk_pos).unwrap().structures.town = maybe_town;
|
||
}
|
||
}
|
||
}
|
||
|
||
self.rng = rng;
|
||
self.locations = locations;
|
||
}
|
||
|
||
pub fn get(&self, chunk_pos: Vec2<i32>) -> Option<&SimChunk> {
|
||
if chunk_pos
|
||
.map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32)
|
||
.reduce_and()
|
||
{
|
||
Some(&self.chunks[vec2_as_uniform_idx(chunk_pos)])
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
pub fn get_wpos(&self, wpos: Vec2<i32>) -> Option<&SimChunk> {
|
||
self.get(
|
||
wpos.map2(Vec2::from(TerrainChunkSize::RECT_SIZE), |e, sz: u32| {
|
||
e / sz as i32
|
||
}),
|
||
)
|
||
}
|
||
|
||
pub fn get_mut(&mut self, chunk_pos: Vec2<i32>) -> Option<&mut SimChunk> {
|
||
if chunk_pos
|
||
.map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32)
|
||
.reduce_and()
|
||
{
|
||
Some(&mut self.chunks[vec2_as_uniform_idx(chunk_pos)])
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
pub fn get_base_z(&self, chunk_pos: Vec2<i32>) -> Option<f32> {
|
||
if !chunk_pos
|
||
.map2(WORLD_SIZE, |e, sz| e > 0 && e < sz as i32 - 2)
|
||
.reduce_and()
|
||
{
|
||
return None;
|
||
}
|
||
|
||
let chunk_idx = vec2_as_uniform_idx(chunk_pos);
|
||
local_cells(chunk_idx)
|
||
.flat_map(|neighbor_idx| {
|
||
let neighbor_pos = uniform_idx_as_vec2(neighbor_idx);
|
||
let neighbor_chunk = self.get(neighbor_pos);
|
||
let river_kind = neighbor_chunk.and_then(|c| c.river.river_kind);
|
||
let has_water = river_kind.is_some() && river_kind != Some(RiverKind::Ocean);
|
||
if (neighbor_pos - chunk_pos).reduce_partial_max() <= 1 || has_water {
|
||
neighbor_chunk.map(|c| c.get_base_z())
|
||
} else {
|
||
None
|
||
}
|
||
})
|
||
.fold(None, |a: Option<f32>, x| a.map(|a| a.min(x)).or(Some(x)))
|
||
}
|
||
|
||
pub fn get_interpolated<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
|
||
where
|
||
T: Copy + Default + Add<Output = T> + Mul<f32, Output = T>,
|
||
F: FnMut(&SimChunk) -> T,
|
||
{
|
||
let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
|
||
e as f64 / sz as f64
|
||
});
|
||
|
||
let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T {
|
||
let x2 = x * x;
|
||
|
||
// Catmull-Rom splines
|
||
let co0 = a * -0.5 + b * 1.5 + c * -1.5 + d * 0.5;
|
||
let co1 = a + b * -2.5 + c * 2.0 + d * -0.5;
|
||
let co2 = a * -0.5 + c * 0.5;
|
||
let co3 = b;
|
||
|
||
co0 * x2 * x + co1 * x2 + co2 * x + co3
|
||
};
|
||
|
||
let mut x = [T::default(); 4];
|
||
|
||
for (x_idx, j) in (-1..3).enumerate() {
|
||
let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| e.max(0.0) as i32 + q))?);
|
||
let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| e.max(0.0) as i32 + q))?);
|
||
let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| e.max(0.0) as i32 + q))?);
|
||
let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| e.max(0.0) as i32 + q))?);
|
||
|
||
x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32);
|
||
}
|
||
|
||
Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32))
|
||
}
|
||
|
||
/// M. Steffen splines.
|
||
///
|
||
/// A more expensive cubic interpolation function that can preserve monotonicity between
|
||
/// points. This is useful if you rely on relative differences between endpoints being
|
||
/// preserved at all interior points. For example, we use this with riverbeds (and water
|
||
/// height on along rivers) to maintain the invariant that the rivers always flow downhill at
|
||
/// interior points (not just endpoints), without needing to flatten out the river.
|
||
pub fn get_interpolated_monotone<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
|
||
where
|
||
T: Copy + Default + Signed + Float + Add<Output = T> + Mul<f32, Output = T>,
|
||
F: FnMut(&SimChunk) -> T,
|
||
{
|
||
// See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf
|
||
//
|
||
// Note that these are only guaranteed monotone in one dimension; fortunately, that is
|
||
// sufficient for our purposes.
|
||
let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
|
||
e as f64 / sz as f64
|
||
});
|
||
|
||
let secant = |b: T, c: T| c - b;
|
||
|
||
let parabola = |a: T, c: T| -a * 0.5 + c * 0.5;
|
||
|
||
let slope = |_a: T, _b: T, _c: T, s_a: T, s_b: T, p_b: T| {
|
||
// ((b - a).signum() + (c - b).signum()) * s
|
||
(s_a.signum() + s_b.signum()) * (s_a.abs().min(s_b.abs()).min(p_b.abs() * 0.5))
|
||
};
|
||
|
||
let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T {
|
||
// Compute secants.
|
||
let s_a = secant(a, b);
|
||
let s_b = secant(b, c);
|
||
let s_c = secant(c, d);
|
||
// Computing slopes from parabolas.
|
||
let p_b = parabola(a, c);
|
||
let p_c = parabola(b, d);
|
||
// Get slopes (setting distance between neighbors to 1.0).
|
||
let slope_b = slope(a, b, c, s_a, s_b, p_b);
|
||
let slope_c = slope(b, c, d, s_b, s_c, p_c);
|
||
let x2 = x * x;
|
||
|
||
// Interpolating splines.
|
||
let co0 = slope_b + slope_c - s_b * 2.0;
|
||
// = a * -0.5 + c * 0.5 + b * -0.5 + d * 0.5 - 2 * (c - b)
|
||
// = a * -0.5 + b * 1.5 - c * 1.5 + d * 0.5;
|
||
let co1 = s_b * 3.0 - slope_b * 2.0 - slope_c;
|
||
// = (3.0 * (c - b) - 2.0 * (a * -0.5 + c * 0.5) - (b * -0.5 + d * 0.5))
|
||
// = a + b * -2.5 + c * 2.0 + d * -0.5;
|
||
let co2 = slope_b;
|
||
// = a * -0.5 + c * 0.5;
|
||
let co3 = b;
|
||
|
||
co0 * x2 * x + co1 * x2 + co2 * x + co3
|
||
};
|
||
|
||
let mut x = [T::default(); 4];
|
||
|
||
for (x_idx, j) in (-1..3).enumerate() {
|
||
let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| e.max(0.0) as i32 + q))?);
|
||
let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| e.max(0.0) as i32 + q))?);
|
||
let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| e.max(0.0) as i32 + q))?);
|
||
let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| e.max(0.0) as i32 + q))?);
|
||
|
||
x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32);
|
||
}
|
||
|
||
Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32))
|
||
}
|
||
|
||
/// Bilinear interpolation.
|
||
///
|
||
/// Linear interpolation in both directions (i.e. quadratic interpolation).
|
||
pub fn get_interpolated_bilinear<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
|
||
where
|
||
T: Copy + Default + Signed + Float + Add<Output = T> + Mul<f32, Output = T>,
|
||
F: FnMut(&SimChunk) -> T,
|
||
{
|
||
// (i) Find downhill for all four points.
|
||
// (ii) Compute distance from each downhill point and do linear interpolation on their heights.
|
||
// (iii) Compute distance between each neighboring point and do linear interpolation on
|
||
// their distance-interpolated heights.
|
||
|
||
// See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf
|
||
//
|
||
// Note that these are only guaranteed monotone in one dimension; fortunately, that is
|
||
// sufficient for our purposes.
|
||
let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
|
||
e as f64 / sz as f64
|
||
});
|
||
|
||
// Orient the chunk in the direction of the most downhill point of the four. If there is
|
||
// no "most downhill" point, then we don't care.
|
||
let x0 = pos.map2(Vec2::new(0, 0), |e, q| e.max(0.0) as i32 + q);
|
||
let p0 = self.get(x0)?;
|
||
let y0 = f(p0);
|
||
|
||
let x1 = pos.map2(Vec2::new(1, 0), |e, q| e.max(0.0) as i32 + q);
|
||
let p1 = self.get(x1)?;
|
||
let y1 = f(p1);
|
||
|
||
let x2 = pos.map2(Vec2::new(0, 1), |e, q| e.max(0.0) as i32 + q);
|
||
let p2 = self.get(x2)?;
|
||
let y2 = f(p2);
|
||
|
||
let x3 = pos.map2(Vec2::new(1, 1), |e, q| e.max(0.0) as i32 + q);
|
||
let p3 = self.get(x3)?;
|
||
let y3 = f(p3);
|
||
|
||
let z0 = y0
|
||
.mul(1.0 - pos.x.fract() as f32)
|
||
.mul(1.0 - pos.y.fract() as f32);
|
||
let z1 = y1.mul(pos.x.fract() as f32).mul(1.0 - pos.y.fract() as f32);
|
||
let z2 = y2.mul(1.0 - pos.x.fract() as f32).mul(pos.y.fract() as f32);
|
||
let z3 = y3.mul(pos.x.fract() as f32).mul(pos.y.fract() as f32);
|
||
|
||
Some(z0 + z1 + z2 + z3)
|
||
}
|
||
}
|
||
|
||
pub struct SimChunk {
|
||
pub chaos: f32,
|
||
pub alt: f32,
|
||
pub basement: f32,
|
||
pub water_alt: f32,
|
||
pub downhill: Option<Vec2<i32>>,
|
||
pub flux: f32,
|
||
pub temp: f32,
|
||
pub humidity: f32,
|
||
pub rockiness: f32,
|
||
pub is_cliffs: bool,
|
||
pub near_cliffs: bool,
|
||
pub tree_density: f32,
|
||
pub forest_kind: ForestKind,
|
||
pub spawn_rate: f32,
|
||
pub location: Option<LocationInfo>,
|
||
pub river: RiverData,
|
||
pub is_underwater: bool,
|
||
|
||
pub structures: Structures,
|
||
}
|
||
|
||
#[derive(Copy, Clone)]
|
||
pub struct RegionInfo {
|
||
pub chunk_pos: Vec2<i32>,
|
||
pub block_pos: Vec2<i32>,
|
||
pub dist: f32,
|
||
pub seed: u32,
|
||
}
|
||
|
||
#[derive(Clone)]
|
||
pub struct LocationInfo {
|
||
pub loc_idx: usize,
|
||
pub near: Vec<RegionInfo>,
|
||
}
|
||
|
||
#[derive(Clone)]
|
||
pub struct Structures {
|
||
pub town: Option<Arc<TownState>>,
|
||
}
|
||
|
||
impl SimChunk {
|
||
fn generate(posi: usize, gen_ctx: &GenCtx, gen_cdf: &GenCdf) -> Self {
|
||
let pos = uniform_idx_as_vec2(posi);
|
||
let wposf = (pos * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)).map(|e| e as f64);
|
||
|
||
let _map_edge_factor = map_edge_factor(posi);
|
||
let (_, chaos) = gen_cdf.chaos[posi];
|
||
let alt_pre = gen_cdf.alt[posi];
|
||
let basement_pre = gen_cdf.basement[posi];
|
||
let water_alt_pre = gen_cdf.water_alt[posi];
|
||
let downhill_pre = gen_cdf.dh[posi];
|
||
let flux = gen_cdf.flux[posi];
|
||
let river = gen_cdf.rivers[posi].clone();
|
||
|
||
// Can have NaNs in non-uniform part where pure_water returned true. We just test one of
|
||
// the four in order to find out whether this is the case.
|
||
let (flux_uniform, /*flux_non_uniform*/ _) = gen_cdf.pure_flux[posi];
|
||
let (alt_uniform, _) = gen_cdf.alt_no_water[posi];
|
||
let (temp_uniform, _) = gen_cdf.temp_base[posi];
|
||
let (humid_uniform, _) = gen_cdf.humid_base[posi];
|
||
|
||
/* // Vertical difference from the equator (NOTE: "uniform" with much lower granularity than
|
||
// other uniform quantities, but hopefully this doesn't matter *too* much--if it does, we
|
||
// can always add a small x component).
|
||
//
|
||
// Not clear that we want this yet, let's see.
|
||
let latitude_uniform = (pos.y as f32 / WORLD_SIZE.y as f32).sub(0.5).mul(2.0);
|
||
|
||
// Even less granular--if this matters we can make the sign affect the quantiy slightly.
|
||
let abs_lat_uniform = latitude_uniform.abs(); */
|
||
|
||
// Take the weighted average of our randomly generated base humidity, the scaled
|
||
// negative altitude, and the calculated water flux over this point in order to compute
|
||
// humidity.
|
||
const HUMID_WEIGHTS: [f32; /*3*/2] = [4.0, 1.0/*, 1.0*/];
|
||
let humidity = /*if flux_non_uniform.is_nan() {
|
||
0.0
|
||
} else */{
|
||
cdf_irwin_hall(
|
||
&HUMID_WEIGHTS,
|
||
[humid_uniform, flux_uniform/*, 1.0 - alt_uniform*/],
|
||
)
|
||
};
|
||
|
||
// We also correlate temperature negatively with altitude and absolute latitude, using
|
||
// different weighting than we use for humidity.
|
||
const TEMP_WEIGHTS: [f32; 2] = [/*1.5, */ 1.0, 2.0];
|
||
let temp = /*if flux_non_uniform.is_nan() {
|
||
0.0
|
||
} else */{
|
||
cdf_irwin_hall(
|
||
&TEMP_WEIGHTS,
|
||
[
|
||
temp_uniform,
|
||
1.0 - alt_uniform, /* 1.0 - abs_lat_uniform*/
|
||
],
|
||
)
|
||
}
|
||
// Convert to [-1, 1]
|
||
.sub(0.5)
|
||
.mul(2.0);
|
||
/* if (temp - (1.0 - alt_uniform).sub(0.5).mul(2.0)).abs() >= 1e-7 {
|
||
panic!("Halp!");
|
||
} */
|
||
|
||
let height_scale = 1.0; // 1.0 / CONFIG.mountain_scale;
|
||
let mut alt = CONFIG.sea_level.add(alt_pre.div(height_scale));
|
||
let mut basement = CONFIG.sea_level.add(basement_pre.div(height_scale));
|
||
let water_alt = CONFIG
|
||
.sea_level
|
||
.add(water_alt_pre.div(height_scale));
|
||
let downhill = if downhill_pre == -2 {
|
||
None
|
||
} else if downhill_pre < 0 {
|
||
panic!("Uh... shouldn't this never, ever happen?");
|
||
} else {
|
||
Some(
|
||
uniform_idx_as_vec2(downhill_pre as usize)
|
||
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32),
|
||
)
|
||
};
|
||
|
||
let cliff = gen_ctx.cliff_nz.get((wposf.div(2048.0)).into_array()) as f32 + chaos * 0.2;
|
||
|
||
// Logistic regression. Make sure x ∈ (0, 1).
|
||
let logit = |x: f64| x.ln() - x.neg().ln_1p();
|
||
// 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi)))
|
||
let logistic_2_base = 3.0f64.sqrt().mul(f64::consts::FRAC_2_PI);
|
||
// Assumes μ = 0, σ = 1
|
||
let logistic_cdf = |x: f64| x.div(logistic_2_base).tanh().mul(0.5).add(0.5);
|
||
|
||
let is_underwater = match river.river_kind {
|
||
Some(RiverKind::Ocean) | Some(RiverKind::Lake { .. }) => true,
|
||
Some(RiverKind::River { .. }) => false, // TODO: inspect width
|
||
None => false,
|
||
};
|
||
let river_xy = Vec2::new(river.velocity.x, river.velocity.y).magnitude();
|
||
let river_slope = river.velocity.z / river_xy;
|
||
match river.river_kind {
|
||
Some(RiverKind::River { cross_section }) => {
|
||
if cross_section.x >= 0.5 && cross_section.y >= CONFIG.river_min_height {
|
||
/* println!(
|
||
"Big area! Pos area: {:?}, River data: {:?}, slope: {:?}",
|
||
wposf, river, river_slope
|
||
); */
|
||
}
|
||
if river_slope.abs() >= 1.0 && cross_section.x >= 1.0 {
|
||
log::debug!(
|
||
"Big waterfall! Pos area: {:?}, River data: {:?}, slope: {:?}",
|
||
wposf,
|
||
river,
|
||
river_slope
|
||
);
|
||
}
|
||
}
|
||
Some(RiverKind::Lake { .. }) => {
|
||
// Forces lakes to be downhill from the land around them, and adds some noise to
|
||
// the lake bed to make sure it's not too flat.
|
||
let lake_bottom_nz = (gen_ctx.small_nz.get((wposf.div(20.0)).into_array()) as f32)
|
||
.max(-1.0)
|
||
.min(1.0)
|
||
.mul(3.0);
|
||
alt = alt.min(water_alt - 5.0) + lake_bottom_nz;
|
||
}
|
||
_ => {}
|
||
}
|
||
|
||
// No trees in the ocean or with zero humidity (currently)
|
||
let tree_density = if is_underwater {
|
||
0.0
|
||
} else {
|
||
let tree_density = (gen_ctx.tree_nz.get((wposf.div(1024.0)).into_array()))
|
||
.mul(1.5)
|
||
.add(1.0)
|
||
.mul(0.5)
|
||
.mul(1.2 - chaos as f64 * 0.95)
|
||
.add(0.05)
|
||
.max(0.0)
|
||
.min(1.0);
|
||
// Tree density should go (by a lot) with humidity.
|
||
if humidity <= 0.0 || tree_density <= 0.0 {
|
||
0.0
|
||
} else if humidity >= 1.0 || tree_density >= 1.0 {
|
||
1.0
|
||
} else {
|
||
// Weighted logit sum.
|
||
logistic_cdf(logit(humidity as f64) + 0.5 * logit(tree_density))
|
||
}
|
||
// rescale to (-0.95, 0.95)
|
||
.sub(0.5)
|
||
.mul(0.95)
|
||
.add(0.5)
|
||
} as f32;
|
||
|
||
Self {
|
||
chaos,
|
||
flux,
|
||
alt,
|
||
basement: basement.min(alt),
|
||
water_alt,
|
||
downhill,
|
||
temp,
|
||
humidity,
|
||
rockiness: if true {
|
||
(gen_ctx.rock_nz.get((wposf.div(1024.0)).into_array()) as f32)
|
||
.sub(0.1)
|
||
.mul(1.3)
|
||
.max(0.0)
|
||
} else {
|
||
0.0
|
||
},
|
||
is_underwater,
|
||
is_cliffs: cliff > 0.5 && !is_underwater,
|
||
near_cliffs: cliff > 0.2,
|
||
tree_density,
|
||
forest_kind: if temp > 0.0 {
|
||
if temp > CONFIG.desert_temp {
|
||
if humidity > CONFIG.jungle_hum {
|
||
// Forests in desert temperatures with extremely high humidity
|
||
// should probably be different from palm trees, but we use them
|
||
// for now.
|
||
ForestKind::Palm
|
||
} else if humidity > CONFIG.forest_hum {
|
||
ForestKind::Palm
|
||
} else if humidity > CONFIG.desert_hum {
|
||
// Low but not desert humidity, so we should really have some other
|
||
// terrain...
|
||
ForestKind::Savannah
|
||
} else {
|
||
ForestKind::Savannah
|
||
}
|
||
} else if temp > CONFIG.tropical_temp {
|
||
if humidity > CONFIG.jungle_hum {
|
||
if tree_density > 0.0 {
|
||
// println!("Mangrove: {:?}", wposf);
|
||
}
|
||
ForestKind::Mangrove
|
||
} else if humidity > CONFIG.forest_hum {
|
||
// NOTE: Probably the wrong kind of tree for this climate.
|
||
ForestKind::Oak
|
||
} else if humidity > CONFIG.desert_hum {
|
||
// Low but not desert... need something besides savannah.
|
||
ForestKind::Savannah
|
||
} else {
|
||
ForestKind::Savannah
|
||
}
|
||
} else {
|
||
if humidity > CONFIG.jungle_hum {
|
||
// Temperate climate with jungle humidity...
|
||
// https://en.wikipedia.org/wiki/Humid_subtropical_climates are often
|
||
// densely wooded and full of water. Semitropical rainforests, basically.
|
||
// For now we just treet them like other rainforests.
|
||
ForestKind::Oak
|
||
} else if humidity > CONFIG.forest_hum {
|
||
// Moderate climate, moderate humidity.
|
||
ForestKind::Oak
|
||
} else if humidity > CONFIG.desert_hum {
|
||
// With moderate temperature and low humidity, we should probably see
|
||
// something different from savannah, but oh well...
|
||
ForestKind::Savannah
|
||
} else {
|
||
ForestKind::Savannah
|
||
}
|
||
}
|
||
} else {
|
||
// For now we don't take humidity into account for cold climates (but we really
|
||
// should!) except that we make sure we only have snow pines when there is snow.
|
||
if temp <= CONFIG.snow_temp {
|
||
ForestKind::SnowPine
|
||
} else if humidity > CONFIG.desert_hum {
|
||
ForestKind::Pine
|
||
} else {
|
||
// Should really have something like tundra.
|
||
ForestKind::Pine
|
||
}
|
||
},
|
||
spawn_rate: 1.0,
|
||
location: None,
|
||
river,
|
||
structures: Structures { town: None },
|
||
}
|
||
}
|
||
|
||
pub fn get_base_z(&self) -> f32 {
|
||
self.alt - self.chaos * 50.0 - 16.0
|
||
}
|
||
|
||
pub fn get_name(&self, world: &WorldSim) -> Option<String> {
|
||
if let Some(loc) = &self.location {
|
||
Some(world.locations[loc.loc_idx].name().to_string())
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
pub fn get_biome(&self) -> BiomeKind {
|
||
if self.alt < CONFIG.sea_level {
|
||
BiomeKind::Ocean
|
||
} else if self.chaos > 0.6 {
|
||
BiomeKind::Mountain
|
||
} else if self.temp > CONFIG.desert_temp {
|
||
BiomeKind::Desert
|
||
} else if self.temp < CONFIG.snow_temp {
|
||
BiomeKind::Snowlands
|
||
} else if self.tree_density > 0.65 {
|
||
BiomeKind::Forest
|
||
} else {
|
||
BiomeKind::Grassland
|
||
}
|
||
}
|
||
}
|