veloren/world/src/civ/mod.rs
2020-04-23 18:19:40 +01:00

649 lines
21 KiB
Rust

mod econ;
use std::{
ops::Range,
hash::Hash,
};
use hashbrown::{HashMap, HashSet};
use vek::*;
use rand::prelude::*;
use common::{
terrain::TerrainChunkSize,
vol::RectVolSize,
store::{Id, Store},
path::Path,
astar::Astar,
};
use crate::sim::{WorldSim, SimChunk};
const CARDINALS: [Vec2<i32>; 4] = [
Vec2::new(1, 0),
Vec2::new(-1, 0),
Vec2::new(0, 1),
Vec2::new(0, -1),
];
const DIAGONALS: [Vec2<i32>; 8] = [
Vec2::new(1, 0),
Vec2::new(1, 1),
Vec2::new(-1, 0),
Vec2::new(-1, 1),
Vec2::new(0, 1),
Vec2::new(1, -1),
Vec2::new(0, -1),
Vec2::new(-1, -1),
];
fn attempt<T>(max_iters: usize, mut f: impl FnMut() -> Option<T>) -> Option<T> {
(0..max_iters).find_map(|_| f())
}
const INITIAL_CIV_COUNT: usize = 32;
#[derive(Default)]
pub struct Civs {
civs: Store<Civ>,
places: Store<Place>,
tracks: Store<Track>,
track_map: HashMap<Id<Site>, HashMap<Id<Site>, Id<Track>>>,
sites: Store<Site>,
}
pub struct GenCtx<'a, R: Rng> {
sim: &'a mut WorldSim,
rng: &'a mut R,
}
impl Civs {
pub fn generate(seed: u32, sim: &mut WorldSim) -> Self {
let mut this = Self::default();
let mut rng = sim.rng.clone();
let mut ctx = GenCtx { sim, rng: &mut rng };
for _ in 0..INITIAL_CIV_COUNT {
println!("Creating civilisation...");
if let None = this.birth_civ(&mut ctx) {
println!("Failed to find starting site for civilisation.");
}
}
// Tick
const SIM_YEARS: usize = 1000;
for _ in 0..SIM_YEARS {
this.tick(&mut ctx, 1.0);
}
// Temporary!
for track in this.tracks.iter() {
for loc in track.path.iter() {
sim.get_mut(*loc).unwrap().place = Some(this.civs.iter().next().unwrap().homeland);
}
}
this.display_info();
this
}
pub fn place(&self, id: Id<Place>) -> &Place { self.places.get(id) }
pub fn sites(&self) -> impl Iterator<Item=&Site> + '_ {
self.sites.iter()
}
fn display_info(&self) {
for (id, civ) in self.civs.iter_ids() {
println!("# Civilisation {:?}", id);
println!("Name: {}", "<unnamed>");
println!("Homeland: {:#?}", self.places.get(civ.homeland));
}
for (id, site) in self.sites.iter_ids() {
println!("# Site {:?}", id);
println!("{:#?}", site);
}
}
/// Return the direct track between two places
fn track_between(&self, a: Id<Site>, b: Id<Site>) -> Option<Id<Track>> {
self.track_map
.get(&a)
.and_then(|dests| dests.get(&b))
.or_else(|| self.track_map
.get(&b)
.and_then(|dests| dests.get(&a)))
.copied()
}
/// Return an iterator over a site's neighbors
fn neighbors(&self, site: Id<Site>) -> impl Iterator<Item=Id<Site>> + '_ {
let to = self.track_map.get(&site).map(|dests| dests.keys()).into_iter().flatten();
let fro = self.track_map.iter().filter(move |(_, dests)| dests.contains_key(&site)).map(|(p, _)| p);
to.chain(fro).filter(move |p| **p != site).copied()
}
/// Find the cheapest route between two places
fn route_between(&self, a: Id<Site>, b: Id<Site>) -> Option<(Path<Id<Site>>, f32)> {
let heuristic = move |p: &Id<Site>| (self.sites.get(*p).center.distance_squared(self.sites.get(b).center) as f32).sqrt();
let neighbors = |p: &Id<Site>| self.neighbors(*p);
let transition = |a: &Id<Site>, b: &Id<Site>| self.tracks.get(self.track_between(*a, *b).unwrap()).cost;
let satisfied = |p: &Id<Site>| *p == b;
let mut astar = Astar::new(100, a, heuristic);
astar
.poll(100, heuristic, neighbors, transition, satisfied)
.into_path()
.and_then(|path| astar.get_cheapest_cost().map(|cost| (path, cost)))
}
fn birth_civ(&mut self, ctx: &mut GenCtx<impl Rng>) -> Option<Id<Civ>> {
let site = attempt(5, || {
let loc = find_site_loc(ctx, None)?;
self.establish_site(ctx, loc)
})?;
let civ = self.civs.insert(Civ {
capital: site,
homeland: self.sites.get(site).place,
});
Some(civ)
}
fn establish_place(&mut self, ctx: &mut GenCtx<impl Rng>, loc: Vec2<i32>, area: Range<usize>) -> Option<Id<Place>> {
let mut dead = HashSet::new();
let mut alive = HashSet::new();
alive.insert(loc);
// Fill the surrounding area
while let Some(cloc) = alive.iter().choose(ctx.rng).copied() {
for dir in CARDINALS.iter() {
if site_in_dir(&ctx.sim, cloc, *dir) {
let rloc = cloc + *dir;
if !dead.contains(&rloc) && ctx.sim.get(rloc).map(|c| c.place.is_none()).unwrap_or(false) {
alive.insert(rloc);
}
}
}
alive.remove(&cloc);
dead.insert(cloc);
if dead.len() + alive.len() >= area.end {
break;
}
}
// Make sure the place is large enough
if dead.len() + alive.len() <= area.start {
return None;
}
let place = self.places.insert(Place {
center: loc,
nat_res: NaturalResources::default(),
});
// Write place to map
for cell in dead.union(&alive) {
if let Some(chunk) = ctx.sim.get_mut(*cell) {
chunk.place = Some(place);
self.places.get_mut(place).nat_res.include_chunk(ctx, *cell);
}
}
Some(place)
}
fn establish_site(&mut self, ctx: &mut GenCtx<impl Rng>, loc: Vec2<i32>) -> Option<Id<Site>> {
const SITE_AREA: Range<usize> = 64..256;
let place = match ctx.sim.get(loc).and_then(|site| site.place) {
Some(place) => place,
None => self.establish_place(ctx, loc, SITE_AREA)?,
};
let site = self.sites.insert(Site {
kind: SiteKind::Settlement,
center: loc,
place: place,
population: 24.0,
labor: MapVec::default(),
output: MapVec::default(),
stocks: Stocks::default(),
trade_states: Stocks::default(),
coin: 1000.0,
});
// Find neighbors
const MAX_NEIGHBOR_DISTANCE: f32 = 250.0;
let mut nearby = self.sites
.iter_ids()
.map(|(id, p)| (id, (p.center.distance_squared(loc) as f32).sqrt()))
.filter(|(p, dist)| *dist < MAX_NEIGHBOR_DISTANCE)
.collect::<Vec<_>>();
nearby.sort_by_key(|(_, dist)| *dist as i32);
for (nearby, _) in nearby.into_iter().take(5) {
// Find a novel path
if let Some((path, cost)) = find_path(ctx, loc, self.sites.get(nearby).center) {
// Find a path using existing paths
if self
.route_between(site, nearby)
// If the novel path isn't efficient compared to existing routes, don't use it
.filter(|(_, route_cost)| *route_cost < cost * 3.0)
.is_none()
{
let track = self.tracks.insert(Track {
cost,
path,
});
self.track_map
.entry(site)
.or_default()
.insert(nearby, track);
}
}
}
Some(site)
}
fn tick(&mut self, ctx: &mut GenCtx<impl Rng>, years: f32) {
// Collect stocks
for site in self.sites.iter_mut() {
site.collect_stocks(years, &self.places.get(site.place).nat_res);
}
// Trade stocks
let mut stocks = [FOOD, WOOD, ROCK];
stocks.shuffle(ctx.rng); // Give each stock a chance to be traded first
for stock in stocks.iter().copied() {
let mut sell_orders = self.sites
.iter_ids()
.map(|(id, site)| (id, econ::SellOrder {
quantity: site.trade_states[stock].surplus.min(site.stocks[stock]),
price: site.trade_states[stock].sell_belief.choose_price(ctx) * 1.5, // Transport cost of 1.5x
q_sold: 0.0,
}))
.filter(|(_, order)| order.quantity > 0.0)
.collect::<Vec<_>>();
let mut sites = self.sites
.ids()
.collect::<Vec<_>>();
sites.shuffle(ctx.rng); // Give all sites a chance to buy first
for site in sites {
let (max_spend, max_price) = {
let site = self.sites.get(site);
let budget = site.coin * 0.5;
(
(site.trade_states[stock].purchase_priority * budget).min(budget),
site.trade_states[stock].buy_belief.price,
)
};
let (quantity, spent) = econ::buy_units(ctx, sell_orders
.iter_mut()
.filter(|(id, _)| site != *id && self.track_between(site, *id).is_some())
.map(|(_, order)| order),
1000000.0, // Max quantity TODO
1000000.0, // Max price TODO
max_spend,
);
let mut site = self.sites.get_mut(site);
site.coin -= spent;
if quantity > 0.0 {
site.stocks[stock] += quantity;
site.trade_states[stock].buy_belief.update_buyer(years, spent / quantity);
println!("Belief: {:?}", site.trade_states[stock].buy_belief);
}
}
for (site, order) in sell_orders {
let mut site = self.sites.get_mut(site);
site.coin += order.q_sold * order.price;
if order.q_sold > 0.0 {
site.stocks[stock] -= order.q_sold;
site.trade_states[stock].sell_belief.update_seller(order.q_sold / order.quantity);
}
}
}
// Consume stocks
for site in self.sites.iter_mut() {
site.consume_stocks(years);
}
}
}
/// Attempt to find a path between two locations
fn find_path(ctx: &mut GenCtx<impl Rng>, a: Vec2<i32>, b: Vec2<i32>) -> Option<(Path<Vec2<i32>>, f32)> {
let sim = &ctx.sim;
let heuristic = move |l: &Vec2<i32>| (l.distance_squared(b) as f32).sqrt();
let neighbors = |l: &Vec2<i32>| {
let l = *l;
DIAGONALS.iter().filter(move |dir| walk_in_dir(sim, l, **dir).is_some()).map(move |dir| l + *dir)
};
let transition = |a: &Vec2<i32>, b: &Vec2<i32>| 1.0 + walk_in_dir(sim, *a, *b - *a).unwrap_or(10000.0);
let satisfied = |l: &Vec2<i32>| *l == b;
let mut astar = Astar::new(20000, a, heuristic);
astar
.poll(20000, heuristic, neighbors, transition, satisfied)
.into_path()
.and_then(|path| astar.get_cheapest_cost().map(|cost| (path, cost)))
}
/// Return true if travel between a location and a chunk next to it is permitted (TODO: by whom?)
fn walk_in_dir(sim: &WorldSim, a: Vec2<i32>, dir: Vec2<i32>) -> Option<f32> {
if loc_suitable_for_walking(sim, a) &&
loc_suitable_for_walking(sim, a + dir)
{
let a_alt = sim.get(a)?.alt;
let b_alt = sim.get(a + dir)?.alt;
Some((b_alt - a_alt).abs() / 2.5)
} else {
None
}
}
/// Return true if a position is suitable for walking on
fn loc_suitable_for_walking(sim: &WorldSim, loc: Vec2<i32>) -> bool {
if let Some(chunk) = sim.get(loc) {
!chunk.river.is_ocean() && !chunk.river.is_lake()
} else {
false
}
}
/// Return true if a site could be constructed between a location and a chunk next to it is permitted (TODO: by whom?)
fn site_in_dir(sim: &WorldSim, a: Vec2<i32>, dir: Vec2<i32>) -> bool {
loc_suitable_for_site(sim, a) &&
loc_suitable_for_site(sim, a + dir)
}
/// Return true if a position is suitable for site construction (TODO: criteria?)
fn loc_suitable_for_site(sim: &WorldSim, loc: Vec2<i32>) -> bool {
if let Some(chunk) = sim.get(loc) {
!chunk.river.is_ocean() &&
!chunk.river.is_lake() &&
sim.get_gradient_approx(loc).map(|grad| grad < 1.0).unwrap_or(false)
} else {
false
}
}
/// Attempt to search for a location that's suitable for site construction
fn find_site_loc(ctx: &mut GenCtx<impl Rng>, near: Option<(Vec2<i32>, f32)>) -> Option<Vec2<i32>> {
const MAX_ATTEMPTS: usize = 100;
let mut loc = None;
for _ in 0..MAX_ATTEMPTS {
let test_loc = loc.unwrap_or_else(|| match near {
Some((origin, dist)) => origin + (Vec2::new(
ctx.rng.gen_range(-1.0, 1.0),
ctx.rng.gen_range(-1.0, 1.0),
).try_normalized().unwrap_or(Vec2::zero()) * ctx.rng.gen::<f32>() * dist).map(|e| e as i32),
None => Vec2::new(
ctx.rng.gen_range(0, ctx.sim.get_size().x as i32),
ctx.rng.gen_range(0, ctx.sim.get_size().y as i32),
),
});
if loc_suitable_for_site(&ctx.sim, test_loc) {
return Some(test_loc);
}
loc = ctx.sim.get(test_loc).and_then(|c| Some(c.downhill?.map2(Vec2::from(TerrainChunkSize::RECT_SIZE), |e, sz: u32| {
e / (sz as i32)
})));
}
None
}
#[derive(Debug)]
pub struct Civ {
capital: Id<Site>,
homeland: Id<Place>,
}
#[derive(Debug)]
pub struct Place {
center: Vec2<i32>,
nat_res: NaturalResources,
}
// Productive capacity per year
#[derive(Default, Debug)]
pub struct NaturalResources {
wood: f32,
stone: f32,
river: f32,
farmland: f32,
}
impl NaturalResources {
fn include_chunk(&mut self, ctx: &mut GenCtx<impl Rng>, loc: Vec2<i32>) {
let chunk = if let Some(chunk) = ctx.sim.get(loc) { chunk } else { return };
self.wood += chunk.tree_density;
self.stone += chunk.rockiness;
self.river += if chunk.river.is_river() { 5.0 } else { 0.0 };
self.farmland += if
chunk.humidity > 0.35 &&
chunk.temp > -0.3 && chunk.temp < 0.75 &&
chunk.chaos < 0.5 &&
ctx.sim.get_gradient_approx(loc).map(|grad| grad < 0.7).unwrap_or(false)
{ 1.0 } else { 0.0 };
}
}
pub struct Track {
/// Cost of using this track relative to other paths. This cost is an arbitrary unit and
/// doesn't make sense unless compared to other track costs.
cost: f32,
path: Path<Vec2<i32>>,
}
#[derive(Debug)]
pub struct Site {
kind: SiteKind,
center: Vec2<i32>,
pub place: Id<Place>,
population: f32,
labor: MapVec<Occupation, f32>,
output: MapVec<Occupation, f32>,
stocks: Stocks<f32>,
trade_states: Stocks<TradeState>,
coin: f32,
}
#[derive(Debug)]
pub enum SiteKind {
Settlement,
}
impl Site {
pub fn collect_stocks(&mut self, years: f32, nat_res: &NaturalResources) {
// Per labourer, per year
let collection_rate = Stocks::from_list(&[
(FARMER, 2.0),
(LUMBERJACK, 1.5),
(MINER, 0.6),
(FISHER, 5.0),
]);
// Proportion of the population dedicated to each task (output * price)
let labor_ratios = Stocks::from_list(&[
(FARMER, self.output[FARMER] * self.trade_states[FOOD].domestic_value),
(LUMBERJACK, self.output[LUMBERJACK] * self.trade_states[WOOD].domestic_value),
(MINER, self.output[MINER] * self.trade_states[ROCK].domestic_value),
(FISHER, self.output[FISHER] * self.trade_states[FOOD].domestic_value),
]);
// Normalise workforce proportions (so we aren't over-allocating our workforce)
let wf_total = labor_ratios.iter().map(|(_, r)| *r).sum::<f32>();
if wf_total == 0.0 { // 0 output doesn't mean NaNs
let n = labor_ratios.iter().count() as f32;
self.labor = labor_ratios.map(|stock, _| self.population / n);
} else {
self.labor = labor_ratios.map(|stock, r| r / wf_total * self.population);
}
self.output[FARMER] = (self.labor[FARMER] * collection_rate[FARMER] + nat_res.farmland * 0.01).min(nat_res.farmland);
self.output[LUMBERJACK] = (self.labor[LUMBERJACK] * collection_rate[LUMBERJACK] + nat_res.wood * 0.01).min(nat_res.wood);
self.output[MINER] = (self.labor[MINER] * collection_rate[MINER] + nat_res.stone * 0.01).min(nat_res.stone);
self.output[FISHER] = (self.labor[FISHER] * collection_rate[FISHER] + nat_res.river * 0.01).min(nat_res.river);
self.stocks[FOOD] += years * self.output[FARMER];
self.stocks[WOOD] += years * self.output[LUMBERJACK];
self.stocks[ROCK] += years * self.output[MINER];
self.stocks[FOOD] += years * self.output[FISHER];
}
pub fn consume_stocks(&mut self, years: f32) {
const EAT_RATE: f32 = 1.0;
const USE_WOOD_RATE: f32 = 0.75;
const BIRTH_RATE: f32 = 0.15;
const DEATH_RATE: f32 = 0.05;
let required = Stocks::from_list(&[
(FOOD, self.population as f32 * years * EAT_RATE),
(WOOD, self.population as f32 * years * USE_WOOD_RATE),
]);
// Calculate surplus and deficit of each stock
let surplus = required.clone().map(|stock, required| (self.stocks[stock] - required).max(0.0));
let deficit = required.clone().map(|stock, required| (required - self.stocks[stock]).max(0.0));
// Deplete stocks
self.stocks.iter_mut().for_each(|(stock, v)| *v = (*v - required[stock]).max(0.0));
// Births
self.population += years * self.population * BIRTH_RATE;
// Kill people
self.population -= years * self.population * DEATH_RATE; // Natural death rate
self.population = (self.population - deficit[FOOD] * years * EAT_RATE).max(0.0); // Starvation
// If in deficit, value the stock more
deficit.iter().for_each(|(stock, deficit)| {
if *deficit > 0.0 {
let mut trade_state = &mut self.trade_states[stock];
trade_state.domestic_value += *deficit * 0.01;
trade_state.surplus = -*deficit;
trade_state.purchase_priority *= 1.1;
}
});
// If in surplus, value the stock less
surplus.iter().for_each(|(stock, surplus)| {
if *surplus > 0.0 {
let mut trade_state = &mut self.trade_states[stock];
trade_state.domestic_value /= 1.0 + *surplus * 0.01;
trade_state.surplus = *surplus;
}
});
// Normalise purchasing priorities
let pp_avg = self.trade_states.iter().map(|(_, ts)| ts.purchase_priority).sum::<f32>() / self.trade_states.iter().count() as f32;
self.trade_states.iter_mut().for_each(|(_, ts)| ts.purchase_priority /= pp_avg);
}
}
type Occupation = &'static str;
const FARMER: Occupation = "farmer";
const LUMBERJACK: Occupation = "lumberjack";
const MINER: Occupation = "miner";
const FISHER: Occupation = "fisher";
type Stock = &'static str;
const FOOD: Stock = "food";
const WOOD: Stock = "wood";
const ROCK: Stock = "rock";
#[derive(Debug, Clone)]
struct TradeState {
buy_belief: econ::Belief,
sell_belief: econ::Belief,
/// The price/value assigned to the stock by the host settlement
domestic_value: f32,
surplus: f32,
purchase_priority: f32,
}
impl Default for TradeState {
fn default() -> Self {
Self {
buy_belief: econ::Belief {
price: 1.0,
confidence: 0.25,
},
sell_belief: econ::Belief {
price: 1.0,
confidence: 0.25,
},
domestic_value: 1.0,
surplus: 0.0,
purchase_priority: 1.0,
}
}
}
pub type Stocks<T> = MapVec<Stock, T>;
#[derive(Default, Clone, Debug)]
pub struct MapVec<K, T> {
entries: HashMap<K, T>,
zero: T,
}
impl<K: Copy + Eq + Hash, T: Default + Clone> MapVec<K, T> {
pub fn from_list<'a>(i: impl IntoIterator<Item=&'a (K, T)>) -> Self
where K: 'a, T: 'a
{
Self {
entries: i.into_iter().cloned().collect(),
zero: T::default(),
}
}
pub fn get_mut(&mut self, entry: K) -> &mut T {
self
.entries
.entry(entry)
.or_default()
}
pub fn get(&self, entry: K) -> &T {
self.entries.get(&entry).unwrap_or(&self.zero)
}
pub fn map(mut self, mut f: impl FnMut(K, T) -> T) -> Self {
self.entries.iter_mut().for_each(|(s, v)| *v = f(*s, std::mem::take(v)));
self
}
pub fn iter(&self) -> impl Iterator<Item=(K, &T)> + '_ {
self.entries.iter().map(|(s, v)| (*s, v))
}
pub fn iter_mut(&mut self) -> impl Iterator<Item=(K, &mut T)> + '_ {
self.entries.iter_mut().map(|(s, v)| (*s, v))
}
}
impl<K: Copy + Eq + Hash, T: Default + Clone> std::ops::Index<K> for MapVec<K, T> {
type Output = T;
fn index(&self, entry: K) -> &Self::Output { self.get(entry) }
}
impl<K: Copy + Eq + Hash, T: Default + Clone> std::ops::IndexMut<K> for MapVec<K, T> {
fn index_mut(&mut self, entry: K) -> &mut Self::Output { self.get_mut(entry) }
}