mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
1124 lines
46 KiB
Rust
1124 lines
46 KiB
Rust
mod watcher;
|
|
|
|
pub use self::watcher::BlocksOfInterest;
|
|
|
|
use crate::{
|
|
mesh::{greedy::GreedyMesh, Meshable},
|
|
render::{
|
|
ColLightFmt, ColLightInfo, Consts, FluidPipeline, GlobalModel, Instances, Mesh, Model,
|
|
RenderError, Renderer, ShadowPipeline, SpriteInstance, SpriteLocals, SpritePipeline,
|
|
TerrainLocals, TerrainPipeline, Texture,
|
|
},
|
|
};
|
|
|
|
use super::{math, LodData, SceneData};
|
|
use common::{
|
|
assets::{Asset, Ron},
|
|
figure::Segment,
|
|
spiral::Spiral2d,
|
|
terrain::{block, Block, BlockKind, TerrainChunk},
|
|
vol::{BaseVol, ReadVol, RectRasterableVol, SampleVol, Vox},
|
|
volumes::vol_grid_2d::{VolGrid2d, VolGrid2dError},
|
|
};
|
|
use core::{f32, fmt::Debug, i32, marker::PhantomData, time::Duration};
|
|
use crossbeam::channel;
|
|
use dot_vox::DotVoxData;
|
|
use enum_iterator::IntoEnumIterator;
|
|
use guillotiere::AtlasAllocator;
|
|
use hashbrown::HashMap;
|
|
use image::DynamicImage;
|
|
use serde::Deserialize;
|
|
use std::sync::Arc;
|
|
use tracing::warn;
|
|
use treeculler::{BVol, Frustum, AABB};
|
|
use vek::*;
|
|
|
|
const SPRITE_SCALE: Vec3<f32> = Vec3::new(1.0 / 11.0, 1.0 / 11.0, 1.0 / 11.0);
|
|
|
|
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
|
|
enum Visibility {
|
|
OutOfRange = 0,
|
|
InRange = 1,
|
|
Visible = 2,
|
|
}
|
|
|
|
pub struct TerrainChunkData {
|
|
// GPU data
|
|
load_time: f32,
|
|
opaque_model: Model<TerrainPipeline>,
|
|
fluid_model: Option<Model<FluidPipeline>>,
|
|
col_lights: guillotiere::AllocId,
|
|
sprite_instances: HashMap<(BlockKind, usize), Instances<SpriteInstance>>,
|
|
locals: Consts<TerrainLocals>,
|
|
pub blocks_of_interest: BlocksOfInterest,
|
|
|
|
visible: Visibility,
|
|
can_shadow_point: bool,
|
|
can_shadow_sun: bool,
|
|
z_bounds: (f32, f32),
|
|
frustum_last_plane_index: u8,
|
|
}
|
|
|
|
#[derive(Copy, Clone)]
|
|
struct ChunkMeshState {
|
|
pos: Vec2<i32>,
|
|
started_tick: u64,
|
|
active_worker: Option<u64>,
|
|
}
|
|
|
|
/// A type produced by mesh worker threads corresponding to the position and
|
|
/// mesh of a chunk.
|
|
struct MeshWorkerResponse {
|
|
pos: Vec2<i32>,
|
|
z_bounds: (f32, f32),
|
|
opaque_mesh: Mesh<TerrainPipeline>,
|
|
fluid_mesh: Mesh<FluidPipeline>,
|
|
col_lights_info: ColLightInfo,
|
|
sprite_instances: HashMap<(BlockKind, usize), Vec<SpriteInstance>>,
|
|
started_tick: u64,
|
|
blocks_of_interest: BlocksOfInterest,
|
|
}
|
|
|
|
#[derive(Deserialize)]
|
|
/// Configuration data for an individual sprite model.
|
|
struct SpriteModelConfig<Model> {
|
|
/// Data for the .vox model associated with this sprite.
|
|
model: Model,
|
|
/// Sprite model center (as an offset from 0 in the .vox file).
|
|
offset: (f32, f32, f32),
|
|
/// LOD axes (how LOD gets applied along each axis, when we switch
|
|
/// to an LOD model).
|
|
lod_axes: (f32, f32, f32),
|
|
}
|
|
|
|
#[derive(Deserialize)]
|
|
/// Configuration data for a group of sprites (currently associated with a
|
|
/// particular BlockKind).
|
|
struct SpriteConfig<Model> {
|
|
/// All possible model variations for this sprite.
|
|
// NOTE: Could make constant per sprite type, but eliminating this indirection and
|
|
// allocation is probably not that important considering how sprites are used.
|
|
variations: Vec<SpriteModelConfig<Model>>,
|
|
/// The extent to which the sprite sways in the window.
|
|
///
|
|
/// 0.0 is normal.
|
|
wind_sway: f32,
|
|
}
|
|
|
|
/// Configuration data for all sprite models.
|
|
///
|
|
/// NOTE: Model is an asset path to the appropriate sprite .vox model.
|
|
type SpriteSpec = block::block_kind::PureCases<Option<SpriteConfig<String>>>;
|
|
|
|
/// Function executed by worker threads dedicated to chunk meshing.
|
|
#[allow(clippy::or_fun_call)] // TODO: Pending review in #587
|
|
|
|
fn mesh_worker<V: BaseVol<Vox = Block> + RectRasterableVol + ReadVol + Debug>(
|
|
pos: Vec2<i32>,
|
|
z_bounds: (f32, f32),
|
|
started_tick: u64,
|
|
volume: <VolGrid2d<V> as SampleVol<Aabr<i32>>>::Sample,
|
|
max_texture_size: u16,
|
|
chunk: Arc<TerrainChunk>,
|
|
range: Aabb<i32>,
|
|
sprite_data: &HashMap<(BlockKind, usize), Vec<SpriteData>>,
|
|
sprite_config: &SpriteSpec,
|
|
) -> MeshWorkerResponse {
|
|
let (opaque_mesh, fluid_mesh, _shadow_mesh, (bounds, col_lights_info)) =
|
|
volume.generate_mesh((range, Vec2::new(max_texture_size, max_texture_size)));
|
|
MeshWorkerResponse {
|
|
pos,
|
|
z_bounds: (bounds.min.z, bounds.max.z),
|
|
opaque_mesh,
|
|
fluid_mesh,
|
|
col_lights_info,
|
|
// Extract sprite locations from volume
|
|
sprite_instances: {
|
|
let mut instances = HashMap::new();
|
|
|
|
for x in 0..V::RECT_SIZE.x as i32 {
|
|
for y in 0..V::RECT_SIZE.y as i32 {
|
|
for z in z_bounds.0 as i32..z_bounds.1 as i32 + 1 {
|
|
let rel_pos = Vec3::new(x, y, z);
|
|
let wpos = Vec3::from(pos * V::RECT_SIZE.map(|e: u32| e as i32)) + rel_pos;
|
|
|
|
let block = volume.get(wpos).ok().copied().unwrap_or(Block::empty());
|
|
|
|
if let Some(cfg) = block.kind().elim_case_pure(&sprite_config) {
|
|
let seed = wpos.x as u64 * 3
|
|
+ wpos.y as u64 * 7
|
|
+ wpos.x as u64 * wpos.y as u64; // Awful PRNG
|
|
let ori = (block.get_ori().unwrap_or((seed % 4) as u8 * 2)) & 0b111;
|
|
let variation = seed as usize % cfg.variations.len();
|
|
let key = (block.kind(), variation);
|
|
// NOTE: Safe because we called sprite_config_for already.
|
|
// NOTE: Safe because 0 ≤ ori < 8
|
|
let sprite_data = &sprite_data[&key][0];
|
|
let instance = SpriteInstance::new(
|
|
Mat4::identity()
|
|
.translated_3d(sprite_data.offset)
|
|
.rotated_z(f32::consts::PI * 0.25 * ori as f32)
|
|
.translated_3d(
|
|
(rel_pos.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0))
|
|
/ SPRITE_SCALE,
|
|
),
|
|
cfg.wind_sway,
|
|
rel_pos,
|
|
ori,
|
|
);
|
|
|
|
instances.entry(key).or_insert(Vec::new()).push(instance);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
instances
|
|
},
|
|
blocks_of_interest: BlocksOfInterest::from_chunk(&chunk),
|
|
started_tick,
|
|
}
|
|
}
|
|
|
|
struct SpriteData {
|
|
/* mat: Mat4<f32>, */
|
|
locals: Consts<SpriteLocals>,
|
|
model: Model<SpritePipeline>,
|
|
/* scale: Vec3<f32>, */
|
|
offset: Vec3<f32>,
|
|
}
|
|
|
|
pub struct Terrain<V: RectRasterableVol> {
|
|
atlas: AtlasAllocator,
|
|
sprite_config: Arc<SpriteSpec>,
|
|
chunks: HashMap<Vec2<i32>, TerrainChunkData>,
|
|
/// Temporary storage for dead chunks that might still be shadowing chunks
|
|
/// in view. We wait until either the chunk definitely cannot be
|
|
/// shadowing anything the player can see, the chunk comes back into
|
|
/// view, or for daylight to end, before removing it (whichever comes
|
|
/// first).
|
|
///
|
|
/// Note that these chunks are not complete; for example, they are missing
|
|
/// texture data.
|
|
shadow_chunks: Vec<(Vec2<i32>, TerrainChunkData)>,
|
|
/* /// Secondary index into the terrain chunk table, used to sort through chunks by z index from
|
|
/// the top down.
|
|
z_index_down: BTreeSet<Vec3<i32>>,
|
|
/// Secondary index into the terrain chunk table, used to sort through chunks by z index from
|
|
/// the bottom up.
|
|
z_index_up: BTreeSet<Vec3<i32>>, */
|
|
// The mpsc sender and receiver used for talking to meshing worker threads.
|
|
// We keep the sender component for no reason other than to clone it and send it to new
|
|
// workers.
|
|
mesh_send_tmp: channel::Sender<MeshWorkerResponse>,
|
|
mesh_recv: channel::Receiver<MeshWorkerResponse>,
|
|
mesh_todo: HashMap<Vec2<i32>, ChunkMeshState>,
|
|
|
|
// GPU data
|
|
sprite_data: Arc<HashMap<(BlockKind, usize), Vec<SpriteData>>>,
|
|
sprite_col_lights: Texture<ColLightFmt>,
|
|
col_lights: Texture<ColLightFmt>,
|
|
waves: Texture,
|
|
|
|
phantom: PhantomData<V>,
|
|
}
|
|
|
|
impl TerrainChunkData {
|
|
pub fn can_shadow_sun(&self) -> bool {
|
|
self.visible == Visibility::Visible || self.can_shadow_sun
|
|
}
|
|
}
|
|
|
|
impl<V: RectRasterableVol> Terrain<V> {
|
|
#[allow(clippy::float_cmp)] // TODO: Pending review in #587
|
|
pub fn new(renderer: &mut Renderer) -> Self {
|
|
// Load all the sprite config data.
|
|
let sprite_config = Ron::<SpriteSpec>::load("voxygen.voxel.sprite_manifest")
|
|
.expect("Failed to find sprite model data!");
|
|
|
|
// Create a new mpsc (Multiple Produced, Single Consumer) pair for communicating
|
|
// with worker threads that are meshing chunks.
|
|
let (send, recv) = channel::unbounded();
|
|
|
|
let (atlas, col_lights) =
|
|
Self::make_atlas(renderer).expect("Failed to create atlas texture");
|
|
|
|
let max_texture_size = renderer.max_texture_size();
|
|
let max_size =
|
|
guillotiere::Size::new(i32::from(max_texture_size), i32::from(max_texture_size));
|
|
let mut greedy = GreedyMesh::new(max_size);
|
|
let mut locals_buffer = [SpriteLocals::default(); 8];
|
|
let sprite_config_ = &sprite_config;
|
|
// NOTE: Tracks the start vertex of the next model to be meshed.
|
|
|
|
let sprite_data: HashMap<(BlockKind, usize), _> = BlockKind::into_enum_iter()
|
|
.filter_map(|kind| Some((kind, kind.elim_case_pure(&sprite_config_).as_ref()?)))
|
|
.flat_map(|(kind, sprite_config)| {
|
|
let wind_sway = sprite_config.wind_sway;
|
|
sprite_config.variations.iter().enumerate().map(
|
|
move |(
|
|
variation,
|
|
SpriteModelConfig {
|
|
model,
|
|
offset,
|
|
lod_axes,
|
|
},
|
|
)| {
|
|
let scaled = [1.0, 0.8, 0.6, 0.4, 0.2];
|
|
let offset = Vec3::from(*offset);
|
|
let lod_axes = Vec3::from(*lod_axes);
|
|
let model = DotVoxData::load_expect(model);
|
|
let zero = Vec3::zero();
|
|
let model_size = model
|
|
.models
|
|
.first()
|
|
.map(
|
|
|&dot_vox::Model {
|
|
size: dot_vox::Size { x, y, z },
|
|
..
|
|
}| Vec3::new(x, y, z),
|
|
)
|
|
.unwrap_or(zero);
|
|
let max_model_size = Vec3::new(15.0, 15.0, 63.0);
|
|
let model_scale = max_model_size.map2(model_size, |max_sz: f32, cur_sz| {
|
|
let scale = max_sz / max_sz.max(cur_sz as f32);
|
|
if scale < 1.0 && (cur_sz as f32 * scale).ceil() > max_sz {
|
|
scale - 0.001
|
|
} else {
|
|
scale
|
|
}
|
|
});
|
|
let sprite_mat: Mat4<f32> =
|
|
Mat4::translation_3d(offset).scaled_3d(SPRITE_SCALE);
|
|
move |greedy: &mut GreedyMesh, renderer: &mut Renderer| {
|
|
(
|
|
(kind, variation),
|
|
scaled
|
|
.iter()
|
|
.map(|&lod_scale_orig| {
|
|
let lod_scale = model_scale
|
|
* if lod_scale_orig == 1.0 {
|
|
Vec3::broadcast(1.0)
|
|
} else {
|
|
lod_axes * lod_scale_orig
|
|
+ lod_axes
|
|
.map(|e| if e == 0.0 { 1.0 } else { 0.0 })
|
|
};
|
|
// Mesh generation exclusively acts using side effects; it
|
|
// has no
|
|
// interesting return value, but updates the mesh.
|
|
let mut opaque_mesh = Mesh::new();
|
|
Meshable::<SpritePipeline, &mut GreedyMesh>::generate_mesh(
|
|
Segment::from(model.as_ref()).scaled_by(lod_scale),
|
|
(
|
|
greedy,
|
|
&mut opaque_mesh,
|
|
wind_sway >= 0.4 && lod_scale_orig == 1.0,
|
|
),
|
|
);
|
|
let model = renderer.create_model(&opaque_mesh).expect(
|
|
"Failed to upload sprite model data to the GPU!",
|
|
);
|
|
|
|
let sprite_scale = Vec3::one() / lod_scale;
|
|
let sprite_mat: Mat4<f32> =
|
|
sprite_mat * Mat4::scaling_3d(sprite_scale);
|
|
locals_buffer.iter_mut().enumerate().for_each(
|
|
|(ori, locals)| {
|
|
let sprite_mat = sprite_mat
|
|
.rotated_z(f32::consts::PI * 0.25 * ori as f32);
|
|
*locals = SpriteLocals::new(
|
|
sprite_mat,
|
|
sprite_scale,
|
|
offset,
|
|
wind_sway,
|
|
);
|
|
},
|
|
);
|
|
|
|
SpriteData {
|
|
/* vertex_range */ model,
|
|
offset,
|
|
locals: renderer.create_consts(&locals_buffer).expect(
|
|
"Failed to upload sprite locals to the GPU!",
|
|
),
|
|
}
|
|
})
|
|
.collect::<Vec<_>>(),
|
|
)
|
|
}
|
|
},
|
|
)
|
|
})
|
|
.map(|mut f| f(&mut greedy, renderer))
|
|
.collect();
|
|
|
|
let sprite_col_lights = ShadowPipeline::create_col_lights(renderer, greedy.finalize())
|
|
.expect("Failed to upload sprite color and light data to the GPU!");
|
|
|
|
Self {
|
|
atlas,
|
|
sprite_config,
|
|
chunks: HashMap::default(),
|
|
shadow_chunks: Vec::default(),
|
|
mesh_send_tmp: send,
|
|
mesh_recv: recv,
|
|
mesh_todo: HashMap::default(),
|
|
sprite_data: Arc::new(sprite_data),
|
|
sprite_col_lights,
|
|
waves: renderer
|
|
.create_texture(
|
|
&DynamicImage::load_expect("voxygen.texture.waves"),
|
|
Some(gfx::texture::FilterMethod::Trilinear),
|
|
Some(gfx::texture::WrapMode::Tile),
|
|
None,
|
|
)
|
|
.expect("Failed to create wave texture"),
|
|
col_lights,
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
fn make_atlas(
|
|
renderer: &mut Renderer,
|
|
) -> Result<(AtlasAllocator, Texture<ColLightFmt>), RenderError> {
|
|
let max_texture_size = renderer.max_texture_size();
|
|
let atlas_size =
|
|
guillotiere::Size::new(i32::from(max_texture_size), i32::from(max_texture_size));
|
|
let atlas = AtlasAllocator::with_options(atlas_size, &guillotiere::AllocatorOptions {
|
|
// TODO: Verify some good empirical constants.
|
|
small_size_threshold: 128,
|
|
large_size_threshold: 1024,
|
|
..guillotiere::AllocatorOptions::default()
|
|
});
|
|
let texture = renderer.create_texture_raw(
|
|
gfx::texture::Kind::D2(
|
|
max_texture_size,
|
|
max_texture_size,
|
|
gfx::texture::AaMode::Single,
|
|
),
|
|
1 as gfx::texture::Level,
|
|
gfx::memory::Bind::SHADER_RESOURCE,
|
|
gfx::memory::Usage::Dynamic,
|
|
(0, 0),
|
|
gfx::format::Swizzle::new(),
|
|
gfx::texture::SamplerInfo::new(
|
|
gfx::texture::FilterMethod::Bilinear,
|
|
gfx::texture::WrapMode::Clamp,
|
|
),
|
|
)?;
|
|
Ok((atlas, texture))
|
|
}
|
|
|
|
fn remove_chunk_meta(&mut self, _pos: Vec2<i32>, chunk: &TerrainChunkData) {
|
|
self.atlas.deallocate(chunk.col_lights);
|
|
/* let (zmin, zmax) = chunk.z_bounds;
|
|
self.z_index_up.remove(Vec3::from(zmin, pos.x, pos.y));
|
|
self.z_index_down.remove(Vec3::from(zmax, pos.x, pos.y)); */
|
|
}
|
|
|
|
fn insert_chunk(&mut self, pos: Vec2<i32>, chunk: TerrainChunkData) {
|
|
if let Some(old) = self.chunks.insert(pos, chunk) {
|
|
self.remove_chunk_meta(pos, &old);
|
|
}
|
|
/* let (zmin, zmax) = chunk.z_bounds;
|
|
self.z_index_up.insert(Vec3::from(zmin, pos.x, pos.y));
|
|
self.z_index_down.insert(Vec3::from(zmax, pos.x, pos.y)); */
|
|
}
|
|
|
|
fn remove_chunk(&mut self, pos: Vec2<i32>) {
|
|
if let Some(chunk) = self.chunks.remove(&pos) {
|
|
self.remove_chunk_meta(pos, &chunk);
|
|
// Temporarily remember dead chunks for shadowing purposes.
|
|
self.shadow_chunks.push((pos, chunk));
|
|
}
|
|
if let Some(_todo) = self.mesh_todo.remove(&pos) {
|
|
//Do nothing on todo mesh removal.
|
|
}
|
|
}
|
|
|
|
/// Maintain terrain data. To be called once per tick.
|
|
#[allow(clippy::for_loops_over_fallibles)] // TODO: Pending review in #587
|
|
#[allow(clippy::len_zero)] // TODO: Pending review in #587
|
|
pub fn maintain(
|
|
&mut self,
|
|
renderer: &mut Renderer,
|
|
scene_data: &SceneData,
|
|
focus_pos: Vec3<f32>,
|
|
loaded_distance: f32,
|
|
view_mat: Mat4<f32>,
|
|
proj_mat: Mat4<f32>,
|
|
) -> (Aabb<f32>, Vec<math::Vec3<f32>>, math::Aabr<f32>) {
|
|
let current_tick = scene_data.tick;
|
|
let current_time = scene_data.state.get_time();
|
|
let mut visible_bounding_box: Option<Aabb<f32>> = None;
|
|
|
|
// Add any recently created or changed chunks to the list of chunks to be
|
|
// meshed.
|
|
for (modified, pos) in scene_data
|
|
.state
|
|
.terrain_changes()
|
|
.modified_chunks
|
|
.iter()
|
|
.map(|c| (true, c))
|
|
.chain(
|
|
scene_data
|
|
.state
|
|
.terrain_changes()
|
|
.new_chunks
|
|
.iter()
|
|
.map(|c| (false, c)),
|
|
)
|
|
{
|
|
// TODO: ANOTHER PROBLEM HERE!
|
|
// What happens if the block on the edge of a chunk gets modified? We need to
|
|
// spawn a mesh worker to remesh its neighbour(s) too since their
|
|
// ambient occlusion and face elision information changes too!
|
|
for i in -1..2 {
|
|
for j in -1..2 {
|
|
let pos = pos + Vec2::new(i, j);
|
|
|
|
if !self.chunks.contains_key(&pos) || modified {
|
|
let mut neighbours = true;
|
|
for i in -1..2 {
|
|
for j in -1..2 {
|
|
neighbours &= scene_data
|
|
.state
|
|
.terrain()
|
|
.get_key(pos + Vec2::new(i, j))
|
|
.is_some();
|
|
}
|
|
}
|
|
|
|
if neighbours {
|
|
self.mesh_todo.insert(pos, ChunkMeshState {
|
|
pos,
|
|
started_tick: current_tick,
|
|
active_worker: None,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the chunks belonging to recently changed blocks to the list of chunks to
|
|
// be meshed
|
|
for pos in scene_data
|
|
.state
|
|
.terrain_changes()
|
|
.modified_blocks
|
|
.iter()
|
|
.map(|(p, _)| *p)
|
|
{
|
|
// Handle block changes on chunk borders
|
|
// Remesh all neighbours because we have complex lighting now
|
|
// TODO: if lighting is on the server this can be updated to only remesh when
|
|
// lighting changes in that neighbouring chunk or if the block
|
|
// change was on the border
|
|
for x in -1..2 {
|
|
for y in -1..2 {
|
|
let neighbour_pos = pos + Vec3::new(x, y, 0);
|
|
let neighbour_chunk_pos = scene_data.state.terrain().pos_key(neighbour_pos);
|
|
|
|
// Only remesh if this chunk has all its neighbors
|
|
let mut neighbours = true;
|
|
for i in -1..2 {
|
|
for j in -1..2 {
|
|
neighbours &= scene_data
|
|
.state
|
|
.terrain()
|
|
.get_key(neighbour_chunk_pos + Vec2::new(i, j))
|
|
.is_some();
|
|
}
|
|
}
|
|
if neighbours {
|
|
self.mesh_todo.insert(neighbour_chunk_pos, ChunkMeshState {
|
|
pos: neighbour_chunk_pos,
|
|
started_tick: current_tick,
|
|
active_worker: None,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove any models for chunks that have been recently removed.
|
|
for &pos in &scene_data.state.terrain_changes().removed_chunks {
|
|
self.remove_chunk(pos);
|
|
}
|
|
|
|
// Limit ourselves to u16::MAX even if larger textures are supported.
|
|
let max_texture_size = renderer.max_texture_size();
|
|
|
|
for (todo, chunk) in self
|
|
.mesh_todo
|
|
.values_mut()
|
|
.filter(|todo| {
|
|
todo.active_worker
|
|
.map(|worker_tick| worker_tick < todo.started_tick)
|
|
.unwrap_or(true)
|
|
})
|
|
.min_by_key(|todo| todo.active_worker.unwrap_or(todo.started_tick))
|
|
// Find a reference to the actual `TerrainChunk` we're meshing
|
|
.and_then(|todo| {
|
|
let pos = todo.pos;
|
|
Some((todo, scene_data.state
|
|
.terrain()
|
|
.get_key_arc(pos)
|
|
.cloned()?))
|
|
})
|
|
{
|
|
// TODO: find a alternative!
|
|
if scene_data.thread_pool.queued_jobs() > 0 {
|
|
break;
|
|
}
|
|
|
|
// Find the area of the terrain we want. Because meshing needs to compute things
|
|
// like ambient occlusion and edge elision, we also need the borders
|
|
// of the chunk's neighbours too (hence the `- 1` and `+ 1`).
|
|
let aabr = Aabr {
|
|
min: todo
|
|
.pos
|
|
.map2(VolGrid2d::<V>::chunk_size(), |e, sz| e * sz as i32 - 1),
|
|
max: todo.pos.map2(VolGrid2d::<V>::chunk_size(), |e, sz| {
|
|
(e + 1) * sz as i32 + 1
|
|
}),
|
|
};
|
|
|
|
// Copy out the chunk data we need to perform the meshing. We do this by taking
|
|
// a sample of the terrain that includes both the chunk we want and
|
|
// its neighbours.
|
|
let volume = match scene_data.state.terrain().sample(aabr) {
|
|
Ok(sample) => sample, /* TODO: Ensure that all of the chunk's neighbours still
|
|
* exist to avoid buggy shadow borders */
|
|
// Either this chunk or its neighbours doesn't yet exist, so we keep it in the
|
|
// queue to be processed at a later date when we have its neighbours.
|
|
Err(VolGrid2dError::NoSuchChunk) => {
|
|
continue;
|
|
},
|
|
_ => panic!("Unhandled edge case"),
|
|
};
|
|
|
|
// The region to actually mesh
|
|
let min_z = volume
|
|
.iter()
|
|
.fold(i32::MAX, |min, (_, chunk)| chunk.get_min_z().min(min));
|
|
let max_z = volume
|
|
.iter()
|
|
.fold(i32::MIN, |max, (_, chunk)| chunk.get_max_z().max(max));
|
|
|
|
let aabb = Aabb {
|
|
min: Vec3::from(aabr.min) + Vec3::unit_z() * (min_z - 2),
|
|
max: Vec3::from(aabr.max) + Vec3::unit_z() * (max_z + 2),
|
|
};
|
|
|
|
// Clone various things so that they can be moved into the thread.
|
|
let send = self.mesh_send_tmp.clone();
|
|
let pos = todo.pos;
|
|
|
|
// Queue the worker thread.
|
|
let started_tick = todo.started_tick;
|
|
let sprite_data = Arc::clone(&self.sprite_data);
|
|
let sprite_config = Arc::clone(&self.sprite_config);
|
|
scene_data.thread_pool.execute(move || {
|
|
let sprite_data = sprite_data;
|
|
let _ = send.send(mesh_worker(
|
|
pos,
|
|
(min_z as f32, max_z as f32),
|
|
started_tick,
|
|
volume,
|
|
max_texture_size,
|
|
chunk,
|
|
aabb,
|
|
&sprite_data,
|
|
&sprite_config,
|
|
));
|
|
});
|
|
todo.active_worker = Some(todo.started_tick);
|
|
}
|
|
|
|
// Receive a chunk mesh from a worker thread and upload it to the GPU, then
|
|
// store it. Only pull out one chunk per frame to avoid an unacceptable
|
|
// amount of blocking lag due to the GPU upload. That still gives us a
|
|
// 60 chunks / second budget to play with.
|
|
if let Ok(response) = self.mesh_recv.recv_timeout(Duration::new(0, 0)) {
|
|
match self.mesh_todo.get(&response.pos) {
|
|
// It's the mesh we want, insert the newly finished model into the terrain model
|
|
// data structure (convert the mesh to a model first of course).
|
|
Some(todo) if response.started_tick <= todo.started_tick => {
|
|
let started_tick = todo.started_tick;
|
|
let load_time = self
|
|
.chunks
|
|
.get(&response.pos)
|
|
.map(|chunk| chunk.load_time)
|
|
.unwrap_or(current_time as f32);
|
|
// TODO: Allocate new atlas on allocation failure.
|
|
let (tex, tex_size) = response.col_lights_info;
|
|
let atlas = &mut self.atlas;
|
|
let allocation = atlas
|
|
.allocate(guillotiere::Size::new(
|
|
i32::from(tex_size.x),
|
|
i32::from(tex_size.y),
|
|
))
|
|
.expect("Not yet implemented: allocate new atlas on allocation failure.");
|
|
// NOTE: Cast is safe since the origin was a u16.
|
|
let atlas_offs = Vec2::new(
|
|
allocation.rectangle.min.x as u16,
|
|
allocation.rectangle.min.y as u16,
|
|
);
|
|
if let Err(err) = renderer.update_texture(
|
|
&self.col_lights,
|
|
atlas_offs.into_array(),
|
|
tex_size.into_array(),
|
|
&tex,
|
|
) {
|
|
warn!("Failed to update texture: {:?}", err);
|
|
}
|
|
|
|
self.insert_chunk(response.pos, TerrainChunkData {
|
|
load_time,
|
|
opaque_model: renderer
|
|
.create_model(&response.opaque_mesh)
|
|
.expect("Failed to upload chunk mesh to the GPU!"),
|
|
fluid_model: if response.fluid_mesh.vertices().len() > 0 {
|
|
Some(
|
|
renderer
|
|
.create_model(&response.fluid_mesh)
|
|
.expect("Failed to upload chunk mesh to the GPU!"),
|
|
)
|
|
} else {
|
|
None
|
|
},
|
|
col_lights: allocation.id,
|
|
sprite_instances: response
|
|
.sprite_instances
|
|
.into_iter()
|
|
.map(|(kind, instances)| {
|
|
(
|
|
kind,
|
|
renderer.create_instances(&instances).expect(
|
|
"Failed to upload chunk sprite instances to the GPU!",
|
|
),
|
|
)
|
|
})
|
|
.collect(),
|
|
locals: renderer
|
|
.create_consts(&[TerrainLocals {
|
|
model_offs: Vec3::from(
|
|
response.pos.map2(VolGrid2d::<V>::chunk_size(), |e, sz| {
|
|
e as f32 * sz as f32
|
|
}),
|
|
)
|
|
.into_array(),
|
|
atlas_offs: Vec4::new(
|
|
i32::from(atlas_offs.x),
|
|
i32::from(atlas_offs.y),
|
|
0,
|
|
0,
|
|
)
|
|
.into_array(),
|
|
load_time,
|
|
}])
|
|
.expect("Failed to upload chunk locals to the GPU!"),
|
|
visible: Visibility::OutOfRange,
|
|
can_shadow_point: false,
|
|
can_shadow_sun: false,
|
|
blocks_of_interest: response.blocks_of_interest,
|
|
z_bounds: response.z_bounds,
|
|
frustum_last_plane_index: 0,
|
|
});
|
|
|
|
if response.started_tick == started_tick {
|
|
self.mesh_todo.remove(&response.pos);
|
|
}
|
|
},
|
|
// Chunk must have been removed, or it was spawned on an old tick. Drop the mesh
|
|
// since it's either out of date or no longer needed.
|
|
Some(_todo) => {},
|
|
None => {},
|
|
}
|
|
}
|
|
|
|
// Construct view frustum
|
|
let focus_off = focus_pos.map(|e| e.trunc());
|
|
let frustum = Frustum::from_modelview_projection(
|
|
(proj_mat * view_mat * Mat4::translation_3d(-focus_off)).into_col_arrays(),
|
|
);
|
|
|
|
// Update chunk visibility
|
|
let chunk_sz = V::RECT_SIZE.x as f32;
|
|
for (pos, chunk) in &mut self.chunks {
|
|
let chunk_pos = pos.as_::<f32>() * chunk_sz;
|
|
|
|
chunk.can_shadow_sun = false;
|
|
|
|
// Limit focus_pos to chunk bounds and ensure the chunk is within the fog
|
|
// boundary
|
|
let nearest_in_chunk = Vec2::from(focus_pos).clamped(chunk_pos, chunk_pos + chunk_sz);
|
|
let distance_2 = Vec2::<f32>::from(focus_pos).distance_squared(nearest_in_chunk);
|
|
let in_range = distance_2 < loaded_distance.powf(2.0);
|
|
|
|
if !in_range {
|
|
chunk.visible = Visibility::OutOfRange;
|
|
continue;
|
|
}
|
|
|
|
// Ensure the chunk is within the view frustum
|
|
let chunk_min = [chunk_pos.x, chunk_pos.y, chunk.z_bounds.0];
|
|
let chunk_max = [
|
|
chunk_pos.x + chunk_sz,
|
|
chunk_pos.y + chunk_sz,
|
|
chunk.z_bounds.1,
|
|
];
|
|
|
|
let (in_frustum, last_plane_index) = AABB::new(chunk_min, chunk_max)
|
|
.coherent_test_against_frustum(&frustum, chunk.frustum_last_plane_index);
|
|
|
|
chunk.frustum_last_plane_index = last_plane_index;
|
|
chunk.visible = if in_frustum {
|
|
Visibility::Visible
|
|
} else {
|
|
Visibility::InRange
|
|
};
|
|
let chunk_box = Aabb {
|
|
min: Vec3::from(chunk_min),
|
|
max: Vec3::from(chunk_max),
|
|
};
|
|
|
|
if in_frustum {
|
|
let visible_box = chunk_box;
|
|
visible_bounding_box = visible_bounding_box
|
|
.map(|e| e.union(visible_box))
|
|
.or(Some(visible_box));
|
|
}
|
|
// FIXME: Hack that only works when only the lantern casts point shadows
|
|
// (and hardcodes the shadow distance). Should ideally exist per-light, too.
|
|
chunk.can_shadow_point = distance_2 < (128.0 * 128.0);
|
|
}
|
|
|
|
// PSRs: potential shadow receivers
|
|
let visible_bounding_box = visible_bounding_box.unwrap_or(Aabb {
|
|
min: focus_pos - 2.0,
|
|
max: focus_pos + 2.0,
|
|
});
|
|
|
|
// PSCs: Potential shadow casters
|
|
let ray_direction = scene_data.get_sun_dir();
|
|
let collides_with_aabr = |a: math::Aabb<f32>, b: math::Aabr<f32>| {
|
|
let min = math::Vec4::new(a.min.x, a.min.y, b.min.x, b.min.y);
|
|
let max = math::Vec4::new(b.max.x, b.max.y, a.max.x, a.max.y);
|
|
min.partial_cmple_simd(max).reduce_and()
|
|
};
|
|
let (visible_light_volume, visible_psr_bounds) = if ray_direction.z < 0.0
|
|
&& renderer.render_mode().shadow.is_map()
|
|
{
|
|
let visible_bounding_box = math::Aabb::<f32> {
|
|
min: math::Vec3::from(visible_bounding_box.min - focus_off),
|
|
max: math::Vec3::from(visible_bounding_box.max - focus_off),
|
|
};
|
|
let focus_off = math::Vec3::from(focus_off);
|
|
let visible_bounds_fine = visible_bounding_box.as_::<f64>();
|
|
let inv_proj_view =
|
|
math::Mat4::from_col_arrays((proj_mat * view_mat).into_col_arrays())
|
|
.as_::<f64>()
|
|
.inverted();
|
|
let ray_direction = math::Vec3::<f32>::from(ray_direction);
|
|
let visible_light_volume = math::calc_focused_light_volume_points(
|
|
inv_proj_view,
|
|
ray_direction.as_::<f64>(),
|
|
visible_bounds_fine,
|
|
1e-6,
|
|
)
|
|
.map(|v| v.as_::<f32>())
|
|
.collect::<Vec<_>>();
|
|
|
|
let cam_pos = math::Vec4::from(view_mat.inverted() * Vec4::unit_w()).xyz();
|
|
let up: math::Vec3<f32> = { math::Vec3::up() };
|
|
|
|
let ray_mat = math::Mat4::look_at_rh(cam_pos, cam_pos + ray_direction, up);
|
|
let visible_bounds = math::Aabr::from(math::fit_psr(
|
|
ray_mat,
|
|
visible_light_volume.iter().copied(),
|
|
|p| p,
|
|
));
|
|
let ray_mat = ray_mat * math::Mat4::translation_3d(-focus_off);
|
|
|
|
let can_shadow_sun = |pos: Vec2<i32>, chunk: &TerrainChunkData| {
|
|
let chunk_pos = pos.as_::<f32>() * chunk_sz;
|
|
|
|
// Ensure the chunk is within the PSR set.
|
|
let chunk_box = math::Aabb {
|
|
min: math::Vec3::new(chunk_pos.x, chunk_pos.y, chunk.z_bounds.0),
|
|
max: math::Vec3::new(
|
|
chunk_pos.x + chunk_sz,
|
|
chunk_pos.y + chunk_sz,
|
|
chunk.z_bounds.1,
|
|
),
|
|
};
|
|
|
|
let chunk_from_light = math::fit_psr(
|
|
ray_mat,
|
|
math::aabb_to_points(chunk_box).iter().copied(),
|
|
|p| p,
|
|
);
|
|
collides_with_aabr(chunk_from_light, visible_bounds)
|
|
};
|
|
|
|
// Handle potential shadow casters (chunks that aren't visible, but are still in
|
|
// range) to see if they could cast shadows.
|
|
self.chunks.iter_mut()
|
|
// NOTE: We deliberately avoid doing this computation for chunks we already know
|
|
// are visible, since by definition they'll always intersect the visible view
|
|
// frustum.
|
|
.filter(|chunk| chunk.1.visible <= Visibility::InRange)
|
|
.for_each(|(&pos, chunk)| {
|
|
chunk.can_shadow_sun = can_shadow_sun(pos, chunk);
|
|
});
|
|
|
|
// Handle dead chunks that we kept around only to make sure shadows don't blink
|
|
// out when a chunk disappears.
|
|
//
|
|
// If the sun can currently cast shadows, we retain only those shadow chunks
|
|
// that both: 1. have not been replaced by a real chunk instance,
|
|
// and 2. are currently potential shadow casters (as witnessed by
|
|
// `can_shadow_sun` returning true).
|
|
//
|
|
// NOTE: Please make sure this runs *after* any code that could insert a chunk!
|
|
// Otherwise we may end up with multiple instances of the chunk trying to cast
|
|
// shadows at the same time.
|
|
let chunks = &self.chunks;
|
|
self.shadow_chunks
|
|
.retain(|(pos, chunk)| !chunks.contains_key(pos) && can_shadow_sun(*pos, chunk));
|
|
|
|
(visible_light_volume, visible_bounds)
|
|
} else {
|
|
// There's no daylight or no shadows, so there's no reason to keep any
|
|
// shadow chunks around.
|
|
self.shadow_chunks.clear();
|
|
(Vec::new(), math::Aabr {
|
|
min: math::Vec2::zero(),
|
|
max: math::Vec2::zero(),
|
|
})
|
|
};
|
|
|
|
(
|
|
visible_bounding_box,
|
|
visible_light_volume,
|
|
visible_psr_bounds,
|
|
)
|
|
}
|
|
|
|
pub fn get(&self, chunk_key: Vec2<i32>) -> Option<&TerrainChunkData> {
|
|
self.chunks.get(&chunk_key)
|
|
}
|
|
|
|
pub fn chunk_count(&self) -> usize { self.chunks.len() }
|
|
|
|
pub fn visible_chunk_count(&self) -> usize {
|
|
self.chunks
|
|
.iter()
|
|
.filter(|(_, c)| c.visible == Visibility::Visible)
|
|
.count()
|
|
}
|
|
|
|
pub fn shadow_chunk_count(&self) -> usize { self.shadow_chunks.len() }
|
|
|
|
pub fn render_shadows(
|
|
&self,
|
|
renderer: &mut Renderer,
|
|
global: &GlobalModel,
|
|
(is_daylight, light_data): super::LightData,
|
|
focus_pos: Vec3<f32>,
|
|
) {
|
|
if !renderer.render_mode().shadow.is_map() {
|
|
return;
|
|
};
|
|
|
|
let focus_chunk = Vec2::from(focus_pos).map2(TerrainChunk::RECT_SIZE, |e: f32, sz| {
|
|
(e as i32).div_euclid(sz as i32)
|
|
});
|
|
|
|
let chunk_iter = Spiral2d::new()
|
|
.filter_map(|rpos| {
|
|
let pos = focus_chunk + rpos;
|
|
self.chunks.get(&pos)
|
|
})
|
|
.take(self.chunks.len());
|
|
|
|
// Directed shadows
|
|
//
|
|
// NOTE: We also render shadows for dead chunks that were found to still be
|
|
// potential shadow casters, to avoid shadows suddenly disappearing at
|
|
// very steep sun angles (e.g. sunrise / sunset).
|
|
if is_daylight {
|
|
chunk_iter
|
|
.clone()
|
|
.filter(|chunk| chunk.can_shadow_sun())
|
|
.chain(self.shadow_chunks.iter().map(|(_, chunk)| chunk))
|
|
.for_each(|chunk| {
|
|
// Directed light shadows.
|
|
renderer.render_terrain_shadow_directed(
|
|
&chunk.opaque_model,
|
|
global,
|
|
&chunk.locals,
|
|
&global.shadow_mats,
|
|
);
|
|
});
|
|
}
|
|
|
|
// Point shadows
|
|
//
|
|
// NOTE: We don't bother retaining chunks unless they cast sun shadows, so we
|
|
// don't use `shadow_chunks` here.
|
|
light_data.iter().take(1).for_each(|_light| {
|
|
chunk_iter.clone().for_each(|chunk| {
|
|
if chunk.can_shadow_point {
|
|
renderer.render_shadow_point(
|
|
&chunk.opaque_model,
|
|
global,
|
|
&chunk.locals,
|
|
&global.shadow_mats,
|
|
);
|
|
}
|
|
});
|
|
});
|
|
}
|
|
|
|
pub fn render(
|
|
&self,
|
|
renderer: &mut Renderer,
|
|
global: &GlobalModel,
|
|
lod: &LodData,
|
|
focus_pos: Vec3<f32>,
|
|
) {
|
|
let focus_chunk = Vec2::from(focus_pos).map2(TerrainChunk::RECT_SIZE, |e: f32, sz| {
|
|
(e as i32).div_euclid(sz as i32)
|
|
});
|
|
|
|
let chunk_iter = Spiral2d::new()
|
|
.filter_map(|rpos| {
|
|
let pos = focus_chunk + rpos;
|
|
self.chunks.get(&pos).map(|c| (pos, c))
|
|
})
|
|
.take(self.chunks.len());
|
|
|
|
for (_, chunk) in chunk_iter {
|
|
if chunk.visible == Visibility::Visible {
|
|
renderer.render_terrain_chunk(
|
|
&chunk.opaque_model,
|
|
&self.col_lights,
|
|
global,
|
|
&chunk.locals,
|
|
lod,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn render_translucent(
|
|
&self,
|
|
renderer: &mut Renderer,
|
|
global: &GlobalModel,
|
|
lod: &LodData,
|
|
focus_pos: Vec3<f32>,
|
|
cam_pos: Vec3<f32>,
|
|
sprite_render_distance: f32,
|
|
) {
|
|
let focus_chunk = Vec2::from(focus_pos).map2(TerrainChunk::RECT_SIZE, |e: f32, sz| {
|
|
(e as i32).div_euclid(sz as i32)
|
|
});
|
|
|
|
// Avoid switching textures
|
|
let chunk_iter = Spiral2d::new()
|
|
.filter_map(|rpos| {
|
|
let pos = focus_chunk + rpos;
|
|
self.chunks.get(&pos).map(|c| (pos, c))
|
|
})
|
|
.take(self.chunks.len());
|
|
|
|
// Terrain sprites
|
|
let chunk_size = V::RECT_SIZE.map(|e| e as f32);
|
|
let chunk_mag = (chunk_size * (f32::consts::SQRT_2 * 0.5)).magnitude_squared();
|
|
for (pos, chunk) in chunk_iter.clone() {
|
|
if chunk.visible == Visibility::Visible {
|
|
let sprite_low_detail_distance = sprite_render_distance * 0.75;
|
|
let sprite_mid_detail_distance = sprite_render_distance * 0.5;
|
|
let sprite_hid_detail_distance = sprite_render_distance * 0.35;
|
|
let sprite_high_detail_distance = sprite_render_distance * 0.15;
|
|
|
|
let chunk_center = pos.map2(chunk_size, |e, sz| (e as f32 + 0.5) * sz);
|
|
let focus_dist_sqrd = Vec2::from(focus_pos).distance_squared(chunk_center);
|
|
let dist_sqrd =
|
|
Vec2::from(cam_pos)
|
|
.distance_squared(chunk_center)
|
|
.min(Vec2::from(cam_pos).distance_squared(chunk_center - chunk_size * 0.5))
|
|
.min(Vec2::from(cam_pos).distance_squared(
|
|
chunk_center - chunk_size.x * 0.5 + chunk_size.y * 0.5,
|
|
))
|
|
.min(
|
|
Vec2::from(cam_pos).distance_squared(chunk_center + chunk_size.x * 0.5),
|
|
)
|
|
.min(Vec2::from(cam_pos).distance_squared(
|
|
chunk_center + chunk_size.x * 0.5 - chunk_size.y * 0.5,
|
|
));
|
|
if focus_dist_sqrd < sprite_render_distance.powf(2.0) {
|
|
for (kind, instances) in (&chunk.sprite_instances).into_iter() {
|
|
let SpriteData { model, locals, .. } = if kind
|
|
.0
|
|
.elim_case_pure(&self.sprite_config)
|
|
.as_ref()
|
|
.map(|config| config.wind_sway >= 0.4)
|
|
.unwrap_or(false)
|
|
&& dist_sqrd <= chunk_mag
|
|
|| dist_sqrd < sprite_high_detail_distance.powf(2.0)
|
|
{
|
|
&self.sprite_data[&kind][0]
|
|
} else if dist_sqrd < sprite_hid_detail_distance.powf(2.0) {
|
|
&self.sprite_data[&kind][1]
|
|
} else if dist_sqrd < sprite_mid_detail_distance.powf(2.0) {
|
|
&self.sprite_data[&kind][2]
|
|
} else if dist_sqrd < sprite_low_detail_distance.powf(2.0) {
|
|
&self.sprite_data[&kind][3]
|
|
} else {
|
|
&self.sprite_data[&kind][4]
|
|
};
|
|
renderer.render_sprites(
|
|
model,
|
|
&self.sprite_col_lights,
|
|
global,
|
|
&chunk.locals,
|
|
locals,
|
|
&instances,
|
|
lod,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Translucent
|
|
chunk_iter
|
|
.clone()
|
|
.filter(|(_, chunk)| chunk.visible == Visibility::Visible)
|
|
.filter_map(|(_, chunk)| {
|
|
chunk
|
|
.fluid_model
|
|
.as_ref()
|
|
.map(|model| (model, &chunk.locals))
|
|
})
|
|
.collect::<Vec<_>>()
|
|
.into_iter()
|
|
.rev() // Render back-to-front
|
|
.for_each(|(model, locals)| {
|
|
renderer.render_fluid_chunk(
|
|
model,
|
|
global,
|
|
locals,
|
|
lod,
|
|
&self.waves,
|
|
)
|
|
});
|
|
}
|
|
}
|