veloren/common/src/astar.rs
2020-02-01 21:39:39 +01:00

140 lines
4.6 KiB
Rust

use crate::path::Path;
use core::cmp::Ordering::Equal;
use hashbrown::{HashMap, HashSet};
use std::{cmp::Ordering, collections::BinaryHeap, f32, hash::Hash};
#[derive(Copy, Clone, Debug)]
pub struct PathEntry<S> {
cost: f32,
node: S,
}
impl<S: Eq> PartialEq for PathEntry<S> {
fn eq(&self, other: &PathEntry<S>) -> bool { self.node.eq(&other.node) }
}
impl<S: Eq> Eq for PathEntry<S> {}
impl<S: Eq> Ord for PathEntry<S> {
// This method implements reverse ordering, so that the lowest cost
// will be ordered first
fn cmp(&self, other: &PathEntry<S>) -> Ordering {
other.cost.partial_cmp(&self.cost).unwrap_or(Equal)
}
}
impl<S: Eq> PartialOrd for PathEntry<S> {
fn partial_cmp(&self, other: &PathEntry<S>) -> Option<Ordering> { Some(self.cmp(other)) }
}
pub enum PathResult<T> {
None(Path<T>),
Exhausted(Path<T>),
Path(Path<T>),
Pending,
}
#[derive(Clone, Debug)]
pub struct Astar<S: Clone + Eq + Hash> {
iter: usize,
max_iters: usize,
potential_nodes: BinaryHeap<PathEntry<S>>,
came_from: HashMap<S, S>,
cheapest_scores: HashMap<S, f32>,
final_scores: HashMap<S, f32>,
visited: HashSet<S>,
lowest_cost: Option<S>,
}
impl<S: Clone + Eq + Hash> Astar<S> {
pub fn new(max_iters: usize, start: S, heuristic: impl FnOnce(&S) -> f32) -> Self {
Self {
max_iters,
iter: 0,
potential_nodes: std::iter::once(PathEntry {
cost: 0.0,
node: start.clone(),
})
.collect(),
came_from: HashMap::default(),
cheapest_scores: std::iter::once((start.clone(), 0.0)).collect(),
final_scores: std::iter::once((start.clone(), heuristic(&start))).collect(),
visited: std::iter::once(start).collect(),
lowest_cost: None,
}
}
pub fn poll<I>(
&mut self,
iters: usize,
mut heuristic: impl FnMut(&S) -> f32,
mut neighbors: impl FnMut(&S) -> I,
mut transition: impl FnMut(&S, &S) -> f32,
mut satisfied: impl FnMut(&S) -> bool,
) -> PathResult<S>
where
I: Iterator<Item = S>,
{
let iter_limit = self.max_iters.min(self.iter + iters);
while self.iter < iter_limit {
if let Some(PathEntry { node, .. }) = self.potential_nodes.pop() {
if satisfied(&node) {
return PathResult::Path(self.reconstruct_path_to(node));
} else {
self.lowest_cost = Some(node.clone());
for neighbor in neighbors(&node) {
let node_cheapest = self.cheapest_scores.get(&node).unwrap_or(&f32::MAX);
let neighbor_cheapest =
self.cheapest_scores.get(&neighbor).unwrap_or(&f32::MAX);
let cost = node_cheapest + transition(&node, &neighbor);
if cost < *neighbor_cheapest {
self.came_from.insert(neighbor.clone(), node.clone());
self.cheapest_scores.insert(neighbor.clone(), cost);
let neighbor_cost = cost + heuristic(&neighbor);
self.final_scores.insert(neighbor.clone(), neighbor_cost);
if self.visited.insert(neighbor.clone()) {
self.potential_nodes.push(PathEntry {
node: neighbor.clone(),
cost: neighbor_cost,
});
}
}
}
}
} else {
return PathResult::None(
self.lowest_cost
.clone()
.map(|lc| self.reconstruct_path_to(lc))
.unwrap_or_default(),
);
}
self.iter += 1
}
if self.iter >= self.max_iters {
PathResult::Exhausted(
self.lowest_cost
.clone()
.map(|lc| self.reconstruct_path_to(lc))
.unwrap_or_default(),
)
} else {
PathResult::Pending
}
}
fn reconstruct_path_to(&mut self, end: S) -> Path<S> {
let mut path = vec![end.clone()];
let mut cnode = &end;
while let Some(node) = self.came_from.get(cnode) {
path.push(node.clone());
cnode = node;
}
path.into_iter().rev().collect()
}
}