veloren/common/sys/src/plugin/module.rs

304 lines
10 KiB
Rust

use std::{
collections::HashSet,
convert::TryInto,
marker::PhantomData,
sync::{Arc, Mutex},
};
use common::{
comp::{Health, Player},
uid::UidAllocator,
};
use specs::{saveload::MarkerAllocator, World, WorldExt};
use wasmer::{imports, Cranelift, Function, Instance, Memory, Module, Store, Value, JIT};
use super::{
errors::{PluginError, PluginModuleError},
memory_manager::{self, EcsAccessManager, MemoryManager},
wasm_env::HostFunctionEnvironement,
};
use plugin_api::{Action, EcsAccessError, Event, Retrieve, RetrieveError, RetrieveResult};
#[derive(Clone)]
/// This structure represent the WASM State of the plugin.
pub struct PluginModule {
ecs: Arc<EcsAccessManager>,
wasm_state: Arc<Mutex<Instance>>,
memory_manager: Arc<MemoryManager>,
events: HashSet<String>,
allocator: Function,
memory: Memory,
name: String,
}
impl PluginModule {
/// This function takes bytes from a WASM File and compile them
pub fn new(name: String, wasm_data: &[u8]) -> Result<Self, PluginModuleError> {
// This is creating the engine is this case a JIT based on Cranelift
let engine = JIT::new(Cranelift::default()).engine();
// We are creating an enironnement
let store = Store::new(&engine);
// We are compiling the WASM file in the previously generated environement
let module = Module::new(&store, &wasm_data).expect("Can't compile");
// This is the function imported into the wasm environement
fn raw_emit_actions(env: &HostFunctionEnvironement, ptr: i64, len: i64) {
handle_actions(match env.read_data(from_i64(ptr), from_i64(len)) {
Ok(e) => e,
Err(e) => {
tracing::error!(?e, "Can't decode action");
return;
},
});
}
fn raw_retrieve_action(env: &HostFunctionEnvironement, ptr: i64, len: i64) -> i64 {
let out = match env.read_data(from_i64(ptr), from_i64(len)) {
Ok(data) => retrieve_action(&env.ecs, data),
Err(e) => Err(RetrieveError::BincodeError(e.to_string())),
};
// If an error happen set the i64 to 0 so the WASM side can tell an error
// occured
to_i64(env.write_data_as_pointer(&out).unwrap())
}
fn dbg(a: i32) {
println!("WASM DEBUG: {}", a);
}
let ecs = Arc::new(EcsAccessManager::default());
let memory_manager = Arc::new(MemoryManager::default());
// Create an import object.
let import_object = imports! {
"env" => {
"raw_emit_actions" => Function::new_native_with_env(&store, HostFunctionEnvironement::new(name.clone(), ecs.clone(),memory_manager.clone()), raw_emit_actions),
"raw_retrieve_action" => Function::new_native_with_env(&store, HostFunctionEnvironement::new(name.clone(), ecs.clone(),memory_manager.clone()), raw_retrieve_action),
"dbg" => Function::new_native(&store, dbg),
}
};
// Create an instance (Code execution environement)
let instance = Instance::new(&module, &import_object)
.map_err(PluginModuleError::InstantiationError)?;
Ok(Self {
memory_manager,
ecs,
memory: instance
.exports
.get_memory("memory")
.map_err(PluginModuleError::MemoryUninit)?
.clone(),
allocator: instance
.exports
.get_function("wasm_prepare_buffer")
.map_err(PluginModuleError::MemoryUninit)?
.clone(),
events: instance
.exports
.iter()
.map(|(name, _)| name.to_string())
.collect(),
wasm_state: Arc::new(Mutex::new(instance)),
name,
})
}
/// This function tries to execute an event for the current module. Will
/// return None if the event doesn't exists
pub fn try_execute<T>(
&self,
ecs: &World,
event_name: &str,
request: &PreparedEventQuery<T>,
) -> Option<Result<T::Response, PluginModuleError>>
where
T: Event,
{
if !self.events.contains(event_name) {
return None;
}
// Store the ECS Pointer for later use in `retreives`
let bytes = match self.ecs.execute_with(ecs, || {
let mut state = self.wasm_state.lock().unwrap();
execute_raw(self, &mut state, event_name, &request.bytes)
}) {
Ok(e) => e,
Err(e) => return Some(Err(e)),
};
Some(bincode::deserialize(&bytes).map_err(PluginModuleError::Encoding))
}
}
/// This structure represent a Pre-encoded event object (Useful to avoid
/// reencoding for each module in every plugin)
pub struct PreparedEventQuery<T> {
bytes: Vec<u8>,
_phantom: PhantomData<T>,
}
impl<T: Event> PreparedEventQuery<T> {
/// Create a prepared query from an event reference (Encode to bytes the
/// struct) This Prepared Query is used by the `try_execute` method in
/// `PluginModule`
pub fn new(event: &T) -> Result<Self, PluginError>
where
T: Event,
{
Ok(Self {
bytes: bincode::serialize(&event).map_err(PluginError::Encoding)?,
_phantom: PhantomData::default(),
})
}
}
pub fn from_u128(i: u128) -> (u64, u64) {
let i = i.to_le_bytes();
(
u64::from_le_bytes(i[0..8].try_into().unwrap()),
u64::from_le_bytes(i[8..16].try_into().unwrap()),
)
}
pub fn to_u128(a: u64, b: u64) -> u128 {
let a = a.to_le_bytes();
let b = b.to_le_bytes();
u128::from_le_bytes([a, b].concat().try_into().unwrap())
}
pub fn to_i64(i: u64) -> i64 { i64::from_le_bytes(i.to_le_bytes()) }
pub fn from_i64(i: i64) -> u64 { u64::from_le_bytes(i.to_le_bytes()) }
// This function is not public because this function should not be used without
// an interface to limit unsafe behaviours
#[allow(clippy::needless_range_loop)]
fn execute_raw(
module: &PluginModule,
instance: &mut Instance,
event_name: &str,
bytes: &[u8],
) -> Result<Vec<u8>, PluginModuleError> {
// This write into memory `bytes` using allocation if necessary returning a
// pointer and a length
let (mem_position, len) =
module
.memory_manager
.write_bytes(&module.memory, &module.allocator, bytes)?;
// This gets the event function from module exports
let func = instance
.exports
.get_function(event_name)
.map_err(PluginModuleError::MemoryUninit)?;
// We call the function with the pointer and the length
let function_result = func
.call(&[Value::I64(to_i64(mem_position)), Value::I64(to_i64(len))])
.map_err(PluginModuleError::RunFunction)?;
// Waiting for `multi-value` to be added to LLVM. So we encode the two i32 as an
// i64
let u128_pointer = from_i64(
function_result[0]
.i64()
.ok_or_else(PluginModuleError::InvalidArgumentType)?,
);
let bytes = memory_manager::read_bytes(&module.memory, u128_pointer, 16);
// We read the return object and deserialize it
Ok(memory_manager::read_bytes(
&module.memory,
u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
u64::from_le_bytes(bytes[8..16].try_into().unwrap()),
))
}
fn retrieve_action(
ecs: &EcsAccessManager,
action: Retrieve,
) -> Result<RetrieveResult, RetrieveError> {
match action {
Retrieve::GetPlayerName(e) => {
// Safety: No reference is leaked out the function so it is safe.
let world = unsafe {
ecs.get().ok_or(RetrieveError::EcsAccessError(
EcsAccessError::EcsPointerNotAvailable,
))?
};
let player = world
.read_resource::<UidAllocator>()
.retrieve_entity_internal(e.0)
.ok_or(RetrieveError::EcsAccessError(
EcsAccessError::EcsEntityNotFound(e),
))?;
Ok(RetrieveResult::GetPlayerName(
world
.read_component::<Player>()
.get(player)
.ok_or_else(|| {
RetrieveError::EcsAccessError(EcsAccessError::EcsComponentNotFound(
e,
"Player".to_owned(),
))
})?
.alias
.to_owned(),
))
},
Retrieve::GetEntityHealth(e) => {
// Safety: No reference is leaked out the function so it is safe.
let world = unsafe {
ecs.get().ok_or(RetrieveError::EcsAccessError(
EcsAccessError::EcsPointerNotAvailable,
))?
};
let player = world
.read_resource::<UidAllocator>()
.retrieve_entity_internal(e.0)
.ok_or(RetrieveError::EcsAccessError(
EcsAccessError::EcsEntityNotFound(e),
))?;
Ok(RetrieveResult::GetEntityHealth(
*world
.read_component::<Health>()
.get(player)
.ok_or_else(|| {
RetrieveError::EcsAccessError(EcsAccessError::EcsComponentNotFound(
e,
"Health".to_owned(),
))
})?,
))
},
}
}
fn handle_actions(actions: Vec<Action>) {
for action in actions {
match action {
Action::ServerClose => {
tracing::info!("Server closed by plugin");
std::process::exit(-1);
},
Action::Print(e) => {
tracing::info!("{}", e);
},
Action::PlayerSendMessage(a, b) => {
tracing::info!("SendMessage {} -> {}", a, b);
},
Action::KillEntity(e) => {
tracing::info!("Kill Entity {}", e);
},
}
}
}