veloren/world/src/column/mod.rs
2021-03-07 14:25:07 +00:00

1115 lines
49 KiB
Rust

use crate::{
all::ForestKind,
sim::{local_cells, Cave, Path, RiverKind, SimChunk, WorldSim},
util::Sampler,
IndexRef, CONFIG,
};
use common::{
terrain::{
quadratic_nearest_point, river_spline_coeffs, uniform_idx_as_vec2, vec2_as_uniform_idx,
TerrainChunkSize,
},
vol::RectVolSize,
};
use noise::NoiseFn;
use serde::Deserialize;
use std::{
cmp::Reverse,
f32, f64,
ops::{Add, Div, Mul, Sub},
};
use tracing::error;
use vek::*;
pub struct ColumnGen<'a> {
pub sim: &'a WorldSim,
}
#[derive(Deserialize)]
pub struct Colors {
pub cold_grass: (f32, f32, f32),
pub warm_grass: (f32, f32, f32),
pub dark_grass: (f32, f32, f32),
pub wet_grass: (f32, f32, f32),
pub cold_stone: (f32, f32, f32),
pub hot_stone: (f32, f32, f32),
pub warm_stone: (f32, f32, f32),
pub beach_sand: (f32, f32, f32),
pub desert_sand: (f32, f32, f32),
pub snow: (f32, f32, f32),
pub snow_moss: (f32, f32, f32),
pub stone_col: (u8, u8, u8),
pub dirt_low: (f32, f32, f32),
pub dirt_high: (f32, f32, f32),
pub snow_high: (f32, f32, f32),
pub warm_stone_high: (f32, f32, f32),
pub grass_high: (f32, f32, f32),
pub tropical_high: (f32, f32, f32),
}
impl<'a> ColumnGen<'a> {
pub fn new(sim: &'a WorldSim) -> Self { Self { sim } }
}
impl<'a> Sampler<'a> for ColumnGen<'a> {
type Index = (Vec2<i32>, IndexRef<'a>);
type Sample = Option<ColumnSample<'a>>;
#[allow(clippy::float_cmp)] // TODO: Pending review in #587
#[allow(clippy::if_same_then_else)] // TODO: Pending review in #587
#[allow(clippy::nonminimal_bool)] // TODO: Pending review in #587
#[allow(clippy::single_match)] // TODO: Pending review in #587
fn get(&self, (wpos, index): Self::Index) -> Option<ColumnSample<'a>> {
let wposf = wpos.map(|e| e as f64);
let chunk_pos = wpos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32);
let sim = &self.sim;
// let turb = Vec2::new(
// sim.gen_ctx.turb_x_nz.get((wposf.div(48.0)).into_array()) as f32,
// sim.gen_ctx.turb_y_nz.get((wposf.div(48.0)).into_array()) as f32,
// ) * 12.0;
let wposf_turb = wposf; // + turb.map(|e| e as f64);
let chaos = sim.get_interpolated(wpos, |chunk| chunk.chaos)?;
let temp = sim.get_interpolated(wpos, |chunk| chunk.temp)?;
let humidity = sim.get_interpolated(wpos, |chunk| chunk.humidity)?;
let rockiness = sim.get_interpolated(wpos, |chunk| chunk.rockiness)?;
let tree_density = sim.get_interpolated(wpos, |chunk| chunk.tree_density)?;
let spawn_rate = sim.get_interpolated(wpos, |chunk| chunk.spawn_rate)?;
let near_water =
sim.get_interpolated(
wpos,
|chunk| if chunk.river.near_water() { 1.0 } else { 0.0 },
)?;
let alt = sim.get_interpolated_monotone(wpos, |chunk| chunk.alt)?;
let surface_veg = sim.get_interpolated_monotone(wpos, |chunk| chunk.surface_veg)?;
let sim_chunk = sim.get(chunk_pos)?;
let neighbor_coef = TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
let my_chunk_idx = vec2_as_uniform_idx(self.sim.map_size_lg(), chunk_pos);
let neighbor_river_data =
local_cells(self.sim.map_size_lg(), my_chunk_idx).filter_map(|neighbor_idx: usize| {
let neighbor_pos = uniform_idx_as_vec2(self.sim.map_size_lg(), neighbor_idx);
let neighbor_chunk = sim.get(neighbor_pos)?;
Some((neighbor_pos, neighbor_chunk, &neighbor_chunk.river))
});
let lake_width = (TerrainChunkSize::RECT_SIZE.x as f64 * (2.0f64.sqrt())) + 12.0;
let neighbor_river_data = neighbor_river_data.map(|(posj, chunkj, river)| {
let kind = match river.river_kind {
Some(kind) => kind,
None => {
return (posj, chunkj, river, None);
},
};
let downhill_pos = if let Some(pos) = chunkj.downhill {
pos
} else {
match kind {
RiverKind::River { .. } => {
error!(?river, ?posj, "What?");
panic!("How can a river have no downhill?");
},
RiverKind::Lake { .. } => {
return (posj, chunkj, river, None);
},
RiverKind::Ocean => posj,
}
};
let downhill_wpos = downhill_pos.map(|e| e as f64);
let downhill_pos =
downhill_pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32);
let neighbor_pos = posj.map(|e| e as f64) * neighbor_coef;
let direction = neighbor_pos - downhill_wpos;
let river_width_min = if let RiverKind::River { cross_section } = kind {
cross_section.x as f64
} else {
lake_width
};
let downhill_chunk = sim.get(downhill_pos).expect("How can this not work?");
let coeffs =
river_spline_coeffs(neighbor_pos, chunkj.river.spline_derivative, downhill_wpos);
let (direction, coeffs, downhill_chunk, river_t, river_pos, river_dist) = match kind {
RiverKind::River { .. } => {
if let Some((t, pt, dist)) = quadratic_nearest_point(&coeffs, wposf) {
(direction, coeffs, downhill_chunk, t, pt, dist.sqrt())
} else {
let ndist = wposf.distance_squared(neighbor_pos);
let ddist = wposf.distance_squared(downhill_wpos);
let (closest_pos, closest_dist, closest_t) = if ndist <= ddist {
(neighbor_pos, ndist, 0.0)
} else {
(downhill_wpos, ddist, 1.0)
};
(
direction,
coeffs,
downhill_chunk,
closest_t,
closest_pos,
closest_dist.sqrt(),
)
}
},
RiverKind::Lake { neighbor_pass_pos } => {
let pass_dist = neighbor_pass_pos
.map2(
neighbor_pos
.map2(TerrainChunkSize::RECT_SIZE, |f, g| (f as i32, g as i32)),
|e, (f, g)| ((e - f) / g).abs(),
)
.reduce_partial_max();
let spline_derivative = river.spline_derivative;
let neighbor_pass_pos = if pass_dist <= 1 {
neighbor_pass_pos
} else {
downhill_wpos.map(|e| e as i32)
};
let pass_dist = neighbor_pass_pos
.map2(
neighbor_pos
.map2(TerrainChunkSize::RECT_SIZE, |f, g| (f as i32, g as i32)),
|e, (f, g)| ((e - f) / g).abs(),
)
.reduce_partial_max();
if pass_dist > 1 {
return (posj, chunkj, river, None);
}
let neighbor_pass_wpos = neighbor_pass_pos.map(|e| e as f64);
let neighbor_pass_pos = neighbor_pass_pos
.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32);
let coeffs =
river_spline_coeffs(neighbor_pos, spline_derivative, neighbor_pass_wpos);
let direction = neighbor_pos - neighbor_pass_wpos;
if let Some((t, pt, dist)) = quadratic_nearest_point(&coeffs, wposf) {
(
direction,
coeffs,
sim.get(neighbor_pass_pos).expect("Must already work"),
t,
pt,
dist.sqrt(),
)
} else {
let ndist = wposf.distance_squared(neighbor_pos);
/* let ddist = wposf.distance_squared(neighbor_pass_wpos); */
let (closest_pos, closest_dist, closest_t) = /*if ndist <= ddist */ {
(neighbor_pos, ndist, 0.0)
} /* else {
(neighbor_pass_wpos, ddist, 1.0)
} */;
(
direction,
coeffs,
sim.get(neighbor_pass_pos).expect("Must already work"),
closest_t,
closest_pos,
closest_dist.sqrt(),
)
}
},
RiverKind::Ocean => {
let ndist = wposf.distance_squared(neighbor_pos);
let (closest_pos, closest_dist, closest_t) = (neighbor_pos, ndist, 0.0);
(
direction,
coeffs,
sim.get(closest_pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
e as i32 / sz as i32
}))
.expect("Must already work"),
closest_t,
closest_pos,
closest_dist.sqrt(),
)
},
};
let river_width_max =
if let Some(RiverKind::River { cross_section }) = downhill_chunk.river.river_kind {
cross_section.x as f64
} else {
lake_width
};
let river_width_noise = (sim.gen_ctx.small_nz.get((river_pos.div(16.0)).into_array()))
.max(-1.0)
.min(1.0)
.mul(0.5)
.sub(0.5) as f64;
let river_width = Lerp::lerp(
river_width_min,
river_width_max,
river_t.max(0.0).min(1.0).sqrt(),
);
let river_width = river_width * (1.0 + river_width_noise * 0.3);
// To find the distance, we just evaluate the quadratic equation at river_t and
// see if it's within width (but we should be able to use it for a
// lot more, and this probably isn't the very best approach anyway
// since it will bleed out). let river_pos = coeffs.x * river_t *
// river_t + coeffs.y * river_t + coeffs.z;
let res = Vec2::new(0.0, (river_dist - (river_width * 0.5).max(1.0)).max(0.0));
(
posj,
chunkj,
river,
Some((
direction,
res,
river_width,
(river_t, (river_pos, coeffs), downhill_chunk),
)),
)
});
// Cliffs
let cliff_factor = (alt
+ self.sim.gen_ctx.hill_nz.get(wposf.div(64.0).into_array()) as f32 * 8.0
+ self.sim.gen_ctx.hill_nz.get(wposf.div(350.0).into_array()) as f32 * 128.0)
.rem_euclid(200.0)
/ 64.0
- 1.0;
let cliff_scale =
((self.sim.gen_ctx.hill_nz.get(wposf.div(128.0).into_array()) as f32 * 1.5 + 0.75)
+ self.sim.gen_ctx.hill_nz.get(wposf.div(48.0).into_array()) as f32 * 0.1)
.clamped(0.0, 1.0)
.powf(2.0);
let cliff_height = sim.get_interpolated(wpos, |chunk| chunk.cliff_height)? * cliff_scale;
let cliff = if cliff_factor < 0.0 {
cliff_factor.abs().powf(1.5)
} else {
0.0
} * (1.0 - near_water * 3.0).max(0.0).powi(2);
let cliff_offset = cliff * cliff_height;
let alt = alt + (cliff - 0.5) * cliff_height;
// Find the average distance to each neighboring body of water.
let mut river_count = 0.0f64;
let mut overlap_count = 0.0f64;
let mut river_distance_product = 1.0f64;
let mut river_overlap_distance_product = 0.0f64;
let mut max_river = None;
let mut max_key = None;
// IDEA:
// For every "nearby" chunk, check whether it is a river. If so, find the
// closest point on the river segment to wposf (if two point are
// equidistant, choose the earlier one), calling this point river_pos
// and the length (from 0 to 1) along the river segment for the nearby
// chunk river_t. Let river_dist be the distance from river_pos to wposf.
//
// Let river_alt be the interpolated river height at this point
// (from the alt/water altitude at the river, to the alt/water_altitude of the
// downhill river, increasing with river_t).
//
// Now, if river_dist is <= river_width * 0.5, then we don't care what altitude
// we use, and mark that we are on a river (we decide what river to use
// using a heuristic, and set the solely according to the computed
// river_alt for that point).
//
// Otherwise, we let dist = river_dist - river_width * 0.5.
//
// If dist >= TerrainChunkSize::RECT_SIZE.x, we don't include this river in the
// calculation of the correct altitude for this point.
//
// Otherwise (i.e. dist < TerrainChunkSize::RECT_SIZE.x), we want to bias the
// altitude of this point towards the altitude of the river.
// Specifically, as the dist goes from TerrainChunkSize::RECT_SIZE.x to
// 0, the weighted altitude of this point should go from
// alt to river_alt.
neighbor_river_data.for_each(|(river_chunk_idx, river_chunk, river, dist)| {
match river.river_kind {
Some(kind) => {
if kind.is_river() && !dist.is_some() {
// Ostensibly near a river segment, but not "usefully" so (there is no
// closest point between t = 0.0 and t = 1.0).
return;
} else {
let river_dist = dist.map(|(_, dist, _, (river_t, _, downhill_river))| {
let downhill_height = if kind.is_river() {
Lerp::lerp(
river_chunk.alt.max(river_chunk.water_alt),
downhill_river.alt.max(downhill_river.water_alt),
river_t as f32,
) as f64
} else {
let neighbor_pos =
river_chunk_idx.map(|e| e as f64) * neighbor_coef;
if dist.y == 0.0 {
-(wposf - neighbor_pos).magnitude()
} else {
-(wposf - neighbor_pos).magnitude()
}
};
(Reverse((dist.x, dist.y)), downhill_height)
});
let river_dist = river_dist.or_else(|| {
if !kind.is_river() {
let neighbor_pos =
river_chunk_idx.map(|e| e as f64) * neighbor_coef;
let dist = (wposf - neighbor_pos).magnitude();
let dist_upon =
(dist - TerrainChunkSize::RECT_SIZE.x as f64 * 0.5).max(0.0);
let dist_ = if dist == 0.0 { f64::INFINITY } else { -dist };
Some((Reverse((0.0, dist_upon)), dist_))
} else {
None
}
});
let river_key = (river_dist, Reverse(kind));
if max_key < Some(river_key) {
max_river = Some((river_chunk_idx, river_chunk, river, dist));
max_key = Some(river_key);
}
}
// NOTE: we scale by the distance to the river divided by the difference
// between the edge of the river that we intersect, and the remaining distance
// until the nearest point in "this" chunk (i.e. the one whose top-left corner
// is chunk_pos) that is at least 2 chunks away from the river source.
if let Some((_, dist, _, (river_t, _, downhill_river_chunk))) = dist {
let max_distance = if !river.is_river() {
/*(*/
TerrainChunkSize::RECT_SIZE.x as f64 /* * (1.0 - (2.0f64.sqrt() / 2.0))) + 4.0*/ - lake_width * 0.5
} else {
TerrainChunkSize::RECT_SIZE.x as f64
};
let scale_factor = max_distance;
let river_dist = dist.y;
if !(dist.x == 0.0 && river_dist < scale_factor) {
return;
}
// We basically want to project outwards from river_pos, along the current
// tangent line, to chunks <= river_width * 1.0 away from this
// point. We *don't* want to deal with closer chunks because they
// NOTE: river_width <= 2 * max terrain chunk size width, so this should not
// lead to division by zero.
// NOTE: If distance = 0.0 this goes to zero, which is desired since it
// means points that actually intersect with rivers will not be interpolated
// with the "normal" height of this point.
// NOTE: We keep the maximum at 1.0 so we don't undo work from another river
// just by being far away.
let river_scale = river_dist / scale_factor;
let river_alt =
Lerp::lerp(river_chunk.alt, downhill_river_chunk.alt, river_t as f32);
let river_alt = Lerp::lerp(river_alt, alt, river_scale as f32);
let river_alt_diff = river_alt - alt;
let river_alt_inv = river_alt_diff as f64;
river_overlap_distance_product += (1.0 - river_scale) * river_alt_inv;
overlap_count += 1.0 - river_scale;
river_count += 1.0;
river_distance_product *= river_scale;
}
}
None => {}
}
});
let river_scale_factor = if river_count == 0.0 {
1.0
} else {
let river_scale_factor = river_distance_product;
if river_scale_factor == 0.0 {
0.0
} else {
river_scale_factor.powf(if river_count == 0.0 {
1.0
} else {
1.0 / river_count
})
}
};
let alt_for_river = alt
+ if overlap_count == 0.0 {
0.0
} else {
river_overlap_distance_product / overlap_count
} as f32;
let riverless_alt_delta = (sim.gen_ctx.small_nz.get(
(wposf_turb.div(200.0 * (32.0 / TerrainChunkSize::RECT_SIZE.x as f64))).into_array(),
) as f32)
.min(1.0)
.max(-1.0)
.abs()
.mul(3.0)
+ (sim.gen_ctx.small_nz.get(
(wposf_turb.div(400.0 * (32.0 / TerrainChunkSize::RECT_SIZE.x as f64)))
.into_array(),
) as f32)
.min(1.0)
.max(-1.0)
.abs()
.mul(3.0);
let downhill = sim_chunk.downhill;
let downhill_pos = downhill.and_then(|downhill_pos| sim.get(downhill_pos));
debug_assert!(sim_chunk.water_alt >= CONFIG.sea_level);
let downhill_water_alt = downhill_pos
.map(|downhill_chunk| {
downhill_chunk
.water_alt
.min(sim_chunk.water_alt)
.max(sim_chunk.alt.min(sim_chunk.water_alt))
})
.unwrap_or(CONFIG.sea_level);
let river_gouge = 0.5;
let (_in_water, water_dist, alt_, water_level, _riverless_alt, warp_factor) = if let Some(
(max_border_river_pos, river_chunk, max_border_river, max_border_river_dist),
) =
max_river
{
// This is flowing into a lake, or a lake, or is at least a non-ocean tile.
//
// If we are <= water_alt, we are in the lake; otherwise, we are flowing into
// it.
let (in_water, water_dist, new_alt, new_water_alt, riverless_alt, warp_factor) =
max_border_river
.river_kind
.and_then(|river_kind| {
match river_kind {
RiverKind::River { cross_section } => {
if max_border_river_dist.map(|(_, dist, _, _)| dist)
!= Some(Vec2::zero())
{
return None;
}
let (
_,
_,
river_width,
(river_t, (river_pos, _), downhill_river_chunk),
) = max_border_river_dist.unwrap();
let river_alt = Lerp::lerp(
river_chunk.alt.max(river_chunk.water_alt),
downhill_river_chunk.alt.max(downhill_river_chunk.water_alt),
river_t as f32,
);
let new_alt = river_alt - river_gouge;
let river_dist = wposf.distance(river_pos);
let river_height_factor = river_dist / (river_width * 0.5);
let valley_alt = Lerp::lerp(
new_alt - cross_section.y.max(1.0),
new_alt - 1.0,
(river_height_factor * river_height_factor) as f32,
);
Some((
true,
Some((river_dist - river_width * 0.5) as f32),
valley_alt,
new_alt,
alt, //river_alt + cross_section.y.max(1.0),
0.0,
))
},
_ => None,
}
})
.unwrap_or_else(|| {
max_border_river
.river_kind
.map(|river_kind| {
match river_kind {
RiverKind::Ocean => {
let (
_,
dist,
river_width,
(river_t, (river_pos, _), downhill_river_chunk),
) = if let Some(dist) = max_border_river_dist {
dist
} else {
error!(
?max_border_river,
?chunk_pos,
?max_border_river_pos,
"downhill error details"
);
panic!(
"Oceans should definitely have a downhill! \
...Right?"
);
};
let lake_water_alt = Lerp::lerp(
river_chunk.alt.max(river_chunk.water_alt),
downhill_river_chunk
.alt
.max(downhill_river_chunk.water_alt),
river_t as f32,
);
if dist == Vec2::zero() {
let river_dist = wposf.distance(river_pos);
let _river_height_factor =
river_dist / (river_width * 0.5);
return (
true,
Some((river_dist - river_width * 0.5) as f32),
alt_for_river
.min(lake_water_alt - 1.0 - river_gouge),
lake_water_alt - river_gouge,
alt_for_river.max(lake_water_alt),
0.0,
);
}
(
river_scale_factor <= 1.0,
Some(
(wposf.distance(river_pos) - river_width * 0.5)
as f32,
),
alt_for_river,
downhill_water_alt,
alt_for_river,
river_scale_factor as f32,
)
},
RiverKind::Lake { .. } => {
let lake_dist = (max_border_river_pos.map(|e| e as f64)
* neighbor_coef)
.distance(wposf);
let downhill_river_chunk = max_border_river_pos;
let lake_id_dist = downhill_river_chunk - chunk_pos;
let in_bounds = lake_id_dist.x >= -1
&& lake_id_dist.y >= -1
&& lake_id_dist.x <= 1
&& lake_id_dist.y <= 1;
let in_bounds = in_bounds
&& (lake_id_dist.x >= 0 && lake_id_dist.y >= 0);
let (_, dist, _, (river_t, _, downhill_river_chunk)) =
if let Some(dist) = max_border_river_dist {
dist
} else if lake_dist
<= TerrainChunkSize::RECT_SIZE.x as f64 * 1.0
|| in_bounds
{
let gouge_factor = 0.0;
return (
in_bounds
|| downhill_water_alt
.max(river_chunk.water_alt)
> alt_for_river,
Some(lake_dist as f32),
alt_for_river,
(downhill_water_alt.max(river_chunk.water_alt)
- river_gouge),
alt_for_river,
river_scale_factor as f32
* (1.0 - gouge_factor),
);
} else {
return (
false,
Some(lake_dist as f32),
alt_for_river,
downhill_water_alt,
alt_for_river,
river_scale_factor as f32,
);
};
let lake_dist = dist.y;
let lake_water_alt = Lerp::lerp(
river_chunk.alt.max(river_chunk.water_alt),
downhill_river_chunk
.alt
.max(downhill_river_chunk.water_alt),
river_t as f32,
);
if dist == Vec2::zero() {
return (
true,
Some(lake_dist as f32),
alt_for_river
.min(lake_water_alt - 1.0 - river_gouge),
lake_water_alt - river_gouge,
alt_for_river.max(lake_water_alt),
0.0,
);
}
if lake_dist <= TerrainChunkSize::RECT_SIZE.x as f64 * 1.0
|| in_bounds
{
let gouge_factor = if in_bounds && lake_dist <= 1.0 {
1.0
} else {
0.0
};
let in_bounds_ = lake_dist
<= TerrainChunkSize::RECT_SIZE.x as f64 * 0.5;
if gouge_factor == 1.0 {
return (
true,
Some(lake_dist as f32),
alt.min(lake_water_alt - 1.0 - river_gouge),
downhill_water_alt.max(lake_water_alt)
- river_gouge,
alt.max(lake_water_alt),
0.0,
);
} else {
return (
true,
Some(lake_dist as f32),
alt_for_river,
if in_bounds_ {
downhill_water_alt.max(lake_water_alt)
} else {
downhill_water_alt
} - river_gouge,
alt_for_river,
river_scale_factor as f32
* (1.0 - gouge_factor),
);
}
}
(
river_scale_factor <= 1.0,
Some(lake_dist as f32),
alt_for_river,
downhill_water_alt,
alt_for_river,
river_scale_factor as f32,
)
},
RiverKind::River { .. } => {
let (_, _, river_width, (_, (river_pos, _), _)) =
max_border_river_dist.unwrap();
let river_dist = wposf.distance(river_pos);
// FIXME: Make water altitude accurate.
(
river_scale_factor <= 1.0,
Some((river_dist - river_width * 0.5) as f32),
alt_for_river,
downhill_water_alt,
alt, //alt_for_river,
river_scale_factor as f32,
)
},
}
})
.unwrap_or((
false,
None,
alt_for_river,
downhill_water_alt,
alt, //alt_for_river,
river_scale_factor as f32,
))
});
(
in_water,
water_dist,
new_alt,
new_water_alt,
riverless_alt,
warp_factor,
)
} else {
(
false,
None,
alt_for_river,
downhill_water_alt,
alt, //alt_for_river,
1.0,
)
};
// NOTE: To disable warp, uncomment this line.
// let warp_factor = 0.0;
let riverless_alt_delta = Lerp::lerp(0.0, riverless_alt_delta, warp_factor);
let riverless_alt = alt + riverless_alt_delta; //riverless_alt + riverless_alt_delta;
let alt = alt_ + riverless_alt_delta;
let basement =
alt + sim.get_interpolated_monotone(wpos, |chunk| chunk.basement.sub(chunk.alt))?;
let rock = (sim.gen_ctx.small_nz.get(
Vec3::new(wposf.x, wposf.y, alt as f64)
.div(100.0)
.into_array(),
) as f32)
//.mul(water_dist.map(|wd| (wd / 2.0).clamped(0.0, 1.0).sqrt()).unwrap_or(1.0))
.mul(rockiness)
.sub(0.4)
.max(0.0)
.mul(8.0);
// Columns near water have a more stable temperature and so get pushed towards
// the average (0)
let temp = Lerp::lerp(
Lerp::lerp(temp, 0.0, 0.1),
temp,
water_dist
.map(|water_dist| water_dist / 20.0)
.unwrap_or(1.0)
.clamped(0.0, 1.0),
);
// Columns near water get a humidity boost
let humidity = Lerp::lerp(
Lerp::lerp(humidity, 1.0, 0.25),
humidity,
water_dist
.map(|water_dist| water_dist / 20.0)
.unwrap_or(1.0)
.clamped(0.0, 1.0),
);
let wposf3d = Vec3::new(wposf.x, wposf.y, alt as f64);
let marble_small = (sim.gen_ctx.hill_nz.get((wposf3d.div(3.0)).into_array()) as f32)
.powi(3)
.add(1.0)
.mul(0.5);
let marble_mid = (sim.gen_ctx.hill_nz.get((wposf3d.div(12.0)).into_array()) as f32)
.mul(0.75)
.add(1.0)
.mul(0.5);
//.add(marble_small.sub(0.5).mul(0.25));
let marble = (sim.gen_ctx.hill_nz.get((wposf3d.div(48.0)).into_array()) as f32)
.mul(0.75)
.add(1.0)
.mul(0.5);
let marble_mixed = marble
.add(marble_mid.sub(0.5).mul(0.5))
.add(marble_small.sub(0.5).mul(0.25));
// Colours
let Colors {
cold_grass,
warm_grass,
dark_grass,
wet_grass,
cold_stone,
hot_stone,
warm_stone,
beach_sand,
desert_sand,
snow,
snow_moss,
stone_col,
dirt_low,
dirt_high,
snow_high,
warm_stone_high,
grass_high,
tropical_high,
} = index.colors.column;
let cold_grass = cold_grass.into();
let warm_grass = warm_grass.into();
let dark_grass = dark_grass.into();
let wet_grass = wet_grass.into();
let cold_stone = cold_stone.into();
let hot_stone = hot_stone.into();
let warm_stone: Rgb<f32> = warm_stone.into();
let beach_sand = beach_sand.into();
let desert_sand = desert_sand.into();
let snow = snow.into();
let stone_col = stone_col.into();
let dirt_low: Rgb<f32> = dirt_low.into();
let dirt_high = dirt_high.into();
let snow_high = snow_high.into();
let warm_stone_high = warm_stone_high.into();
let grass_high = grass_high.into();
let tropical_high = tropical_high.into();
let dirt = Lerp::lerp(dirt_low, dirt_high, marble_mixed);
let tundra = Lerp::lerp(snow, snow_high, 0.4 + marble_mixed * 0.6);
let dead_tundra = Lerp::lerp(warm_stone, warm_stone_high, marble_mixed);
let cliff = Rgb::lerp(cold_stone, hot_stone, marble_mixed);
let grass = Rgb::lerp(
cold_grass,
warm_grass,
marble_mixed
.sub(0.5)
.add(1.0.sub(humidity).mul(0.5))
.powf(1.5),
);
let snow_moss = Rgb::lerp(
snow_moss.into(),
cold_grass,
0.4 + marble_mixed.powf(1.5) * 0.6,
);
let moss = Rgb::lerp(dark_grass, cold_grass, marble_mixed.powf(1.5));
let rainforest = Rgb::lerp(wet_grass, warm_grass, marble_mixed.powf(1.5));
let sand = Rgb::lerp(beach_sand, desert_sand, marble_mixed);
let tropical = Rgb::lerp(
Rgb::lerp(
grass,
grass_high,
marble_small
.sub(0.5)
.mul(0.2)
.add(0.75.mul(1.0.sub(humidity)))
.powf(0.667),
),
tropical_high,
marble_mixed.powf(1.5).sub(0.5).mul(4.0),
);
// For below desert humidity, we are always sand or rock, depending on altitude
// and temperature.
let ground = Lerp::lerp(
Lerp::lerp(
dead_tundra,
sand,
temp.sub(CONFIG.snow_temp)
.div(CONFIG.desert_temp.sub(CONFIG.snow_temp))
.mul(0.5),
),
dirt,
humidity
.sub(CONFIG.desert_hum)
.div(CONFIG.forest_hum.sub(CONFIG.desert_hum))
.mul(1.0),
);
let sub_surface_color = Lerp::lerp(cliff, ground, alt.sub(basement).mul(0.25));
// From desert to forest humidity, we go from tundra to dirt to grass to moss to
// sand, depending on temperature.
let ground = Rgb::lerp(
ground,
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
tundra,
// snow_temp to temperate_temp
dirt,
temp.sub(CONFIG.snow_temp)
.div(CONFIG.temperate_temp.sub(CONFIG.snow_temp))
/*.sub((marble - 0.5) * 0.05)
.mul(256.0)*/
.mul(1.0),
),
// temperate_temp to tropical_temp
grass,
temp.sub(CONFIG.temperate_temp)
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
.mul(4.0),
),
// tropical_temp to desert_temp
moss,
temp.sub(CONFIG.tropical_temp)
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
.mul(1.0),
),
// above desert_temp
sand,
temp.sub(CONFIG.desert_temp)
.div(1.0 - CONFIG.desert_temp)
.mul(4.0),
),
humidity
.sub(CONFIG.desert_hum)
.div(CONFIG.forest_hum.sub(CONFIG.desert_hum))
.mul(1.25),
);
// From forest to jungle humidity, we go from snow to dark grass to grass to
// tropics to sand depending on temperature.
let ground = Rgb::lerp(
ground,
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
snow_moss,
// temperate_temp to tropical_temp
grass,
temp.sub(CONFIG.temperate_temp)
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
.mul(4.0),
),
// tropical_temp to desert_temp
tropical,
temp.sub(CONFIG.tropical_temp)
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
.mul(1.0),
),
// above desert_temp
sand,
temp.sub(CONFIG.desert_temp)
.div(1.0 - CONFIG.desert_temp)
.mul(4.0),
),
humidity
.sub(CONFIG.forest_hum)
.div(CONFIG.jungle_hum.sub(CONFIG.forest_hum))
.mul(1.0),
);
// From jungle humidity upwards, we go from snow to grass to rainforest to
// tropics to sand.
let ground = Rgb::lerp(
ground,
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
snow_moss,
// temperate_temp to tropical_temp
rainforest,
temp.sub(CONFIG.temperate_temp)
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
.mul(4.0),
),
// tropical_temp to desert_temp
tropical,
temp.sub(CONFIG.tropical_temp)
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
.mul(4.0),
),
// above desert_temp
sand,
temp.sub(CONFIG.desert_temp)
.div(1.0 - CONFIG.desert_temp)
.mul(4.0),
),
humidity.sub(CONFIG.jungle_hum).mul(1.0),
);
// Snow covering
let snow_cover = temp
.sub(CONFIG.snow_temp)
.max(-humidity.sub(CONFIG.desert_hum))
.mul(4.0)
.add(((marble - 0.5) / 0.5) * 0.5)
.add(((marble_mid - 0.5) / 0.5) * 0.25)
.add(((marble_small - 0.5) / 0.5) * 0.175);
let (alt, ground, sub_surface_color, snow_cover) = if snow_cover <= 0.0 && alt > water_level
{
// Allow snow cover.
(
alt + 1.0 - snow_cover.max(0.0),
Rgb::lerp(snow, ground, snow_cover),
Lerp::lerp(sub_surface_color, ground, alt.sub(basement).mul(0.15)),
true,
)
} else {
(alt, ground, sub_surface_color, false)
};
// Make river banks not have grass
let ground = water_dist
.map(|wd| Lerp::lerp(sub_surface_color, ground, (wd / 3.0).clamped(0.0, 1.0)))
.unwrap_or(ground);
// Ground under thick trees should be receive less sunlight and so often become
// dirt
let ground = Lerp::lerp(ground, sub_surface_color, marble_mid * tree_density);
let near_ocean = max_river.and_then(|(_, _, river_data, _)| {
if (river_data.is_lake() || river_data.river_kind == Some(RiverKind::Ocean))
&& alt <= water_level.max(CONFIG.sea_level + 5.0)
{
Some(water_level)
} else {
None
}
});
let ocean_level = if let Some(_sea_level) = near_ocean {
alt - CONFIG.sea_level
} else {
5.0
};
let gradient = sim.get_gradient_approx(chunk_pos);
let path = sim.get_nearest_path(wpos);
let cave = sim.get_nearest_cave(wpos);
Some(ColumnSample {
alt,
riverless_alt,
basement,
chaos,
water_level,
warp_factor,
surface_color: Rgb::lerp(
sub_surface_color,
Rgb::lerp(
Rgb::lerp(cliff, sand, alt.sub(basement).mul(0.25)),
// Land
ground,
// Beach
((ocean_level - 1.0) / 2.0).max(0.0),
),
surface_veg,
),
sub_surface_color,
// No growing directly on bedrock.
// And, no growing on sites that don't want them TODO: More precise than this when we
// apply trees as a post-processing layer
tree_density: if sim_chunk
.sites
.iter()
.all(|site| index.sites[*site].spawn_rules(wpos).trees)
{
Lerp::lerp(0.0, tree_density, alt.sub(2.0).sub(basement).mul(0.5))
} else {
0.0
},
forest_kind: sim_chunk.forest_kind,
marble,
marble_small,
rock,
temp,
humidity,
spawn_rate,
stone_col,
water_dist,
gradient,
path,
cave,
snow_cover,
cliff_offset,
cliff_height,
chunk: sim_chunk,
})
}
}
#[derive(Clone)]
pub struct ColumnSample<'a> {
pub alt: f32,
pub riverless_alt: f32,
pub basement: f32,
pub chaos: f32,
pub water_level: f32,
pub warp_factor: f32,
pub surface_color: Rgb<f32>,
pub sub_surface_color: Rgb<f32>,
pub tree_density: f32,
pub forest_kind: ForestKind,
pub marble: f32,
pub marble_small: f32,
pub rock: f32,
pub temp: f32,
pub humidity: f32,
pub spawn_rate: f32,
pub stone_col: Rgb<u8>,
pub water_dist: Option<f32>,
pub gradient: Option<f32>,
pub path: Option<(f32, Vec2<f32>, Path, Vec2<f32>)>,
pub cave: Option<(f32, Vec2<f32>, Cave, Vec2<f32>)>,
pub snow_cover: bool,
pub cliff_offset: f32,
pub cliff_height: f32,
pub chunk: &'a SimChunk,
}