mirror of
https://gitlab.com/veloren/veloren.git
synced 2024-08-30 18:12:32 +00:00
1115 lines
49 KiB
Rust
1115 lines
49 KiB
Rust
use crate::{
|
|
all::ForestKind,
|
|
sim::{local_cells, Cave, Path, RiverKind, SimChunk, WorldSim},
|
|
util::Sampler,
|
|
IndexRef, CONFIG,
|
|
};
|
|
use common::{
|
|
terrain::{
|
|
quadratic_nearest_point, river_spline_coeffs, uniform_idx_as_vec2, vec2_as_uniform_idx,
|
|
TerrainChunkSize,
|
|
},
|
|
vol::RectVolSize,
|
|
};
|
|
use noise::NoiseFn;
|
|
use serde::Deserialize;
|
|
use std::{
|
|
cmp::Reverse,
|
|
f32, f64,
|
|
ops::{Add, Div, Mul, Sub},
|
|
};
|
|
use tracing::error;
|
|
use vek::*;
|
|
|
|
pub struct ColumnGen<'a> {
|
|
pub sim: &'a WorldSim,
|
|
}
|
|
|
|
#[derive(Deserialize)]
|
|
pub struct Colors {
|
|
pub cold_grass: (f32, f32, f32),
|
|
pub warm_grass: (f32, f32, f32),
|
|
pub dark_grass: (f32, f32, f32),
|
|
pub wet_grass: (f32, f32, f32),
|
|
pub cold_stone: (f32, f32, f32),
|
|
pub hot_stone: (f32, f32, f32),
|
|
pub warm_stone: (f32, f32, f32),
|
|
pub beach_sand: (f32, f32, f32),
|
|
pub desert_sand: (f32, f32, f32),
|
|
pub snow: (f32, f32, f32),
|
|
pub snow_moss: (f32, f32, f32),
|
|
|
|
pub stone_col: (u8, u8, u8),
|
|
|
|
pub dirt_low: (f32, f32, f32),
|
|
pub dirt_high: (f32, f32, f32),
|
|
|
|
pub snow_high: (f32, f32, f32),
|
|
pub warm_stone_high: (f32, f32, f32),
|
|
|
|
pub grass_high: (f32, f32, f32),
|
|
pub tropical_high: (f32, f32, f32),
|
|
}
|
|
|
|
impl<'a> ColumnGen<'a> {
|
|
pub fn new(sim: &'a WorldSim) -> Self { Self { sim } }
|
|
}
|
|
|
|
impl<'a> Sampler<'a> for ColumnGen<'a> {
|
|
type Index = (Vec2<i32>, IndexRef<'a>);
|
|
type Sample = Option<ColumnSample<'a>>;
|
|
|
|
#[allow(clippy::float_cmp)] // TODO: Pending review in #587
|
|
#[allow(clippy::if_same_then_else)] // TODO: Pending review in #587
|
|
#[allow(clippy::nonminimal_bool)] // TODO: Pending review in #587
|
|
#[allow(clippy::single_match)] // TODO: Pending review in #587
|
|
fn get(&self, (wpos, index): Self::Index) -> Option<ColumnSample<'a>> {
|
|
let wposf = wpos.map(|e| e as f64);
|
|
let chunk_pos = wpos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32);
|
|
|
|
let sim = &self.sim;
|
|
|
|
// let turb = Vec2::new(
|
|
// sim.gen_ctx.turb_x_nz.get((wposf.div(48.0)).into_array()) as f32,
|
|
// sim.gen_ctx.turb_y_nz.get((wposf.div(48.0)).into_array()) as f32,
|
|
// ) * 12.0;
|
|
let wposf_turb = wposf; // + turb.map(|e| e as f64);
|
|
|
|
let chaos = sim.get_interpolated(wpos, |chunk| chunk.chaos)?;
|
|
let temp = sim.get_interpolated(wpos, |chunk| chunk.temp)?;
|
|
let humidity = sim.get_interpolated(wpos, |chunk| chunk.humidity)?;
|
|
let rockiness = sim.get_interpolated(wpos, |chunk| chunk.rockiness)?;
|
|
let tree_density = sim.get_interpolated(wpos, |chunk| chunk.tree_density)?;
|
|
let spawn_rate = sim.get_interpolated(wpos, |chunk| chunk.spawn_rate)?;
|
|
let near_water =
|
|
sim.get_interpolated(
|
|
wpos,
|
|
|chunk| if chunk.river.near_water() { 1.0 } else { 0.0 },
|
|
)?;
|
|
let alt = sim.get_interpolated_monotone(wpos, |chunk| chunk.alt)?;
|
|
let surface_veg = sim.get_interpolated_monotone(wpos, |chunk| chunk.surface_veg)?;
|
|
let sim_chunk = sim.get(chunk_pos)?;
|
|
let neighbor_coef = TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
|
let my_chunk_idx = vec2_as_uniform_idx(self.sim.map_size_lg(), chunk_pos);
|
|
let neighbor_river_data =
|
|
local_cells(self.sim.map_size_lg(), my_chunk_idx).filter_map(|neighbor_idx: usize| {
|
|
let neighbor_pos = uniform_idx_as_vec2(self.sim.map_size_lg(), neighbor_idx);
|
|
let neighbor_chunk = sim.get(neighbor_pos)?;
|
|
Some((neighbor_pos, neighbor_chunk, &neighbor_chunk.river))
|
|
});
|
|
|
|
let lake_width = (TerrainChunkSize::RECT_SIZE.x as f64 * (2.0f64.sqrt())) + 12.0;
|
|
let neighbor_river_data = neighbor_river_data.map(|(posj, chunkj, river)| {
|
|
let kind = match river.river_kind {
|
|
Some(kind) => kind,
|
|
None => {
|
|
return (posj, chunkj, river, None);
|
|
},
|
|
};
|
|
let downhill_pos = if let Some(pos) = chunkj.downhill {
|
|
pos
|
|
} else {
|
|
match kind {
|
|
RiverKind::River { .. } => {
|
|
error!(?river, ?posj, "What?");
|
|
panic!("How can a river have no downhill?");
|
|
},
|
|
RiverKind::Lake { .. } => {
|
|
return (posj, chunkj, river, None);
|
|
},
|
|
RiverKind::Ocean => posj,
|
|
}
|
|
};
|
|
let downhill_wpos = downhill_pos.map(|e| e as f64);
|
|
let downhill_pos =
|
|
downhill_pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32);
|
|
let neighbor_pos = posj.map(|e| e as f64) * neighbor_coef;
|
|
let direction = neighbor_pos - downhill_wpos;
|
|
let river_width_min = if let RiverKind::River { cross_section } = kind {
|
|
cross_section.x as f64
|
|
} else {
|
|
lake_width
|
|
};
|
|
let downhill_chunk = sim.get(downhill_pos).expect("How can this not work?");
|
|
let coeffs =
|
|
river_spline_coeffs(neighbor_pos, chunkj.river.spline_derivative, downhill_wpos);
|
|
let (direction, coeffs, downhill_chunk, river_t, river_pos, river_dist) = match kind {
|
|
RiverKind::River { .. } => {
|
|
if let Some((t, pt, dist)) = quadratic_nearest_point(&coeffs, wposf) {
|
|
(direction, coeffs, downhill_chunk, t, pt, dist.sqrt())
|
|
} else {
|
|
let ndist = wposf.distance_squared(neighbor_pos);
|
|
let ddist = wposf.distance_squared(downhill_wpos);
|
|
let (closest_pos, closest_dist, closest_t) = if ndist <= ddist {
|
|
(neighbor_pos, ndist, 0.0)
|
|
} else {
|
|
(downhill_wpos, ddist, 1.0)
|
|
};
|
|
(
|
|
direction,
|
|
coeffs,
|
|
downhill_chunk,
|
|
closest_t,
|
|
closest_pos,
|
|
closest_dist.sqrt(),
|
|
)
|
|
}
|
|
},
|
|
RiverKind::Lake { neighbor_pass_pos } => {
|
|
let pass_dist = neighbor_pass_pos
|
|
.map2(
|
|
neighbor_pos
|
|
.map2(TerrainChunkSize::RECT_SIZE, |f, g| (f as i32, g as i32)),
|
|
|e, (f, g)| ((e - f) / g).abs(),
|
|
)
|
|
.reduce_partial_max();
|
|
let spline_derivative = river.spline_derivative;
|
|
let neighbor_pass_pos = if pass_dist <= 1 {
|
|
neighbor_pass_pos
|
|
} else {
|
|
downhill_wpos.map(|e| e as i32)
|
|
};
|
|
let pass_dist = neighbor_pass_pos
|
|
.map2(
|
|
neighbor_pos
|
|
.map2(TerrainChunkSize::RECT_SIZE, |f, g| (f as i32, g as i32)),
|
|
|e, (f, g)| ((e - f) / g).abs(),
|
|
)
|
|
.reduce_partial_max();
|
|
if pass_dist > 1 {
|
|
return (posj, chunkj, river, None);
|
|
}
|
|
let neighbor_pass_wpos = neighbor_pass_pos.map(|e| e as f64);
|
|
let neighbor_pass_pos = neighbor_pass_pos
|
|
.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32);
|
|
let coeffs =
|
|
river_spline_coeffs(neighbor_pos, spline_derivative, neighbor_pass_wpos);
|
|
let direction = neighbor_pos - neighbor_pass_wpos;
|
|
if let Some((t, pt, dist)) = quadratic_nearest_point(&coeffs, wposf) {
|
|
(
|
|
direction,
|
|
coeffs,
|
|
sim.get(neighbor_pass_pos).expect("Must already work"),
|
|
t,
|
|
pt,
|
|
dist.sqrt(),
|
|
)
|
|
} else {
|
|
let ndist = wposf.distance_squared(neighbor_pos);
|
|
/* let ddist = wposf.distance_squared(neighbor_pass_wpos); */
|
|
let (closest_pos, closest_dist, closest_t) = /*if ndist <= ddist */ {
|
|
(neighbor_pos, ndist, 0.0)
|
|
} /* else {
|
|
(neighbor_pass_wpos, ddist, 1.0)
|
|
} */;
|
|
(
|
|
direction,
|
|
coeffs,
|
|
sim.get(neighbor_pass_pos).expect("Must already work"),
|
|
closest_t,
|
|
closest_pos,
|
|
closest_dist.sqrt(),
|
|
)
|
|
}
|
|
},
|
|
RiverKind::Ocean => {
|
|
let ndist = wposf.distance_squared(neighbor_pos);
|
|
let (closest_pos, closest_dist, closest_t) = (neighbor_pos, ndist, 0.0);
|
|
(
|
|
direction,
|
|
coeffs,
|
|
sim.get(closest_pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
|
|
e as i32 / sz as i32
|
|
}))
|
|
.expect("Must already work"),
|
|
closest_t,
|
|
closest_pos,
|
|
closest_dist.sqrt(),
|
|
)
|
|
},
|
|
};
|
|
let river_width_max =
|
|
if let Some(RiverKind::River { cross_section }) = downhill_chunk.river.river_kind {
|
|
cross_section.x as f64
|
|
} else {
|
|
lake_width
|
|
};
|
|
let river_width_noise = (sim.gen_ctx.small_nz.get((river_pos.div(16.0)).into_array()))
|
|
.max(-1.0)
|
|
.min(1.0)
|
|
.mul(0.5)
|
|
.sub(0.5) as f64;
|
|
let river_width = Lerp::lerp(
|
|
river_width_min,
|
|
river_width_max,
|
|
river_t.max(0.0).min(1.0).sqrt(),
|
|
);
|
|
|
|
let river_width = river_width * (1.0 + river_width_noise * 0.3);
|
|
// To find the distance, we just evaluate the quadratic equation at river_t and
|
|
// see if it's within width (but we should be able to use it for a
|
|
// lot more, and this probably isn't the very best approach anyway
|
|
// since it will bleed out). let river_pos = coeffs.x * river_t *
|
|
// river_t + coeffs.y * river_t + coeffs.z;
|
|
let res = Vec2::new(0.0, (river_dist - (river_width * 0.5).max(1.0)).max(0.0));
|
|
(
|
|
posj,
|
|
chunkj,
|
|
river,
|
|
Some((
|
|
direction,
|
|
res,
|
|
river_width,
|
|
(river_t, (river_pos, coeffs), downhill_chunk),
|
|
)),
|
|
)
|
|
});
|
|
|
|
// Cliffs
|
|
let cliff_factor = (alt
|
|
+ self.sim.gen_ctx.hill_nz.get(wposf.div(64.0).into_array()) as f32 * 8.0
|
|
+ self.sim.gen_ctx.hill_nz.get(wposf.div(350.0).into_array()) as f32 * 128.0)
|
|
.rem_euclid(200.0)
|
|
/ 64.0
|
|
- 1.0;
|
|
let cliff_scale =
|
|
((self.sim.gen_ctx.hill_nz.get(wposf.div(128.0).into_array()) as f32 * 1.5 + 0.75)
|
|
+ self.sim.gen_ctx.hill_nz.get(wposf.div(48.0).into_array()) as f32 * 0.1)
|
|
.clamped(0.0, 1.0)
|
|
.powf(2.0);
|
|
let cliff_height = sim.get_interpolated(wpos, |chunk| chunk.cliff_height)? * cliff_scale;
|
|
let cliff = if cliff_factor < 0.0 {
|
|
cliff_factor.abs().powf(1.5)
|
|
} else {
|
|
0.0
|
|
} * (1.0 - near_water * 3.0).max(0.0).powi(2);
|
|
let cliff_offset = cliff * cliff_height;
|
|
let alt = alt + (cliff - 0.5) * cliff_height;
|
|
|
|
// Find the average distance to each neighboring body of water.
|
|
let mut river_count = 0.0f64;
|
|
let mut overlap_count = 0.0f64;
|
|
let mut river_distance_product = 1.0f64;
|
|
let mut river_overlap_distance_product = 0.0f64;
|
|
let mut max_river = None;
|
|
let mut max_key = None;
|
|
// IDEA:
|
|
// For every "nearby" chunk, check whether it is a river. If so, find the
|
|
// closest point on the river segment to wposf (if two point are
|
|
// equidistant, choose the earlier one), calling this point river_pos
|
|
// and the length (from 0 to 1) along the river segment for the nearby
|
|
// chunk river_t. Let river_dist be the distance from river_pos to wposf.
|
|
//
|
|
// Let river_alt be the interpolated river height at this point
|
|
// (from the alt/water altitude at the river, to the alt/water_altitude of the
|
|
// downhill river, increasing with river_t).
|
|
//
|
|
// Now, if river_dist is <= river_width * 0.5, then we don't care what altitude
|
|
// we use, and mark that we are on a river (we decide what river to use
|
|
// using a heuristic, and set the solely according to the computed
|
|
// river_alt for that point).
|
|
//
|
|
// Otherwise, we let dist = river_dist - river_width * 0.5.
|
|
//
|
|
// If dist >= TerrainChunkSize::RECT_SIZE.x, we don't include this river in the
|
|
// calculation of the correct altitude for this point.
|
|
//
|
|
// Otherwise (i.e. dist < TerrainChunkSize::RECT_SIZE.x), we want to bias the
|
|
// altitude of this point towards the altitude of the river.
|
|
// Specifically, as the dist goes from TerrainChunkSize::RECT_SIZE.x to
|
|
// 0, the weighted altitude of this point should go from
|
|
// alt to river_alt.
|
|
neighbor_river_data.for_each(|(river_chunk_idx, river_chunk, river, dist)| {
|
|
match river.river_kind {
|
|
Some(kind) => {
|
|
if kind.is_river() && !dist.is_some() {
|
|
// Ostensibly near a river segment, but not "usefully" so (there is no
|
|
// closest point between t = 0.0 and t = 1.0).
|
|
return;
|
|
} else {
|
|
let river_dist = dist.map(|(_, dist, _, (river_t, _, downhill_river))| {
|
|
let downhill_height = if kind.is_river() {
|
|
Lerp::lerp(
|
|
river_chunk.alt.max(river_chunk.water_alt),
|
|
downhill_river.alt.max(downhill_river.water_alt),
|
|
river_t as f32,
|
|
) as f64
|
|
} else {
|
|
let neighbor_pos =
|
|
river_chunk_idx.map(|e| e as f64) * neighbor_coef;
|
|
if dist.y == 0.0 {
|
|
-(wposf - neighbor_pos).magnitude()
|
|
} else {
|
|
-(wposf - neighbor_pos).magnitude()
|
|
}
|
|
};
|
|
(Reverse((dist.x, dist.y)), downhill_height)
|
|
});
|
|
let river_dist = river_dist.or_else(|| {
|
|
if !kind.is_river() {
|
|
let neighbor_pos =
|
|
river_chunk_idx.map(|e| e as f64) * neighbor_coef;
|
|
let dist = (wposf - neighbor_pos).magnitude();
|
|
let dist_upon =
|
|
(dist - TerrainChunkSize::RECT_SIZE.x as f64 * 0.5).max(0.0);
|
|
let dist_ = if dist == 0.0 { f64::INFINITY } else { -dist };
|
|
Some((Reverse((0.0, dist_upon)), dist_))
|
|
} else {
|
|
None
|
|
}
|
|
});
|
|
let river_key = (river_dist, Reverse(kind));
|
|
if max_key < Some(river_key) {
|
|
max_river = Some((river_chunk_idx, river_chunk, river, dist));
|
|
max_key = Some(river_key);
|
|
}
|
|
}
|
|
|
|
// NOTE: we scale by the distance to the river divided by the difference
|
|
// between the edge of the river that we intersect, and the remaining distance
|
|
// until the nearest point in "this" chunk (i.e. the one whose top-left corner
|
|
// is chunk_pos) that is at least 2 chunks away from the river source.
|
|
if let Some((_, dist, _, (river_t, _, downhill_river_chunk))) = dist {
|
|
let max_distance = if !river.is_river() {
|
|
/*(*/
|
|
TerrainChunkSize::RECT_SIZE.x as f64 /* * (1.0 - (2.0f64.sqrt() / 2.0))) + 4.0*/ - lake_width * 0.5
|
|
} else {
|
|
TerrainChunkSize::RECT_SIZE.x as f64
|
|
};
|
|
let scale_factor = max_distance;
|
|
let river_dist = dist.y;
|
|
|
|
if !(dist.x == 0.0 && river_dist < scale_factor) {
|
|
return;
|
|
}
|
|
// We basically want to project outwards from river_pos, along the current
|
|
// tangent line, to chunks <= river_width * 1.0 away from this
|
|
// point. We *don't* want to deal with closer chunks because they
|
|
|
|
// NOTE: river_width <= 2 * max terrain chunk size width, so this should not
|
|
// lead to division by zero.
|
|
// NOTE: If distance = 0.0 this goes to zero, which is desired since it
|
|
// means points that actually intersect with rivers will not be interpolated
|
|
// with the "normal" height of this point.
|
|
// NOTE: We keep the maximum at 1.0 so we don't undo work from another river
|
|
// just by being far away.
|
|
let river_scale = river_dist / scale_factor;
|
|
let river_alt =
|
|
Lerp::lerp(river_chunk.alt, downhill_river_chunk.alt, river_t as f32);
|
|
let river_alt = Lerp::lerp(river_alt, alt, river_scale as f32);
|
|
let river_alt_diff = river_alt - alt;
|
|
let river_alt_inv = river_alt_diff as f64;
|
|
river_overlap_distance_product += (1.0 - river_scale) * river_alt_inv;
|
|
overlap_count += 1.0 - river_scale;
|
|
river_count += 1.0;
|
|
river_distance_product *= river_scale;
|
|
}
|
|
}
|
|
None => {}
|
|
}
|
|
});
|
|
|
|
let river_scale_factor = if river_count == 0.0 {
|
|
1.0
|
|
} else {
|
|
let river_scale_factor = river_distance_product;
|
|
if river_scale_factor == 0.0 {
|
|
0.0
|
|
} else {
|
|
river_scale_factor.powf(if river_count == 0.0 {
|
|
1.0
|
|
} else {
|
|
1.0 / river_count
|
|
})
|
|
}
|
|
};
|
|
|
|
let alt_for_river = alt
|
|
+ if overlap_count == 0.0 {
|
|
0.0
|
|
} else {
|
|
river_overlap_distance_product / overlap_count
|
|
} as f32;
|
|
|
|
let riverless_alt_delta = (sim.gen_ctx.small_nz.get(
|
|
(wposf_turb.div(200.0 * (32.0 / TerrainChunkSize::RECT_SIZE.x as f64))).into_array(),
|
|
) as f32)
|
|
.min(1.0)
|
|
.max(-1.0)
|
|
.abs()
|
|
.mul(3.0)
|
|
+ (sim.gen_ctx.small_nz.get(
|
|
(wposf_turb.div(400.0 * (32.0 / TerrainChunkSize::RECT_SIZE.x as f64)))
|
|
.into_array(),
|
|
) as f32)
|
|
.min(1.0)
|
|
.max(-1.0)
|
|
.abs()
|
|
.mul(3.0);
|
|
|
|
let downhill = sim_chunk.downhill;
|
|
let downhill_pos = downhill.and_then(|downhill_pos| sim.get(downhill_pos));
|
|
debug_assert!(sim_chunk.water_alt >= CONFIG.sea_level);
|
|
|
|
let downhill_water_alt = downhill_pos
|
|
.map(|downhill_chunk| {
|
|
downhill_chunk
|
|
.water_alt
|
|
.min(sim_chunk.water_alt)
|
|
.max(sim_chunk.alt.min(sim_chunk.water_alt))
|
|
})
|
|
.unwrap_or(CONFIG.sea_level);
|
|
|
|
let river_gouge = 0.5;
|
|
let (_in_water, water_dist, alt_, water_level, _riverless_alt, warp_factor) = if let Some(
|
|
(max_border_river_pos, river_chunk, max_border_river, max_border_river_dist),
|
|
) =
|
|
max_river
|
|
{
|
|
// This is flowing into a lake, or a lake, or is at least a non-ocean tile.
|
|
//
|
|
// If we are <= water_alt, we are in the lake; otherwise, we are flowing into
|
|
// it.
|
|
let (in_water, water_dist, new_alt, new_water_alt, riverless_alt, warp_factor) =
|
|
max_border_river
|
|
.river_kind
|
|
.and_then(|river_kind| {
|
|
match river_kind {
|
|
RiverKind::River { cross_section } => {
|
|
if max_border_river_dist.map(|(_, dist, _, _)| dist)
|
|
!= Some(Vec2::zero())
|
|
{
|
|
return None;
|
|
}
|
|
let (
|
|
_,
|
|
_,
|
|
river_width,
|
|
(river_t, (river_pos, _), downhill_river_chunk),
|
|
) = max_border_river_dist.unwrap();
|
|
let river_alt = Lerp::lerp(
|
|
river_chunk.alt.max(river_chunk.water_alt),
|
|
downhill_river_chunk.alt.max(downhill_river_chunk.water_alt),
|
|
river_t as f32,
|
|
);
|
|
let new_alt = river_alt - river_gouge;
|
|
let river_dist = wposf.distance(river_pos);
|
|
let river_height_factor = river_dist / (river_width * 0.5);
|
|
|
|
let valley_alt = Lerp::lerp(
|
|
new_alt - cross_section.y.max(1.0),
|
|
new_alt - 1.0,
|
|
(river_height_factor * river_height_factor) as f32,
|
|
);
|
|
|
|
Some((
|
|
true,
|
|
Some((river_dist - river_width * 0.5) as f32),
|
|
valley_alt,
|
|
new_alt,
|
|
alt, //river_alt + cross_section.y.max(1.0),
|
|
0.0,
|
|
))
|
|
},
|
|
_ => None,
|
|
}
|
|
})
|
|
.unwrap_or_else(|| {
|
|
max_border_river
|
|
.river_kind
|
|
.map(|river_kind| {
|
|
match river_kind {
|
|
RiverKind::Ocean => {
|
|
let (
|
|
_,
|
|
dist,
|
|
river_width,
|
|
(river_t, (river_pos, _), downhill_river_chunk),
|
|
) = if let Some(dist) = max_border_river_dist {
|
|
dist
|
|
} else {
|
|
error!(
|
|
?max_border_river,
|
|
?chunk_pos,
|
|
?max_border_river_pos,
|
|
"downhill error details"
|
|
);
|
|
panic!(
|
|
"Oceans should definitely have a downhill! \
|
|
...Right?"
|
|
);
|
|
};
|
|
let lake_water_alt = Lerp::lerp(
|
|
river_chunk.alt.max(river_chunk.water_alt),
|
|
downhill_river_chunk
|
|
.alt
|
|
.max(downhill_river_chunk.water_alt),
|
|
river_t as f32,
|
|
);
|
|
|
|
if dist == Vec2::zero() {
|
|
let river_dist = wposf.distance(river_pos);
|
|
let _river_height_factor =
|
|
river_dist / (river_width * 0.5);
|
|
return (
|
|
true,
|
|
Some((river_dist - river_width * 0.5) as f32),
|
|
alt_for_river
|
|
.min(lake_water_alt - 1.0 - river_gouge),
|
|
lake_water_alt - river_gouge,
|
|
alt_for_river.max(lake_water_alt),
|
|
0.0,
|
|
);
|
|
}
|
|
|
|
(
|
|
river_scale_factor <= 1.0,
|
|
Some(
|
|
(wposf.distance(river_pos) - river_width * 0.5)
|
|
as f32,
|
|
),
|
|
alt_for_river,
|
|
downhill_water_alt,
|
|
alt_for_river,
|
|
river_scale_factor as f32,
|
|
)
|
|
},
|
|
RiverKind::Lake { .. } => {
|
|
let lake_dist = (max_border_river_pos.map(|e| e as f64)
|
|
* neighbor_coef)
|
|
.distance(wposf);
|
|
let downhill_river_chunk = max_border_river_pos;
|
|
let lake_id_dist = downhill_river_chunk - chunk_pos;
|
|
let in_bounds = lake_id_dist.x >= -1
|
|
&& lake_id_dist.y >= -1
|
|
&& lake_id_dist.x <= 1
|
|
&& lake_id_dist.y <= 1;
|
|
let in_bounds = in_bounds
|
|
&& (lake_id_dist.x >= 0 && lake_id_dist.y >= 0);
|
|
let (_, dist, _, (river_t, _, downhill_river_chunk)) =
|
|
if let Some(dist) = max_border_river_dist {
|
|
dist
|
|
} else if lake_dist
|
|
<= TerrainChunkSize::RECT_SIZE.x as f64 * 1.0
|
|
|| in_bounds
|
|
{
|
|
let gouge_factor = 0.0;
|
|
return (
|
|
in_bounds
|
|
|| downhill_water_alt
|
|
.max(river_chunk.water_alt)
|
|
> alt_for_river,
|
|
Some(lake_dist as f32),
|
|
alt_for_river,
|
|
(downhill_water_alt.max(river_chunk.water_alt)
|
|
- river_gouge),
|
|
alt_for_river,
|
|
river_scale_factor as f32
|
|
* (1.0 - gouge_factor),
|
|
);
|
|
} else {
|
|
return (
|
|
false,
|
|
Some(lake_dist as f32),
|
|
alt_for_river,
|
|
downhill_water_alt,
|
|
alt_for_river,
|
|
river_scale_factor as f32,
|
|
);
|
|
};
|
|
|
|
let lake_dist = dist.y;
|
|
let lake_water_alt = Lerp::lerp(
|
|
river_chunk.alt.max(river_chunk.water_alt),
|
|
downhill_river_chunk
|
|
.alt
|
|
.max(downhill_river_chunk.water_alt),
|
|
river_t as f32,
|
|
);
|
|
if dist == Vec2::zero() {
|
|
return (
|
|
true,
|
|
Some(lake_dist as f32),
|
|
alt_for_river
|
|
.min(lake_water_alt - 1.0 - river_gouge),
|
|
lake_water_alt - river_gouge,
|
|
alt_for_river.max(lake_water_alt),
|
|
0.0,
|
|
);
|
|
}
|
|
if lake_dist <= TerrainChunkSize::RECT_SIZE.x as f64 * 1.0
|
|
|| in_bounds
|
|
{
|
|
let gouge_factor = if in_bounds && lake_dist <= 1.0 {
|
|
1.0
|
|
} else {
|
|
0.0
|
|
};
|
|
let in_bounds_ = lake_dist
|
|
<= TerrainChunkSize::RECT_SIZE.x as f64 * 0.5;
|
|
if gouge_factor == 1.0 {
|
|
return (
|
|
true,
|
|
Some(lake_dist as f32),
|
|
alt.min(lake_water_alt - 1.0 - river_gouge),
|
|
downhill_water_alt.max(lake_water_alt)
|
|
- river_gouge,
|
|
alt.max(lake_water_alt),
|
|
0.0,
|
|
);
|
|
} else {
|
|
return (
|
|
true,
|
|
Some(lake_dist as f32),
|
|
alt_for_river,
|
|
if in_bounds_ {
|
|
downhill_water_alt.max(lake_water_alt)
|
|
} else {
|
|
downhill_water_alt
|
|
} - river_gouge,
|
|
alt_for_river,
|
|
river_scale_factor as f32
|
|
* (1.0 - gouge_factor),
|
|
);
|
|
}
|
|
}
|
|
(
|
|
river_scale_factor <= 1.0,
|
|
Some(lake_dist as f32),
|
|
alt_for_river,
|
|
downhill_water_alt,
|
|
alt_for_river,
|
|
river_scale_factor as f32,
|
|
)
|
|
},
|
|
RiverKind::River { .. } => {
|
|
let (_, _, river_width, (_, (river_pos, _), _)) =
|
|
max_border_river_dist.unwrap();
|
|
let river_dist = wposf.distance(river_pos);
|
|
|
|
// FIXME: Make water altitude accurate.
|
|
(
|
|
river_scale_factor <= 1.0,
|
|
Some((river_dist - river_width * 0.5) as f32),
|
|
alt_for_river,
|
|
downhill_water_alt,
|
|
alt, //alt_for_river,
|
|
river_scale_factor as f32,
|
|
)
|
|
},
|
|
}
|
|
})
|
|
.unwrap_or((
|
|
false,
|
|
None,
|
|
alt_for_river,
|
|
downhill_water_alt,
|
|
alt, //alt_for_river,
|
|
river_scale_factor as f32,
|
|
))
|
|
});
|
|
(
|
|
in_water,
|
|
water_dist,
|
|
new_alt,
|
|
new_water_alt,
|
|
riverless_alt,
|
|
warp_factor,
|
|
)
|
|
} else {
|
|
(
|
|
false,
|
|
None,
|
|
alt_for_river,
|
|
downhill_water_alt,
|
|
alt, //alt_for_river,
|
|
1.0,
|
|
)
|
|
};
|
|
// NOTE: To disable warp, uncomment this line.
|
|
// let warp_factor = 0.0;
|
|
|
|
let riverless_alt_delta = Lerp::lerp(0.0, riverless_alt_delta, warp_factor);
|
|
let riverless_alt = alt + riverless_alt_delta; //riverless_alt + riverless_alt_delta;
|
|
let alt = alt_ + riverless_alt_delta;
|
|
let basement =
|
|
alt + sim.get_interpolated_monotone(wpos, |chunk| chunk.basement.sub(chunk.alt))?;
|
|
|
|
let rock = (sim.gen_ctx.small_nz.get(
|
|
Vec3::new(wposf.x, wposf.y, alt as f64)
|
|
.div(100.0)
|
|
.into_array(),
|
|
) as f32)
|
|
//.mul(water_dist.map(|wd| (wd / 2.0).clamped(0.0, 1.0).sqrt()).unwrap_or(1.0))
|
|
.mul(rockiness)
|
|
.sub(0.4)
|
|
.max(0.0)
|
|
.mul(8.0);
|
|
|
|
// Columns near water have a more stable temperature and so get pushed towards
|
|
// the average (0)
|
|
let temp = Lerp::lerp(
|
|
Lerp::lerp(temp, 0.0, 0.1),
|
|
temp,
|
|
water_dist
|
|
.map(|water_dist| water_dist / 20.0)
|
|
.unwrap_or(1.0)
|
|
.clamped(0.0, 1.0),
|
|
);
|
|
// Columns near water get a humidity boost
|
|
let humidity = Lerp::lerp(
|
|
Lerp::lerp(humidity, 1.0, 0.25),
|
|
humidity,
|
|
water_dist
|
|
.map(|water_dist| water_dist / 20.0)
|
|
.unwrap_or(1.0)
|
|
.clamped(0.0, 1.0),
|
|
);
|
|
|
|
let wposf3d = Vec3::new(wposf.x, wposf.y, alt as f64);
|
|
|
|
let marble_small = (sim.gen_ctx.hill_nz.get((wposf3d.div(3.0)).into_array()) as f32)
|
|
.powi(3)
|
|
.add(1.0)
|
|
.mul(0.5);
|
|
let marble_mid = (sim.gen_ctx.hill_nz.get((wposf3d.div(12.0)).into_array()) as f32)
|
|
.mul(0.75)
|
|
.add(1.0)
|
|
.mul(0.5);
|
|
//.add(marble_small.sub(0.5).mul(0.25));
|
|
let marble = (sim.gen_ctx.hill_nz.get((wposf3d.div(48.0)).into_array()) as f32)
|
|
.mul(0.75)
|
|
.add(1.0)
|
|
.mul(0.5);
|
|
let marble_mixed = marble
|
|
.add(marble_mid.sub(0.5).mul(0.5))
|
|
.add(marble_small.sub(0.5).mul(0.25));
|
|
|
|
// Colours
|
|
let Colors {
|
|
cold_grass,
|
|
warm_grass,
|
|
dark_grass,
|
|
wet_grass,
|
|
cold_stone,
|
|
hot_stone,
|
|
warm_stone,
|
|
beach_sand,
|
|
desert_sand,
|
|
snow,
|
|
snow_moss,
|
|
stone_col,
|
|
dirt_low,
|
|
dirt_high,
|
|
snow_high,
|
|
warm_stone_high,
|
|
grass_high,
|
|
tropical_high,
|
|
} = index.colors.column;
|
|
|
|
let cold_grass = cold_grass.into();
|
|
let warm_grass = warm_grass.into();
|
|
let dark_grass = dark_grass.into();
|
|
let wet_grass = wet_grass.into();
|
|
let cold_stone = cold_stone.into();
|
|
let hot_stone = hot_stone.into();
|
|
let warm_stone: Rgb<f32> = warm_stone.into();
|
|
let beach_sand = beach_sand.into();
|
|
let desert_sand = desert_sand.into();
|
|
let snow = snow.into();
|
|
let stone_col = stone_col.into();
|
|
let dirt_low: Rgb<f32> = dirt_low.into();
|
|
let dirt_high = dirt_high.into();
|
|
let snow_high = snow_high.into();
|
|
let warm_stone_high = warm_stone_high.into();
|
|
let grass_high = grass_high.into();
|
|
let tropical_high = tropical_high.into();
|
|
|
|
let dirt = Lerp::lerp(dirt_low, dirt_high, marble_mixed);
|
|
let tundra = Lerp::lerp(snow, snow_high, 0.4 + marble_mixed * 0.6);
|
|
let dead_tundra = Lerp::lerp(warm_stone, warm_stone_high, marble_mixed);
|
|
let cliff = Rgb::lerp(cold_stone, hot_stone, marble_mixed);
|
|
|
|
let grass = Rgb::lerp(
|
|
cold_grass,
|
|
warm_grass,
|
|
marble_mixed
|
|
.sub(0.5)
|
|
.add(1.0.sub(humidity).mul(0.5))
|
|
.powf(1.5),
|
|
);
|
|
let snow_moss = Rgb::lerp(
|
|
snow_moss.into(),
|
|
cold_grass,
|
|
0.4 + marble_mixed.powf(1.5) * 0.6,
|
|
);
|
|
let moss = Rgb::lerp(dark_grass, cold_grass, marble_mixed.powf(1.5));
|
|
let rainforest = Rgb::lerp(wet_grass, warm_grass, marble_mixed.powf(1.5));
|
|
let sand = Rgb::lerp(beach_sand, desert_sand, marble_mixed);
|
|
|
|
let tropical = Rgb::lerp(
|
|
Rgb::lerp(
|
|
grass,
|
|
grass_high,
|
|
marble_small
|
|
.sub(0.5)
|
|
.mul(0.2)
|
|
.add(0.75.mul(1.0.sub(humidity)))
|
|
.powf(0.667),
|
|
),
|
|
tropical_high,
|
|
marble_mixed.powf(1.5).sub(0.5).mul(4.0),
|
|
);
|
|
|
|
// For below desert humidity, we are always sand or rock, depending on altitude
|
|
// and temperature.
|
|
let ground = Lerp::lerp(
|
|
Lerp::lerp(
|
|
dead_tundra,
|
|
sand,
|
|
temp.sub(CONFIG.snow_temp)
|
|
.div(CONFIG.desert_temp.sub(CONFIG.snow_temp))
|
|
.mul(0.5),
|
|
),
|
|
dirt,
|
|
humidity
|
|
.sub(CONFIG.desert_hum)
|
|
.div(CONFIG.forest_hum.sub(CONFIG.desert_hum))
|
|
.mul(1.0),
|
|
);
|
|
|
|
let sub_surface_color = Lerp::lerp(cliff, ground, alt.sub(basement).mul(0.25));
|
|
|
|
// From desert to forest humidity, we go from tundra to dirt to grass to moss to
|
|
// sand, depending on temperature.
|
|
let ground = Rgb::lerp(
|
|
ground,
|
|
Rgb::lerp(
|
|
Rgb::lerp(
|
|
Rgb::lerp(
|
|
Rgb::lerp(
|
|
tundra,
|
|
// snow_temp to temperate_temp
|
|
dirt,
|
|
temp.sub(CONFIG.snow_temp)
|
|
.div(CONFIG.temperate_temp.sub(CONFIG.snow_temp))
|
|
/*.sub((marble - 0.5) * 0.05)
|
|
.mul(256.0)*/
|
|
.mul(1.0),
|
|
),
|
|
// temperate_temp to tropical_temp
|
|
grass,
|
|
temp.sub(CONFIG.temperate_temp)
|
|
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
|
|
.mul(4.0),
|
|
),
|
|
// tropical_temp to desert_temp
|
|
moss,
|
|
temp.sub(CONFIG.tropical_temp)
|
|
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
|
|
.mul(1.0),
|
|
),
|
|
// above desert_temp
|
|
sand,
|
|
temp.sub(CONFIG.desert_temp)
|
|
.div(1.0 - CONFIG.desert_temp)
|
|
.mul(4.0),
|
|
),
|
|
humidity
|
|
.sub(CONFIG.desert_hum)
|
|
.div(CONFIG.forest_hum.sub(CONFIG.desert_hum))
|
|
.mul(1.25),
|
|
);
|
|
// From forest to jungle humidity, we go from snow to dark grass to grass to
|
|
// tropics to sand depending on temperature.
|
|
let ground = Rgb::lerp(
|
|
ground,
|
|
Rgb::lerp(
|
|
Rgb::lerp(
|
|
Rgb::lerp(
|
|
snow_moss,
|
|
// temperate_temp to tropical_temp
|
|
grass,
|
|
temp.sub(CONFIG.temperate_temp)
|
|
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
|
|
.mul(4.0),
|
|
),
|
|
// tropical_temp to desert_temp
|
|
tropical,
|
|
temp.sub(CONFIG.tropical_temp)
|
|
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
|
|
.mul(1.0),
|
|
),
|
|
// above desert_temp
|
|
sand,
|
|
temp.sub(CONFIG.desert_temp)
|
|
.div(1.0 - CONFIG.desert_temp)
|
|
.mul(4.0),
|
|
),
|
|
humidity
|
|
.sub(CONFIG.forest_hum)
|
|
.div(CONFIG.jungle_hum.sub(CONFIG.forest_hum))
|
|
.mul(1.0),
|
|
);
|
|
// From jungle humidity upwards, we go from snow to grass to rainforest to
|
|
// tropics to sand.
|
|
let ground = Rgb::lerp(
|
|
ground,
|
|
Rgb::lerp(
|
|
Rgb::lerp(
|
|
Rgb::lerp(
|
|
snow_moss,
|
|
// temperate_temp to tropical_temp
|
|
rainforest,
|
|
temp.sub(CONFIG.temperate_temp)
|
|
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
|
|
.mul(4.0),
|
|
),
|
|
// tropical_temp to desert_temp
|
|
tropical,
|
|
temp.sub(CONFIG.tropical_temp)
|
|
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
|
|
.mul(4.0),
|
|
),
|
|
// above desert_temp
|
|
sand,
|
|
temp.sub(CONFIG.desert_temp)
|
|
.div(1.0 - CONFIG.desert_temp)
|
|
.mul(4.0),
|
|
),
|
|
humidity.sub(CONFIG.jungle_hum).mul(1.0),
|
|
);
|
|
|
|
// Snow covering
|
|
let snow_cover = temp
|
|
.sub(CONFIG.snow_temp)
|
|
.max(-humidity.sub(CONFIG.desert_hum))
|
|
.mul(4.0)
|
|
.add(((marble - 0.5) / 0.5) * 0.5)
|
|
.add(((marble_mid - 0.5) / 0.5) * 0.25)
|
|
.add(((marble_small - 0.5) / 0.5) * 0.175);
|
|
let (alt, ground, sub_surface_color, snow_cover) = if snow_cover <= 0.0 && alt > water_level
|
|
{
|
|
// Allow snow cover.
|
|
(
|
|
alt + 1.0 - snow_cover.max(0.0),
|
|
Rgb::lerp(snow, ground, snow_cover),
|
|
Lerp::lerp(sub_surface_color, ground, alt.sub(basement).mul(0.15)),
|
|
true,
|
|
)
|
|
} else {
|
|
(alt, ground, sub_surface_color, false)
|
|
};
|
|
|
|
// Make river banks not have grass
|
|
let ground = water_dist
|
|
.map(|wd| Lerp::lerp(sub_surface_color, ground, (wd / 3.0).clamped(0.0, 1.0)))
|
|
.unwrap_or(ground);
|
|
|
|
// Ground under thick trees should be receive less sunlight and so often become
|
|
// dirt
|
|
let ground = Lerp::lerp(ground, sub_surface_color, marble_mid * tree_density);
|
|
|
|
let near_ocean = max_river.and_then(|(_, _, river_data, _)| {
|
|
if (river_data.is_lake() || river_data.river_kind == Some(RiverKind::Ocean))
|
|
&& alt <= water_level.max(CONFIG.sea_level + 5.0)
|
|
{
|
|
Some(water_level)
|
|
} else {
|
|
None
|
|
}
|
|
});
|
|
|
|
let ocean_level = if let Some(_sea_level) = near_ocean {
|
|
alt - CONFIG.sea_level
|
|
} else {
|
|
5.0
|
|
};
|
|
|
|
let gradient = sim.get_gradient_approx(chunk_pos);
|
|
|
|
let path = sim.get_nearest_path(wpos);
|
|
let cave = sim.get_nearest_cave(wpos);
|
|
|
|
Some(ColumnSample {
|
|
alt,
|
|
riverless_alt,
|
|
basement,
|
|
chaos,
|
|
water_level,
|
|
warp_factor,
|
|
surface_color: Rgb::lerp(
|
|
sub_surface_color,
|
|
Rgb::lerp(
|
|
Rgb::lerp(cliff, sand, alt.sub(basement).mul(0.25)),
|
|
// Land
|
|
ground,
|
|
// Beach
|
|
((ocean_level - 1.0) / 2.0).max(0.0),
|
|
),
|
|
surface_veg,
|
|
),
|
|
sub_surface_color,
|
|
// No growing directly on bedrock.
|
|
// And, no growing on sites that don't want them TODO: More precise than this when we
|
|
// apply trees as a post-processing layer
|
|
tree_density: if sim_chunk
|
|
.sites
|
|
.iter()
|
|
.all(|site| index.sites[*site].spawn_rules(wpos).trees)
|
|
{
|
|
Lerp::lerp(0.0, tree_density, alt.sub(2.0).sub(basement).mul(0.5))
|
|
} else {
|
|
0.0
|
|
},
|
|
forest_kind: sim_chunk.forest_kind,
|
|
marble,
|
|
marble_small,
|
|
rock,
|
|
temp,
|
|
humidity,
|
|
spawn_rate,
|
|
stone_col,
|
|
water_dist,
|
|
gradient,
|
|
path,
|
|
cave,
|
|
snow_cover,
|
|
cliff_offset,
|
|
cliff_height,
|
|
|
|
chunk: sim_chunk,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct ColumnSample<'a> {
|
|
pub alt: f32,
|
|
pub riverless_alt: f32,
|
|
pub basement: f32,
|
|
pub chaos: f32,
|
|
pub water_level: f32,
|
|
pub warp_factor: f32,
|
|
pub surface_color: Rgb<f32>,
|
|
pub sub_surface_color: Rgb<f32>,
|
|
pub tree_density: f32,
|
|
pub forest_kind: ForestKind,
|
|
pub marble: f32,
|
|
pub marble_small: f32,
|
|
pub rock: f32,
|
|
pub temp: f32,
|
|
pub humidity: f32,
|
|
pub spawn_rate: f32,
|
|
pub stone_col: Rgb<u8>,
|
|
pub water_dist: Option<f32>,
|
|
pub gradient: Option<f32>,
|
|
pub path: Option<(f32, Vec2<f32>, Path, Vec2<f32>)>,
|
|
pub cave: Option<(f32, Vec2<f32>, Cave, Vec2<f32>)>,
|
|
pub snow_cover: bool,
|
|
pub cliff_offset: f32,
|
|
pub cliff_height: f32,
|
|
|
|
pub chunk: &'a SimChunk,
|
|
}
|