veloren/network/protocol/src/quic.rs
2021-09-24 23:18:07 +02:00

960 lines
33 KiB
Rust

use crate::{
error::ProtocolError,
event::ProtocolEvent,
frame::{ITFrame, InitFrame, OTFrame},
handshake::{ReliableDrain, ReliableSink},
message::{ITMessage, ALLOC_BLOCK},
metrics::{ProtocolMetricCache, RemoveReason},
prio::PrioManager,
types::{Bandwidth, Mid, Promises, Sid},
util::SortedVec,
RecvProtocol, SendProtocol, UnreliableDrain, UnreliableSink,
};
use async_trait::async_trait;
use bytes::BytesMut;
use hashbrown::HashMap;
use std::time::{Duration, Instant};
use tracing::info;
#[cfg(feature = "trace_pedantic")]
use tracing::trace;
#[derive(PartialEq)]
pub enum QuicDataFormatStream {
Main,
Reliable(Sid),
Unreliable,
}
pub struct QuicDataFormat {
pub stream: QuicDataFormatStream,
pub data: BytesMut,
}
impl QuicDataFormat {
fn with_main(buffer: &mut BytesMut) -> Self {
Self {
stream: QuicDataFormatStream::Main,
data: buffer.split(),
}
}
fn with_reliable(buffer: &mut BytesMut, sid: Sid) -> Self {
Self {
stream: QuicDataFormatStream::Reliable(sid),
data: buffer.split(),
}
}
fn with_unreliable(frame: OTFrame) -> Self {
let mut buffer = BytesMut::new();
frame.write_bytes(&mut buffer);
Self {
stream: QuicDataFormatStream::Unreliable,
data: buffer,
}
}
}
/// QUIC implementation of [`SendProtocol`]
///
/// [`SendProtocol`]: crate::SendProtocol
#[derive(Debug)]
pub struct QuicSendProtocol<D>
where
D: UnreliableDrain<DataFormat = QuicDataFormat>,
{
main_buffer: BytesMut,
reliable_buffers: SortedVec<Sid, BytesMut>,
store: PrioManager,
next_mid: Mid,
closing_streams: Vec<Sid>,
notify_closing_streams: Vec<Sid>,
pending_shutdown: bool,
drain: D,
#[allow(dead_code)]
last: Instant,
metrics: ProtocolMetricCache,
}
/// QUIC implementation of [`RecvProtocol`]
///
/// [`RecvProtocol`]: crate::RecvProtocol
#[derive(Debug)]
pub struct QuicRecvProtocol<S>
where
S: UnreliableSink<DataFormat = QuicDataFormat>,
{
main_buffer: BytesMut,
unreliable_buffer: BytesMut,
reliable_buffers: SortedVec<Sid, BytesMut>,
pending_reliable_buffers: Vec<(Sid, BytesMut)>,
itmsg_allocator: BytesMut,
incoming: HashMap<Mid, ITMessage>,
sink: S,
metrics: ProtocolMetricCache,
}
fn is_reliable(p: &Promises) -> bool {
p.contains(Promises::ORDERED)
|| p.contains(Promises::CONSISTENCY)
|| p.contains(Promises::GUARANTEED_DELIVERY)
}
impl<D> QuicSendProtocol<D>
where
D: UnreliableDrain<DataFormat = QuicDataFormat>,
{
pub fn new(drain: D, metrics: ProtocolMetricCache) -> Self {
Self {
main_buffer: BytesMut::new(),
reliable_buffers: SortedVec::default(),
store: PrioManager::new(metrics.clone()),
next_mid: 0u64,
closing_streams: vec![],
notify_closing_streams: vec![],
pending_shutdown: false,
drain,
last: Instant::now(),
metrics,
}
}
/// returns all promises that this Protocol can take care of
/// If you open a Stream anyway, unsupported promises are ignored.
pub fn supported_promises() -> Promises {
Promises::ORDERED
| Promises::CONSISTENCY
| Promises::GUARANTEED_DELIVERY
| Promises::COMPRESSED
| Promises::ENCRYPTED
}
}
impl<S> QuicRecvProtocol<S>
where
S: UnreliableSink<DataFormat = QuicDataFormat>,
{
pub fn new(sink: S, metrics: ProtocolMetricCache) -> Self {
Self {
main_buffer: BytesMut::new(),
unreliable_buffer: BytesMut::new(),
reliable_buffers: SortedVec::default(),
pending_reliable_buffers: vec![],
itmsg_allocator: BytesMut::with_capacity(ALLOC_BLOCK),
incoming: HashMap::new(),
sink,
metrics,
}
}
async fn recv_into_stream(&mut self) -> Result<QuicDataFormatStream, ProtocolError> {
let chunk = self.sink.recv().await?;
let buffer = match chunk.stream {
QuicDataFormatStream::Main => &mut self.main_buffer,
QuicDataFormatStream::Unreliable => &mut self.unreliable_buffer,
QuicDataFormatStream::Reliable(id) => {
match self.reliable_buffers.get_mut(&id) {
Some(buffer) => buffer,
None => {
self.pending_reliable_buffers.push((id, BytesMut::new()));
//Violated but will never happen
&mut self
.pending_reliable_buffers
.last_mut()
.ok_or(ProtocolError::Violated)?
.1
},
}
},
};
if buffer.is_empty() {
*buffer = chunk.data
} else {
buffer.extend_from_slice(&chunk.data)
}
Ok(chunk.stream)
}
}
#[async_trait]
impl<D> SendProtocol for QuicSendProtocol<D>
where
D: UnreliableDrain<DataFormat = QuicDataFormat>,
{
fn notify_from_recv(&mut self, event: ProtocolEvent) {
match event {
ProtocolEvent::OpenStream {
sid,
prio,
promises,
guaranteed_bandwidth,
} => {
self.store
.open_stream(sid, prio, promises, guaranteed_bandwidth);
if is_reliable(&promises) {
self.reliable_buffers.insert(sid, BytesMut::new());
}
},
ProtocolEvent::CloseStream { sid } => {
if !self.store.try_close_stream(sid) {
#[cfg(feature = "trace_pedantic")]
trace!(?sid, "hold back notify close stream");
self.notify_closing_streams.push(sid);
}
},
_ => {},
}
}
async fn send(&mut self, event: ProtocolEvent) -> Result<(), ProtocolError> {
#[cfg(feature = "trace_pedantic")]
trace!(?event, "send");
match event {
ProtocolEvent::OpenStream {
sid,
prio,
promises,
guaranteed_bandwidth,
} => {
self.store
.open_stream(sid, prio, promises, guaranteed_bandwidth);
if is_reliable(&promises) {
self.reliable_buffers.insert(sid, BytesMut::new());
//Send a empty message to notify local drain of stream
self.drain
.send(QuicDataFormat::with_reliable(&mut BytesMut::new(), sid))
.await?;
}
event.to_frame().write_bytes(&mut self.main_buffer);
self.drain
.send(QuicDataFormat::with_main(&mut self.main_buffer))
.await?;
},
ProtocolEvent::CloseStream { sid } => {
if self.store.try_close_stream(sid) {
let _ = self.reliable_buffers.delete(&sid); //delete if it was reliable
event.to_frame().write_bytes(&mut self.main_buffer);
self.drain
.send(QuicDataFormat::with_main(&mut self.main_buffer))
.await?;
} else {
#[cfg(feature = "trace_pedantic")]
trace!(?sid, "hold back close stream");
self.closing_streams.push(sid);
}
},
ProtocolEvent::Shutdown => {
if self.store.is_empty() {
event.to_frame().write_bytes(&mut self.main_buffer);
self.drain
.send(QuicDataFormat::with_main(&mut self.main_buffer))
.await?;
} else {
#[cfg(feature = "trace_pedantic")]
trace!("hold back shutdown");
self.pending_shutdown = true;
}
},
ProtocolEvent::Message { data, sid } => {
self.metrics.smsg_ib(sid, data.len() as u64);
self.store.add(data, self.next_mid, sid);
self.next_mid += 1;
},
}
Ok(())
}
async fn flush(
&mut self,
bandwidth: Bandwidth,
dt: Duration,
) -> Result</* actual */ Bandwidth, ProtocolError> {
let (frames, _) = self.store.grab(bandwidth, dt);
//Todo: optimize reserve
let mut data_frames = 0;
let mut data_bandwidth = 0;
for (sid, frame) in frames {
if let OTFrame::Data { mid: _, data } = &frame {
data_bandwidth += data.len();
data_frames += 1;
}
match self.reliable_buffers.get_mut(&sid) {
Some(buffer) => frame.write_bytes(buffer),
None => {
self.drain
.send(QuicDataFormat::with_unreliable(frame))
.await?
},
}
}
for (sid, buffer) in self.reliable_buffers.data.iter_mut() {
if !buffer.is_empty() {
self.drain
.send(QuicDataFormat::with_reliable(buffer, *sid))
.await?;
}
}
self.metrics
.sdata_frames_b(data_frames, data_bandwidth as u64);
let mut finished_streams = vec![];
for (i, &sid) in self.closing_streams.iter().enumerate() {
if self.store.try_close_stream(sid) {
#[cfg(feature = "trace_pedantic")]
trace!(?sid, "close stream, as it's now empty");
OTFrame::CloseStream { sid }.write_bytes(&mut self.main_buffer);
self.drain
.send(QuicDataFormat::with_main(&mut self.main_buffer))
.await?;
finished_streams.push(i);
}
}
for i in finished_streams.iter().rev() {
self.closing_streams.remove(*i);
}
let mut finished_streams = vec![];
for (i, sid) in self.notify_closing_streams.iter().enumerate() {
if self.store.try_close_stream(*sid) {
#[cfg(feature = "trace_pedantic")]
trace!(?sid, "close stream, as it's now empty");
finished_streams.push(i);
}
}
for i in finished_streams.iter().rev() {
self.notify_closing_streams.remove(*i);
}
if self.pending_shutdown && self.store.is_empty() {
#[cfg(feature = "trace_pedantic")]
trace!("shutdown, as it's now empty");
OTFrame::Shutdown {}.write_bytes(&mut self.main_buffer);
self.drain
.send(QuicDataFormat::with_main(&mut self.main_buffer))
.await?;
self.pending_shutdown = false;
}
Ok(data_bandwidth as u64)
}
}
#[async_trait]
impl<S> RecvProtocol for QuicRecvProtocol<S>
where
S: UnreliableSink<DataFormat = QuicDataFormat>,
{
async fn recv(&mut self) -> Result<ProtocolEvent, ProtocolError> {
'outer: loop {
match ITFrame::read_frame(&mut self.main_buffer) {
Ok(Some(frame)) => {
#[cfg(feature = "trace_pedantic")]
trace!(?frame, "recv");
match frame {
ITFrame::Shutdown => break 'outer Ok(ProtocolEvent::Shutdown),
ITFrame::OpenStream {
sid,
prio,
promises,
guaranteed_bandwidth,
} => {
if is_reliable(&promises) {
self.reliable_buffers.insert(sid, BytesMut::new());
}
break 'outer Ok(ProtocolEvent::OpenStream {
sid,
prio: prio.min(crate::types::HIGHEST_PRIO),
promises,
guaranteed_bandwidth,
});
},
ITFrame::CloseStream { sid } => {
//FIXME: defer close!
//let _ = self.reliable_buffers.delete(sid); // if it was reliable
break 'outer Ok(ProtocolEvent::CloseStream { sid });
},
_ => break 'outer Err(ProtocolError::Violated),
};
},
Ok(None) => {},
Err(()) => return Err(ProtocolError::Violated),
}
// try to order pending
let mut pending_violated = false;
let mut reliable = vec![];
self.pending_reliable_buffers.drain_filter(|(_, buffer)| {
// try to get Sid without touching buffer
let mut testbuffer = buffer.clone();
match ITFrame::read_frame(&mut testbuffer) {
Ok(Some(ITFrame::DataHeader {
sid,
mid: _,
length: _,
})) => {
reliable.push((sid, buffer.clone()));
true
},
Ok(Some(_)) | Err(_) => {
pending_violated = true;
true
},
Ok(None) => false,
}
});
if pending_violated {
break 'outer Err(ProtocolError::Violated);
}
for (sid, buffer) in reliable.into_iter() {
self.reliable_buffers.insert(sid, buffer)
}
let mut iter = self
.reliable_buffers
.data
.iter_mut()
.map(|(_, b)| (b, true))
.collect::<Vec<_>>();
iter.push((&mut self.unreliable_buffer, false));
for (buffer, reliable) in iter {
loop {
match ITFrame::read_frame(buffer) {
Ok(Some(frame)) => {
#[cfg(feature = "trace_pedantic")]
trace!(?frame, "recv");
match frame {
ITFrame::DataHeader { sid, mid, length } => {
let m = ITMessage::new(sid, length, &mut self.itmsg_allocator);
self.metrics.rmsg_ib(sid, length);
self.incoming.insert(mid, m);
},
ITFrame::Data { mid, data } => {
self.metrics.rdata_frames_b(data.len() as u64);
let m = match self.incoming.get_mut(&mid) {
Some(m) => m,
None => {
if reliable {
info!(
?mid,
"protocol violation by remote side: send Data \
before Header"
);
break 'outer Err(ProtocolError::Violated);
} else {
//TODO: cleanup old messages from time to time
continue;
}
},
};
m.data.extend_from_slice(&data);
if m.data.len() == m.length as usize {
// finished, yay
let m = self
.incoming
.remove(&mid)
.ok_or(ProtocolError::Violated)?;
self.metrics.rmsg_ob(
m.sid,
RemoveReason::Finished,
m.data.len() as u64,
);
break 'outer Ok(ProtocolEvent::Message {
sid: m.sid,
data: m.data.freeze(),
});
}
},
_ => break 'outer Err(ProtocolError::Violated),
};
},
Ok(None) => break, //inner => read more data
Err(()) => return Err(ProtocolError::Violated),
}
}
}
self.recv_into_stream().await?;
}
}
}
#[async_trait]
impl<D> ReliableDrain for QuicSendProtocol<D>
where
D: UnreliableDrain<DataFormat = QuicDataFormat>,
{
async fn send(&mut self, frame: InitFrame) -> Result<(), ProtocolError> {
self.main_buffer.reserve(500);
frame.write_bytes(&mut self.main_buffer);
self.drain
.send(QuicDataFormat::with_main(&mut self.main_buffer))
.await
}
}
#[async_trait]
impl<S> ReliableSink for QuicRecvProtocol<S>
where
S: UnreliableSink<DataFormat = QuicDataFormat>,
{
async fn recv(&mut self) -> Result<InitFrame, ProtocolError> {
while self.main_buffer.len() < 100 {
if self.recv_into_stream().await? == QuicDataFormatStream::Main {
if let Some(frame) = InitFrame::read_frame(&mut self.main_buffer) {
return Ok(frame);
}
}
}
Err(ProtocolError::Violated)
}
}
#[cfg(test)]
mod test_utils {
//Quic protocol based on Channel
use super::*;
use crate::metrics::{ProtocolMetricCache, ProtocolMetrics};
use async_channel::*;
use std::sync::Arc;
pub struct QuicDrain {
pub sender: Sender<QuicDataFormat>,
pub drop_ratio: f32,
}
pub struct QuicSink {
pub receiver: Receiver<QuicDataFormat>,
}
/// emulate Quic protocol on Channels
pub fn quic_bound(
cap: usize,
drop_ratio: f32,
metrics: Option<ProtocolMetricCache>,
) -> [(QuicSendProtocol<QuicDrain>, QuicRecvProtocol<QuicSink>); 2] {
let (s1, r1) = async_channel::bounded(cap);
let (s2, r2) = async_channel::bounded(cap);
let m = metrics.unwrap_or_else(|| {
ProtocolMetricCache::new("quic", Arc::new(ProtocolMetrics::new().unwrap()))
});
[
(
QuicSendProtocol::new(
QuicDrain {
sender: s1,
drop_ratio,
},
m.clone(),
),
QuicRecvProtocol::new(QuicSink { receiver: r2 }, m.clone()),
),
(
QuicSendProtocol::new(
QuicDrain {
sender: s2,
drop_ratio,
},
m.clone(),
),
QuicRecvProtocol::new(QuicSink { receiver: r1 }, m),
),
]
}
#[async_trait]
impl UnreliableDrain for QuicDrain {
type DataFormat = QuicDataFormat;
async fn send(&mut self, data: Self::DataFormat) -> Result<(), ProtocolError> {
use rand::Rng;
if matches!(data.stream, QuicDataFormatStream::Unreliable)
&& rand::thread_rng().gen::<f32>() < self.drop_ratio
{
return Ok(());
}
self.sender
.send(data)
.await
.map_err(|_| ProtocolError::Closed)
}
}
#[async_trait]
impl UnreliableSink for QuicSink {
type DataFormat = QuicDataFormat;
async fn recv(&mut self) -> Result<Self::DataFormat, ProtocolError> {
self.receiver
.recv()
.await
.map_err(|_| ProtocolError::Closed)
}
}
}
#[cfg(test)]
mod tests {
use crate::{
error::ProtocolError,
frame::OTFrame,
metrics::{ProtocolMetricCache, ProtocolMetrics, RemoveReason},
quic::{test_utils::*, QuicDataFormat},
types::{Pid, Promises, Sid, STREAM_ID_OFFSET1, STREAM_ID_OFFSET2},
InitProtocol, ProtocolEvent, RecvProtocol, SendProtocol,
};
use bytes::{Bytes, BytesMut};
use std::{sync::Arc, time::Duration};
#[tokio::test]
async fn handshake_all_good() {
let [mut p1, mut p2] = quic_bound(10, 0.5, None);
let r1 = tokio::spawn(async move { p1.initialize(true, Pid::fake(2), 1337).await });
let r2 = tokio::spawn(async move { p2.initialize(false, Pid::fake(3), 42).await });
let (r1, r2) = tokio::join!(r1, r2);
assert_eq!(r1.unwrap(), Ok((Pid::fake(3), STREAM_ID_OFFSET1, 42)));
assert_eq!(r2.unwrap(), Ok((Pid::fake(2), STREAM_ID_OFFSET2, 1337)));
}
#[tokio::test]
async fn open_stream() {
let [p1, p2] = quic_bound(10, 0.5, None);
let (mut s, mut r) = (p1.0, p2.1);
let event = ProtocolEvent::OpenStream {
sid: Sid::new(10),
prio: 0u8,
promises: Promises::ORDERED,
guaranteed_bandwidth: 1_000_000,
};
s.send(event.clone()).await.unwrap();
let e = r.recv().await.unwrap();
assert_eq!(event, e);
}
#[tokio::test]
async fn send_short_msg() {
let [p1, p2] = quic_bound(10, 0.5, None);
let (mut s, mut r) = (p1.0, p2.1);
let event = ProtocolEvent::OpenStream {
sid: Sid::new(10),
prio: 3u8,
promises: Promises::ORDERED,
guaranteed_bandwidth: 1_000_000,
};
s.send(event).await.unwrap();
let _ = r.recv().await.unwrap();
let event = ProtocolEvent::Message {
sid: Sid::new(10),
data: Bytes::from(&[188u8; 600][..]),
};
s.send(event.clone()).await.unwrap();
s.flush(1_000_000, Duration::from_secs(1)).await.unwrap();
let e = r.recv().await.unwrap();
assert_eq!(event, e);
// 2nd short message
let event = ProtocolEvent::Message {
sid: Sid::new(10),
data: Bytes::from(&[7u8; 30][..]),
};
s.send(event.clone()).await.unwrap();
s.flush(1_000_000, Duration::from_secs(1)).await.unwrap();
let e = r.recv().await.unwrap();
assert_eq!(event, e)
}
#[tokio::test]
async fn send_long_msg() {
let mut metrics =
ProtocolMetricCache::new("long_quic", Arc::new(ProtocolMetrics::new().unwrap()));
let sid = Sid::new(1);
let [p1, p2] = quic_bound(10000, 0.5, Some(metrics.clone()));
let (mut s, mut r) = (p1.0, p2.1);
let event = ProtocolEvent::OpenStream {
sid,
prio: 5u8,
promises: Promises::COMPRESSED | Promises::ORDERED,
guaranteed_bandwidth: 1_000_000,
};
s.send(event).await.unwrap();
let _ = r.recv().await.unwrap();
let event = ProtocolEvent::Message {
sid,
data: Bytes::from(&[99u8; 500_000][..]),
};
s.send(event.clone()).await.unwrap();
s.flush(1_000_000, Duration::from_secs(1)).await.unwrap();
let e = r.recv().await.unwrap();
assert_eq!(event, e);
metrics.assert_msg(sid, 1, RemoveReason::Finished);
metrics.assert_msg_bytes(sid, 500_000, RemoveReason::Finished);
metrics.assert_data_frames(358);
metrics.assert_data_frames_bytes(500_000);
}
#[tokio::test]
async fn msg_finishes_after_close() {
let sid = Sid::new(1);
let [p1, p2] = quic_bound(10000, 0.5, None);
let (mut s, mut r) = (p1.0, p2.1);
let event = ProtocolEvent::OpenStream {
sid,
prio: 5u8,
promises: Promises::COMPRESSED | Promises::ORDERED,
guaranteed_bandwidth: 0,
};
s.send(event).await.unwrap();
let _ = r.recv().await.unwrap();
let event = ProtocolEvent::Message {
sid,
data: Bytes::from(&[99u8; 500_000][..]),
};
s.send(event).await.unwrap();
let event = ProtocolEvent::CloseStream { sid };
s.send(event).await.unwrap();
//send
s.flush(1_000_000, Duration::from_secs(1)).await.unwrap();
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::Message { .. }));
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::CloseStream { .. }));
}
#[tokio::test]
async fn msg_finishes_after_shutdown() {
let sid = Sid::new(1);
let [p1, p2] = quic_bound(10000, 0.5, None);
let (mut s, mut r) = (p1.0, p2.1);
let event = ProtocolEvent::OpenStream {
sid,
prio: 5u8,
promises: Promises::COMPRESSED | Promises::ORDERED,
guaranteed_bandwidth: 0,
};
s.send(event).await.unwrap();
let _ = r.recv().await.unwrap();
let event = ProtocolEvent::Message {
sid,
data: Bytes::from(&[99u8; 500_000][..]),
};
s.send(event).await.unwrap();
let event = ProtocolEvent::Shutdown {};
s.send(event).await.unwrap();
let event = ProtocolEvent::CloseStream { sid };
s.send(event).await.unwrap();
//send
s.flush(1_000_000, Duration::from_secs(1)).await.unwrap();
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::Message { .. }));
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::CloseStream { .. }));
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::Shutdown { .. }));
}
#[tokio::test]
async fn msg_finishes_after_drop() {
let sid = Sid::new(1);
let [p1, p2] = quic_bound(10000, 0.5, None);
let (mut s, mut r) = (p1.0, p2.1);
let event = ProtocolEvent::OpenStream {
sid,
prio: 5u8,
promises: Promises::COMPRESSED | Promises::ORDERED,
guaranteed_bandwidth: 0,
};
s.send(event).await.unwrap();
let event = ProtocolEvent::Message {
sid,
data: Bytes::from(&[99u8; 500_000][..]),
};
s.send(event).await.unwrap();
s.flush(1_000_000, Duration::from_secs(1)).await.unwrap();
let event = ProtocolEvent::Message {
sid,
data: Bytes::from(&[100u8; 500_000][..]),
};
s.send(event).await.unwrap();
s.flush(1_000_000, Duration::from_secs(1)).await.unwrap();
drop(s);
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::OpenStream { .. }));
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::Message { .. }));
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::Message { .. }));
}
#[tokio::test]
async fn header_and_data_in_seperate_msg() {
let sid = Sid::new(1);
let (s, r) = async_channel::bounded(10);
let m = ProtocolMetricCache::new("quic", Arc::new(ProtocolMetrics::new().unwrap()));
let mut r =
super::QuicRecvProtocol::new(super::test_utils::QuicSink { receiver: r }, m.clone());
const DATA1: &[u8; 69] =
b"We need to make sure that its okay to send OPEN_STREAM and DATA_HEAD ";
const DATA2: &[u8; 95] = b"in one chunk and (DATA and CLOSE_STREAM) in the second chunk. and then keep the connection open";
let mut bytes = BytesMut::with_capacity(1500);
OTFrame::OpenStream {
sid,
prio: 5u8,
promises: Promises::COMPRESSED | Promises::ORDERED,
guaranteed_bandwidth: 1_000_000,
}
.write_bytes(&mut bytes);
s.send(QuicDataFormat::with_main(&mut bytes)).await.unwrap();
OTFrame::DataHeader {
mid: 99,
sid,
length: (DATA1.len() + DATA2.len()) as u64,
}
.write_bytes(&mut bytes);
s.send(QuicDataFormat::with_reliable(&mut bytes, sid))
.await
.unwrap();
OTFrame::Data {
mid: 99,
data: Bytes::from(&DATA1[..]),
}
.write_bytes(&mut bytes);
OTFrame::Data {
mid: 99,
data: Bytes::from(&DATA2[..]),
}
.write_bytes(&mut bytes);
s.send(QuicDataFormat::with_reliable(&mut bytes, sid))
.await
.unwrap();
OTFrame::CloseStream { sid }.write_bytes(&mut bytes);
s.send(QuicDataFormat::with_main(&mut bytes)).await.unwrap();
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::OpenStream { .. }));
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::Message { .. }));
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::CloseStream { .. }));
}
#[tokio::test]
async fn drop_sink_while_recv() {
let sid = Sid::new(1);
let (s, r) = async_channel::bounded(10);
let m = ProtocolMetricCache::new("quic", Arc::new(ProtocolMetrics::new().unwrap()));
let mut r =
super::QuicRecvProtocol::new(super::test_utils::QuicSink { receiver: r }, m.clone());
let mut bytes = BytesMut::with_capacity(1500);
OTFrame::OpenStream {
sid,
prio: 5u8,
promises: Promises::COMPRESSED,
guaranteed_bandwidth: 1_000_000,
}
.write_bytes(&mut bytes);
s.send(QuicDataFormat::with_main(&mut bytes)).await.unwrap();
let e = r.recv().await.unwrap();
assert!(matches!(e, ProtocolEvent::OpenStream { .. }));
let e = tokio::spawn(async move { r.recv().await });
drop(s);
let e = e.await.unwrap();
assert_eq!(e, Err(ProtocolError::Closed));
}
#[tokio::test]
#[should_panic]
async fn send_on_stream_from_remote_without_notify() {
//remote opens stream
//we send on it
let [mut p1, mut p2] = quic_bound(10, 0.5, None);
let event = ProtocolEvent::OpenStream {
sid: Sid::new(10),
prio: 3u8,
promises: Promises::ORDERED,
guaranteed_bandwidth: 1_000_000,
};
p1.0.send(event).await.unwrap();
let _ = p2.1.recv().await.unwrap();
let event = ProtocolEvent::Message {
sid: Sid::new(10),
data: Bytes::from(&[188u8; 600][..]),
};
p2.0.send(event.clone()).await.unwrap();
p2.0.flush(1_000_000, Duration::from_secs(1)).await.unwrap();
let e = p1.1.recv().await.unwrap();
assert_eq!(event, e);
}
#[tokio::test]
async fn send_on_stream_from_remote() {
//remote opens stream
//we send on it
let [mut p1, mut p2] = quic_bound(10, 0.5, None);
let event = ProtocolEvent::OpenStream {
sid: Sid::new(10),
prio: 3u8,
promises: Promises::ORDERED,
guaranteed_bandwidth: 1_000_000,
};
p1.0.send(event).await.unwrap();
let e = p2.1.recv().await.unwrap();
p2.0.notify_from_recv(e);
let event = ProtocolEvent::Message {
sid: Sid::new(10),
data: Bytes::from(&[188u8; 600][..]),
};
p2.0.send(event.clone()).await.unwrap();
p2.0.flush(1_000_000, Duration::from_secs(1)).await.unwrap();
let e = p1.1.recv().await.unwrap();
assert_eq!(event, e);
}
#[tokio::test]
async fn unrealiable_test() {
const MIN_CHECK: usize = 10;
const COUNT: usize = 10_000;
//We send COUNT msg with 50% of be send each. we check that >= MIN_CHECK && !=
// COUNT reach their target
let [mut p1, mut p2] = quic_bound(
COUNT * 2 - 1, /* 2 times as it is HEADER + DATA but -1 as we want to see not all
* succeed */
0.5,
None,
);
let event = ProtocolEvent::OpenStream {
sid: Sid::new(1337),
prio: 3u8,
promises: Promises::empty(), /* on purpose! */
guaranteed_bandwidth: 1_000_000,
};
p1.0.send(event).await.unwrap();
let e = p2.1.recv().await.unwrap();
p2.0.notify_from_recv(e);
let event = ProtocolEvent::Message {
sid: Sid::new(1337),
data: Bytes::from(&[188u8; 600][..]),
};
for _ in 0..COUNT {
p2.0.send(event.clone()).await.unwrap();
}
p2.0.flush(1_000_000_000, Duration::from_secs(1))
.await
.unwrap();
for _ in 0..COUNT {
p2.0.send(event.clone()).await.unwrap();
}
for _ in 0..MIN_CHECK {
let e = p1.1.recv().await.unwrap();
assert_eq!(event, e);
}
}
}